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2-way automaton over Σ

. t h e i n p u t w o r d /

Automaton
READ

← →
left endmarker right endmarker

t h e o u t p u t

WRITE
→

(

A

, φ)

(
Q, q-,F , δ

)
transition set: ⊂ Q × Σ.,/ × {−1, 0, 1} × Q

production function: δ → Rat(Γ∗)
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2-way transducer over Σ, Γ

. t h e i n p u t w o r d /

Automaton
READ

← →
left endmarker right endmarker

t h e o u t p u t

WRITE
→

(A , φ)(
Q, q-,F , δ

)

transition set: ⊂ Q × Σ.,/ × {−1, 0, 1} × Q

production function: δ → Rat(Γ∗)

2 / 15



A simple example: SQUARE = {(w ,ww) | w ∈ Σ∗}

. a b a c c a b /

a b a c c a b a b a c c a b

I copy the input word
I rewind the input tape
I append a copy of the input word
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Another example: UnaryMult =
{

(an, akn) | k , n ∈ N
}

. a a a a /

a a a a a a a a a a a a

copy the input word rewind the input tape

accept and halt with nondeterminism
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Rational operations
I Union R1 ∪ R2
I Componentwise concatenation

R1 · R2 = {(u1u2, v1v2) | (u1, v1) ∈ R1 and (u2, v2) ∈ R2}

I Kleene star
R∗ = {(u1u2 · · · uk , v1v2 · · · vk) | ∀i (ui , vi ) ∈ R}

Definition (Rat(Σ∗ × Γ∗))
The class of rational relations is the smallest class:

I that contains finite relations
I and which is closed under rational operations

Theorem (Elgot, Mezei - 1965)
1-way transducers == the class of rational relations.
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Hadamard operations

I H-product
R1 H R2 = {(u, v1v2) | (u, v1) ∈ R1 and (u, v2) ∈ R2}

I H-star
RH? = {(u, v1v2 · · · vk) | ∀i (u, vi ) ∈ R}
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RH? = {(u, v1v2 · · · vk) | ∀i (u, vi ) ∈ R}

Example: SQUARE = {(w ,ww) | w ∈ Σ∗} = Identity H Identity
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I H-star
RH? = {(u, v1v2 · · · vk) | ∀i (u, vi ) ∈ R}

Example: UnaryMult =
{

(an, akn) | k, n ∈ N
}
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copy the input word rewind the input tape
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H-Rat relations

Definition
A relation R is in H-Rat(Σ∗ × Γ∗) if

R =
⋃

0≤i≤n
Ai H BH?

i

where for each i , Ai and Bi are rational relations.
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Main result

When Σ = {a} and Γ = {a}:

Theorem (Elgot, Mezei - 1965)

1-way transducers == the class of rational relations .

This talk

2-way transducers H-Rat relations

Proof
I ⊇: easy
I ⊆: difficult part
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Known results

I 2-way functional == MSO definable functions
[Engelfriet, Hoogeboom - 2001]

I 2-way general incomparable MSO definable relations
[Engelfriet, Hoogeboom - 2001]

I 1-way simulation of 2-way functional transducer:
decidable and constructible [Filiot et al. - 2013]

When Γ = {a}:
I 2-way unambiguous −→ 1-way

[Anselmo - 1990]
I 2-way unambiguous == 2-way deterministic

[Carnino, Lombardy - 2014]
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From H-Rat to 2-way transducers (unary case)

Property
The family of relations accepted by 2-way transducers is
closed under ∪ , H and H? .
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From H-Rat to 2-way transducers (unary case)

Property
The family of relations accepted by 2-way transducers is
closed under ∪ , H and H? .

Corollary
H-Rat ⊆ accepted by 2-way transducers

 ⋃
0≤i≤n

Ai H BH?
i


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From 2-way transducers to H-Rat (unary case)

A first ingredient, a preliminary result:

Lemma
With arbitrary Σ and Γ = {a}:

H-Rat is closed under ∪ , H and H? .

Proof.
Tedious formal computations. . .
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From 2-way transducers to H-Rat (unary case)
We fix a transducer T .

I Consider border to border run segments;

I Compose border to border segments;

I Conclude using the closure properties of H-Rat.

. u /

q1
q2

q3q4

R1 = {(u, v1)}

R2 = {(u, v2)}

R3 = {(u, v3)}

R1 H R2 H R3 = {(u, v1v2v3)}
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From 2-way transducers to H-Rat (unary case)

q1 q2

. u /
define a relation R bi , bj

Q × {., /}

∈ ∈

R0,0 R0,1 · · · R0,2

R1,0 R1,1 · · · R1,2
· ·
· Ri ,j ·
· ·

Rk,0 Rk,1 · · · Rk,k




HIT =

2|Q
|

2 |Q|

13 / 15



From 2-way transducers to H-Rat (unary case)

q1 q2

. u /
define a relation R bi , bj

Q × {., /}

∈ ∈

R0,0 R0,1 · · · R0,2

R1,0 R1,1 · · · R1,2
· ·
· Ri ,j ·
· ·

Rk,0 Rk,1 · · · Rk,k




HIT =

2|Q
|

2 |Q|

13 / 15



From 2-way transducers to H-Rat (unary case)

q1 q2

. u /
define a relation R bi , bj

Q × {., /}

∈ ∈

R0,0 R0,1 · · · R0,2

R1,0 R1,1 · · · R1,2
· ·
· Ri ,j ·
· ·

Rk,0 Rk,1 · · · Rk,k




HIT =

2|Q
|

2 |Q|

13 / 15



From 2-way transducers to H-Rat (unary case)
Second ingredient:
The behavior of T is given by the matrix HIT H? .

Third ingredient:

Lemma
Each entry Rb1,b2 of the matrix HIT is rational ( constructible ).

. a a a a a a a a a a /

q

q

outputq rational output

By closure property:

Corollary
Each entry of HIT H? is in H-Rat.

Remark
The relation accepted by T is a union of entries of HIT H?.

Corollary
accepted by 2-way transducers ⊆ H-Rat
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Conclusion
Theorem
When Γ = {a} and Σ = {a}:
2-way transducers accept exactly the H-Rat relations.

From our construction follows:
I 2-way transducers can be made sweeping .

With only Γ = {a}:

I 2-way


deterministic
unambiguous
functional

 accept rational relations.

I 2-way transducers are uniformizable by 1-way transducers.

Every thing is constructible .

Thank you for your attention.
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