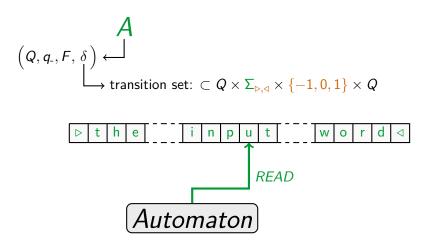
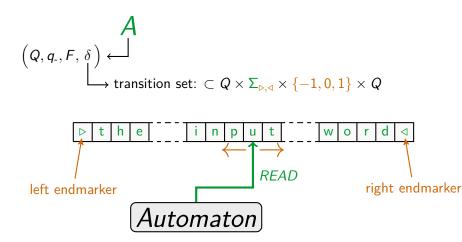
An algebraic characterization of unary 2-way transducers

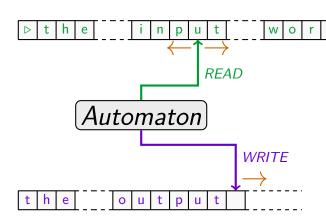

Christian Choffrut¹ and Bruno Guillon^{1,2}

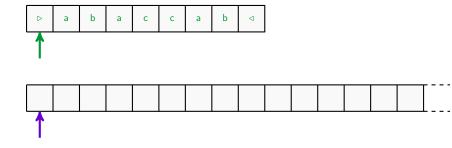
 $^1 \emph{LIAFA}$ - Université Paris-Diderot, Paris 7 2 Dipartimento di Informatica - Università degli studi di Milano

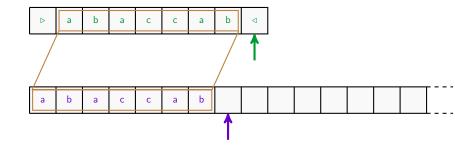

Septembre 17, 2014 ICTCS - Perugia - 2014

work published in MFCS 2014

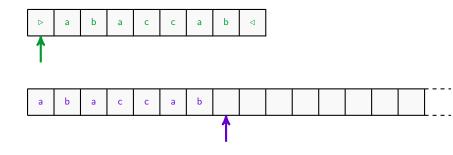
2-way automaton over Σ

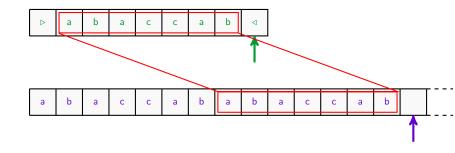


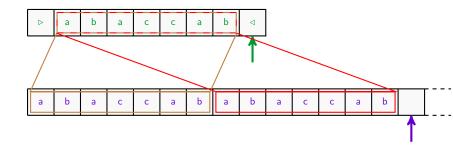

2-way automaton over Σ

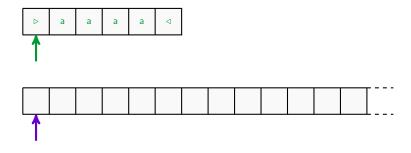


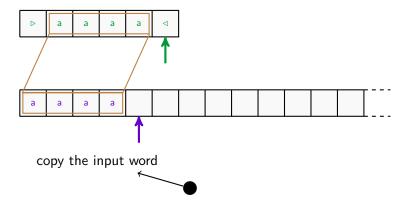
2-way transducer over Σ , Γ

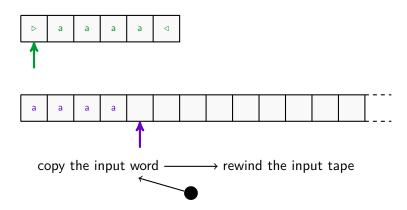

$$(Q, q_{-}, F, \delta) \stackrel{(A, \phi)}{\longleftarrow}_{\text{production function:}} \delta \rightarrow Rat(\Gamma^*)$$

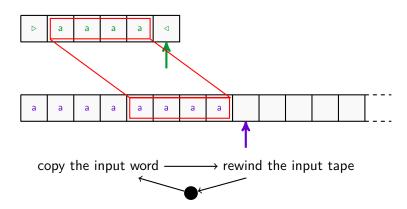


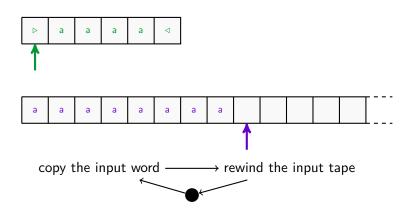

copy the input word

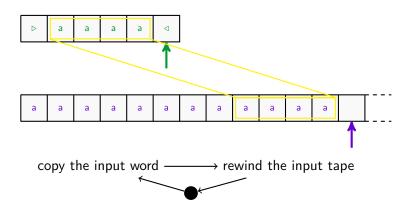

- copy the input word
- rewind the input tape

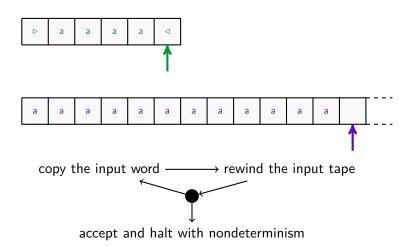


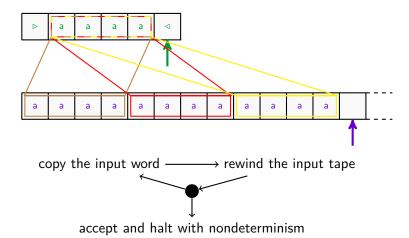

- copy the input word
- rewind the input tape
- append a copy of the input word




- copy the input word
- rewind the input tape
- append a copy of the input word







Rational operations

▶ Union $R_1 \cup R_2$

Componentwise concatenation

$$R_1 \cdot R_2 = \{(u_1u_2, v_1v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2\}$$

Kleene star

$$R^* = \{(u_1u_2 \cdots u_k, v_1v_2 \cdots v_k) \mid \forall i \ (u_i, v_i) \in R\}$$

Rational operations

▶ Union $R_1 \cup R_2$

Componentwise concatenation

$$R_1 \cdot R_2 = \{(u_1 u_2, v_1 v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2\}$$

Kleene star

$$R^* = \{(u_1u_2 \cdots u_k, v_1v_2 \cdots v_k) \mid \forall i \ (u_i, v_i) \in R\}$$

Definition $(Rat(\Sigma^* \times \Gamma^*))$

The class of rational relations is the smallest class:

- that contains finite relations
- and which is closed under rational operations

Rational operations

▶ Union $R_1 \cup R_2$

Componentwise concatenation

$$R_1 \cdot R_2 = \{(u_1u_2, v_1v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2\}$$

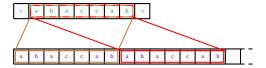
Kleene star

$$R^* = \{(u_1u_2 \cdots u_k, v_1v_2 \cdots v_k) \mid \forall i \ (u_i, v_i) \in R\}$$

Definition $(Rat(\Sigma^* \times \Gamma^*))$

The class of rational relations is the smallest class:

- that contains finite relations
- and which is closed under rational operations


► H-product

$$R_1 \oplus R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$$

H-product

$$R_1 \oplus R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$$

Example: $SQUARE = \{(w, ww) \mid w \in \Sigma^*\} = Identity \oplus Identity$

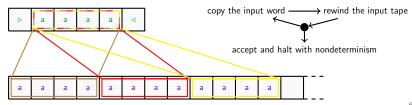
- copy the input word
- rewind the input tape
- append a copy of the input word

► H-product

$$R_1 \oplus R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$$

► H-star

$$R^{\mathsf{H}\star} = \{(u, v_1 v_2 \cdots v_k) \mid \forall i \ (u, v_i) \in R\}$$


H-product

$$R_1 \oplus R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$$

► H-star

$$R^{\mathsf{H}\star} = \{(u, v_1v_2\cdots v_k) \mid \forall i \ (u, v_i) \in R\}$$

Example: $UnaryMult = \{(a^n, a^{kn}) \mid k, n \in \mathbb{N}\} = Identity^{H*}$

H-Rat relations

Definition

A relation R is in H- $Rat(\Sigma^* \times \Gamma^*)$ if

$$R = \bigcup_{0 \le i \le n} A_i \oplus B_i^{\mathsf{H}^{\star}}$$

where for each i, A_i and B_i are rational relations.

Main result

```
When \Sigma = \{a\} and \Gamma = \{a\}:
```

Theorem (Elgot, Mezei - 1965)

1-way transducers ___ the class of rational relations.

Main result

```
When \Sigma = \{a\} and \Gamma = \{a\}:

Theorem ( This talk )

2-way transducers  the class of H-Rat relations .
```

Main result

```
When \Sigma = \{a\} and \Gamma = \{a\}:

Theorem ( This talk )

2-way transducers  the class of H-Rat relations .
```

Proof

- **▶** ⊇: easy
- ► ⊆: difficult part

► 2-way functional — MSO definable functions

 $[{\sf Engelfriet},\ {\sf Hoogeboom-2001}]$

► 2-way functional — MSO definable functions

[Engelfriet, Hoogeboom - 2001]

▶ 2-way general incomparable MSO definable relations

[Engelfriet, Hoogeboom - 2001]

```
► 2-way functional — MSO definable functions

[Engelfriet, Hoogeboom - 2001]
```

► 2-way general incomparable MSO definable relations [Engelfriet, Hoogeboom - 2001]

► 1-way simulation of 2-way functional transducer:

decidable and constructible

[Filiot et al. - 2013]

```
► 2-way functional — MSO definable functions

[Engelfriet, Hoogeboom - 2001]
```

► 2-way general incomparable MSO definable relations [Engelfriet, Hoogeboom - 2001]

► 1-way simulation of 2-way functional transducer:

decidable and constructible [Filiot et al. - 2013]

When $\Gamma = \{a\}$:

• 2-way unambiguous \longrightarrow 1-way

[Anselmo - 1990]

- [Engelfriet, Hoogeboom - 2001] ▶ 2-way general incomparable MSO definable relations [Engelfriet, Hoogeboom - 2001] ▶ 1-way simulation of 2-way functional transducer: decidable and constructible [Filiot et al. - 2013] When $\Gamma = \{a\}$: ► 2-way unambiguous → 1-way
 - ≥ 2-way unambiguous == 2-way deterministic [Carnino, Lombardy 2014]

[Anselmo - 1990]

From *H-Rat* to 2-way transducers (unary case)

Property

The family of relations accepted by 2-way transducers is closed under \bigcup , \bigoplus and \coprod .

From *H-Rat* to 2-way transducers (unary case)

Property

The family of relations accepted by 2-way transducers is closed under \bigcup , \bigoplus and \bowtie

Proof.

- $ightharpoonup R_1 \cup R_2$:
 - \triangleright simulate T_1 or T_2

From *H-Rat* to 2-way transducers (unary case)

Property

The family of relations accepted by 2-way transducers is closed under \bigcup , \bigoplus and \coprod .

Proof.

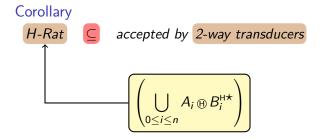
- ▶ $R_1 \cup R_2$:
 - ightharpoonup simulate T_1 or T_2
- $ightharpoonup R_1 \oplus R_2$:
 - ▶ simulate T₁
 - rewind the input tape
 - ▶ simulate T₂

From *H-Rat* to 2-way transducers (unary case)

Property

The family of relations accepted by 2-way transducers is closed under \bigcup , \widehat{H} and H^{\star} .

Proof.


- $ightharpoonup R_1 \cup R_2$:
 - \triangleright simulate T_1 or T_2
- $ightharpoonup R_1 \oplus R_2$:
 - ▶ simulate T₁
 - rewind the input tape
 - ▶ simulate T₂

- R^{H★}・
 - repeat an arbitrary number of times:
 - simulate T
 - rewind the input tape
 - reach the right endmarker and accept

From *H-Rat* to 2-way transducers (unary case)

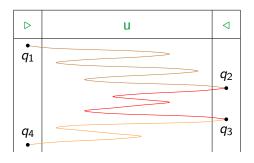
Property

The family of relations accepted by 2-way transducers is closed under \bigcup , \bigoplus and \coprod .

A first ingredient, a preliminary result:

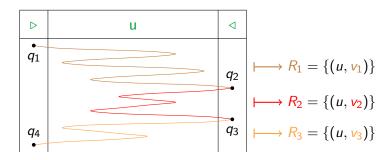
Lemma

With arbitrary Σ and $\Gamma = \{a\}$:

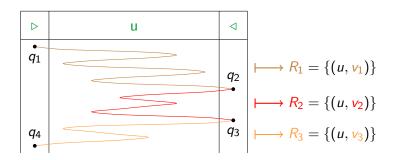

H-Rat is closed under \cup , \oplus and $H\star$.

Proof.

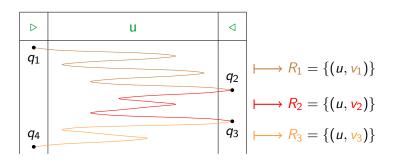
Tedious formal computations...


We fix a transducer \mathcal{T} .

Consider border to border run segments;

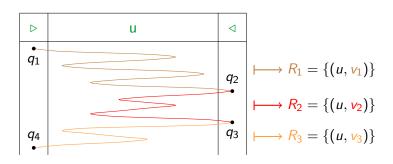

We fix a transducer \mathcal{T} .

Consider border to border run segments;


We fix a transducer \mathcal{T} .

- Consider border to border run segments;
- Compose border to border segments;

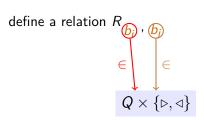
We fix a transducer \mathcal{T} .

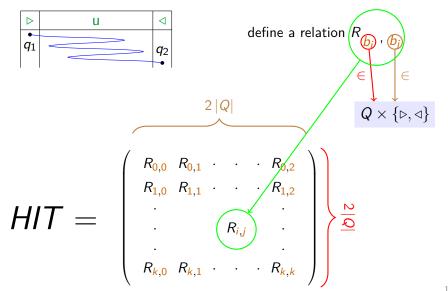

- Consider border to border run segments;
- Compose border to border segments;

$$R_1 \oplus R_2 \oplus R_3 = \{(u, v_1 v_2 v_3)\}$$

We fix a transducer \mathcal{T} .

- Consider border to border run segments;
- ► Compose border to border segments;
- ► Conclude using the closure properties of *H-Rat*.




$$R_1 \oplus R_2 \oplus R_3 = \{(u, v_1 v_2 v_3)\}$$

define a relation R_{b_i} , b_j

Second ingredient:

The behavior of \mathcal{T} is given by the matrix $HIT^{H\star}$.

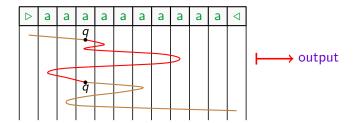
Second ingredient:

The behavior of \mathcal{T} is given by the matrix HIT^{H*} .

Third ingredient:

Lemma

Each entry R_{b_1,b_2} of the matrix HIT is rational (constructible).

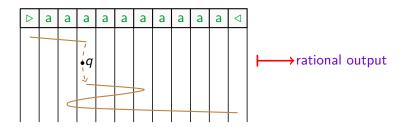

Second ingredient:

The behavior of \mathcal{T} is given by the matrix HIT^{H*} .

Third ingredient:

Lemma

Each entry R_{b_1,b_2} of the matrix HIT is rational (constructible).


Second ingredient:

The behavior of \mathcal{T} is given by the matrix $HIT^{H\star}$.

Third ingredient:

Lemma

Each entry R_{b_1,b_2} of the matrix HIT is rational (constructible).

Second ingredient:

The behavior of \mathcal{T} is given by the matrix HIT^{H*} .

Third ingredient:

Lemma

Each entry R_{b_1,b_2} of the matrix HIT is rational (constructible).

By closure property:

Corollary

Each entry of HIT** is in H-Rat.

Second ingredient:

The behavior of \mathcal{T} is given by the matrix HIT^{H*} .

Third ingredient:

Lemma

Each entry R_{b_1,b_2} of the matrix HIT is rational (constructible).

By closure property:

Corollary

Each entry of HIT^{H*} is in H-Rat.

Remark

The relation accepted by T is a union of entries of HIT H* .

Second ingredient:

The behavior of \mathcal{T} is given by the matrix HIT^{H*} .

Third ingredient:

Lemma

Each entry R_{b_1,b_2} of the matrix HIT is rational (constructible).

By closure property:

Corollary

Each entry of HIT** is in H-Rat.

Remark

The relation accepted by T is a union of entries of HIT H* .

Corollary

accepted by 2-way transducers

H-Rat

Theorem

When $\Gamma = \{a\}$ and $\Sigma = \{a\}$:

2-way transducers accept exactly the H-Rat relations.

Theorem

When
$$\Gamma = \{a\}$$
 and $\Sigma = \{a\}$:
2-way transducers accept exactly the H-Rat relations.

From our construction follows:

▶ 2-way transducers can be made sweeping.

Theorem

When
$$\Gamma = \{a\}$$
 and $\Sigma = \{a\}$:
2-way transducers accept exactly the H-Rat relations.

From our construction follows:

2-way transducers can be made sweeping.

With only
$$\Gamma = \{a\}$$
:

• 2-way $\begin{cases} \text{deterministic} \\ \text{unambiguous} \\ \text{functional} \end{cases}$ accept rational relations.

Theorem

When
$$\Gamma = \{a\}$$
 and $\Sigma = \{a\}$:
2-way transducers accept exactly the H-Rat relations.

From our construction follows:

▶ 2-way transducers can be made sweeping.

With only
$$\Gamma = \{a\}$$
:
$$\begin{array}{c} \text{deterministic} \\ \text{unambiguous} \\ \text{functional} \end{array} \right\} \text{ accept rational relations.}$$

▶ 2-way transducers are uniformizable by 1-way transducers.

Theorem

When
$$\Gamma = \{a\}$$
 and $\Sigma = \{a\}$:
2-way transducers accept exactly the H-Rat relations.

From our construction follows:

▶ 2-way transducers can be made sweeping.

With only
$$\Gamma = \{a\}$$
:
$$\begin{array}{c} \text{deterministic} \\ \text{unambiguous} \\ \text{functional} \end{array} \} \text{ accept rational relations.}$$

▶ 2-way transducers are uniformizable by 1-way transducers.

Every thing is constructible.

Theorem

When
$$\Gamma = \{a\}$$
 and $\Sigma = \{a\}$:

2-way transducers accept exactly the H-Rat relations.

From our construction follows:

▶ 2-way transducers can be made sweeping.

With only
$$\Gamma = \{a\}$$
:

- ▶ 2-way transducers are uniformizable by 1-way transducers.

Every thing is constructible.