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A simple example: SQUARE = {(w,ww) | w € ¥*}
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Another example: UnaryMult = {(a”, ak") | k,n € N}

JBEEE
/

a a a a||a a a a a a a a

(W)

1

copy the input word ——— rewind the input tape

‘\T/

accept and halt with nondeterminism

15



Rational operations

» Union R U R,
» Componentwise concatenation
Ri- Ry = {(uiu2,viva) | (u1,vi) € Ry and (w2, v2) € Ro}

» Kleene star
R* ={(uviuz - ug, vava -+~ vi) | Vi (ui,vi) € R}
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Rational operations

» Union R U R,
» Componentwise concatenation
R1 . R2 = {(U1U2, V1V2) | (ul. V1) - R1 and (Uz, V2) < Rg}

» Kleene star
R* ={(uviuz - ug, vava -+~ vi) | Vi (ui,vi) € R}

Definition (Rat(X* x "))
The class of rational relations is the smallest class:
» that contains finite relations

» and which is closed under rational operations

Theorem (Elgot, Mezei - 1965)
1-way transducers = the class of rational relations.
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Hadamard operations

» H-product

RieR, = {(U, V1V2) ‘ (u. V1) c Ry and (U, V2) € RQ}

» H-star

R™ = {(u,viva---vx) | Vi (u,v;) € R}

Example: UnaryMult = {(a”, ™y | k,n e N} = Identity"*

-

> =]
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copy the input word —— rewind the input tape

accept and halt with nondeterminism
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H-Rat relations

Definition
A relation R is in H-Rat(X" x ') if

R= |J AeB™

0<i<n

where for each i/, A; and B; are rational relations.
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Main result

When ¥~ = {a} and I' = {a}:

Theorem (Elgot, Mezei - 1965)

1-way transducers ‘= the class of rational relations .

15



Main result

When ¥~ = {a} and I' = {a}:

- -
heorem ( This talk )

2-way transducers — the ¢f
— the c '
ass of | H-Rat relations .
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Main result
When ¥~ = {a} and I = {a}:

Theorem (©  This talk )

o-way transducers B8 the class of | Rat relations .

Proof

> D: easy
» C: difficult part
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Known results

» 2-way functional
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[Engelfriet, Hoogeboom - 2001]
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Known results

» 2-way functional .= MSO definable functions
[Engelfriet, Hoogeboom - 2001]
» 2-way general incomparable MSO definable relations
[Engelfriet, Hoogeboom - 2001]
» 1l-way simulation of 2-way functional transducer:
decidable and constructible [Filiot et al. - 2013]
When ' = {a}:
» 2-way unambiguous —> 1l-way
[Anselmo - 1990]
> 2-way unambiguous = 2-way deterministic
[Carnino, Lombardy - 2014]
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From H-Rat to 2-way transducers (unary case)

Property
The family of relations accepted by 2-way transducers is
closed under U, @ and HX.

Proof.

> R U Rs: > RH*
» simulate 77 or T, > repeat an arbitrary

number of times:

> Ri@Re: > simulate T
» simulate 75 > rewind the input tape
> rewind the input tape > reach the right endmarker
» simulate T, and accept

O
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From H-Rat to 2-way transducers (unary case)

Property

The family of relations accepted by 2-way transducers is
closed under U, @ and HX.

Corollary

H-Rat € accepted by 2-way transducers

U AeB™
0<i<n
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From 2-way transducers to H-Rat (unary case)

A first ingredient, a preliminary result:

Lemma
With arbitrary - and I = {a}:

H-Rat is closed under U, ® and Hk.

Proof.

Tedious formal computations. .. O
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From 2-way transducers to H-Rat (unary case)

We fix a transducer T .

» Consider border to border run segments;
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From 2-way transducers to H-Rat (unary case)

We fix a transducer T .

» Consider border to border run segments;

» Compose border to border segments;

> u p
|
—
_— | @
q4 o

RieR@

- {(U, Vivo

F—— R ={(u,v1)}

— R2 = {(u, Vg)}

={(u, )}

)}
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From 2-way transducers to H-Rat (unary case)
We fix a transducer 7.

» Consider border to border run segments;
» Compose border to border segments;

» Conclude using the closure properties of H-Rat.

> u <
T ——
el
g — Ro = {(u, v2)}
a @ ={(u, )}

RioRoe  ={(uvv )}
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From 2-way transducers to H-Rat (unary case)
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From 2-way transducers to H-Rat (unary case)

v

define a relation R
@ 1

S S

Q x {r,<}

13/15



From 2-way transducers to H-Rat (unary case)

A\
c
A

HIT =

) )
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From 2-way transducers to H-Rat (unary case)
Second ingredient:
The behavior of T is given by the matrix HIT"* .
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From 2-way transducers to H-Rat (unary case)
Second ingredient:
The behavior of T is given by the matrix HIT"* .

Third ingredient:

Lemma
Each entry Ry, , of the matrix HIT is rational (\constructible ).

By closure property:

Corollary
Each entry of HIT"  is in H-Rat.

Remark
The relation accepted by T is a union of entries of HIT".

Corollary
accepted by 2-way transducers € H-Rat
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Conclusion

Theorem
When I = {a} and © = {a}:
2-way transducers accept exactly the H-Rat relations.
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Conclusion

Theorem
When I = {a} and © = {a}:
2-way transducers accept exactly the H-Rat relations.

From our construction follows:
» 2-way transducers can be made sweeping.

With only I = {a}:
deterministic
» 2-way { unambiguous  accept rational relations.
functional

» 2-way transducers are uniformizable by 1-way transducers.

Every thing is |constructible .

Thank you for your attention.
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