An algebraic characterization of unary 2-way transducers

Christian Choffrut ${ }^{1}$ and Bruno Guillon ${ }^{1,2}$
${ }^{1}$ LIAFA - Université Paris-Diderot, Paris 7
${ }^{2}$ Dipartimento di Informatica - Università degli studi di Milano

> Septembre 17, 2014
> ICTCS - Perugia - 2014
work published in MFCS 2014

2-way automaton over Σ

$\left(Q, q_{-}, F, \delta\right) \stackrel{\underbrace{\text { a }}}{\stackrel{A}{\longleftrightarrow}}$ transition set: $\subset Q \times \Sigma_{D, \triangleleft} \times\{-1,0,1\} \times Q$

2-way automaton over Σ

$\left(Q, q_{-}, F,{\underset{L}{s}}_{\delta)}^{\longleftrightarrow}\right.$

2-way transducer over Σ, Г

$\left(Q, q_{-}, F, \delta\right) \stackrel{(A, \phi)}{\longleftrightarrow} \stackrel{\phi}{\longleftrightarrow}$ production function: $\delta \rightarrow \operatorname{Rat}\left(\Gamma^{*}\right)$

A simple example: SQUARE $=\left\{(w, w w) \mid w \in \Sigma^{*}\right\}$

A simple example: SQUARE $=\left\{(w, w w) \mid w \in \Sigma^{*}\right\}$

- copy the input word

A simple example: SQUARE $=\left\{(w, w w) \mid w \in \Sigma^{*}\right\}$

- copy the input word
- rewind the input tape

A simple example: SQUARE $=\left\{(w, w w) \mid w \in \Sigma^{*}\right\}$

- copy the input word
- rewind the input tape
- append a copy of the input word

A simple example: SQUARE $=\left\{(w, w w) \mid w \in \Sigma^{*}\right\}$

- copy the input word
- rewind the input tape
- append a copy of the input word

Another example: UnaryMult $=\left\{\left(a^{n}, a^{k n}\right) \mid k, n \in \mathbb{N}\right\}$

Another example: UnaryMult $=\left\{\left(a^{n}, a^{k n}\right) \mid k, n \in \mathbb{N}\right\}$

copy the input word

Another example: UnaryMult $=\left\{\left(a^{n}, a^{k n}\right) \mid k, n \in \mathbb{N}\right\}$

copy the input word \longrightarrow rewind the input tape $\xrightarrow{\longrightarrow}$

Another example: UnaryMult $=\left\{\left(a^{n}, a^{k n}\right) \mid k, n \in \mathbb{N}\right\}$

copy the input word \longrightarrow rewind the input tape

Another example: UnaryMult $=\left\{\left(a^{n}, a^{k n}\right) \mid k, n \in \mathbb{N}\right\}$

copy the input word \longrightarrow rewind the input tape

Another example: UnaryMult $=\left\{\left(a^{n}, a^{k n}\right) \mid k, n \in \mathbb{N}\right\}$

copy the input word \longrightarrow rewind the input tape <

Another example: UnaryMult $=\left\{\left(a^{n}, a^{k n}\right) \mid k, n \in \mathbb{N}\right\}$

copy the input word \longrightarrow rewind the input tape

accept and halt with nondeterminism

Another example: UnaryMult $=\left\{\left(a^{n}, a^{k n}\right) \mid k, n \in \mathbb{N}\right\}$

copy the input word \longrightarrow rewind the input tape

accept and halt with nondeterminism

Rational operations

- Union
- Componentwise concatenation

$$
R_{1} \cdot R_{2}=\left\{\left(u_{1} u_{2}, v_{1} v_{2}\right) \mid\left(u_{1}, v_{1}\right) \in R_{1} \text { and }\left(u_{2}, v_{2}\right) \in R_{2}\right\}
$$

- Kleene star

$$
R^{*}=\left\{\left(u_{1} u_{2} \cdots u_{k}, v_{1} v_{2} \cdots v_{k}\right) \mid \forall i\left(u_{i}, v_{i}\right) \in R\right\}
$$

Rational operations

- Union
- Componentwise concatenation

$$
R_{1} \cdot R_{2}=\left\{\left(u_{1} u_{2}, v_{1} v_{2}\right) \mid\left(u_{1}, v_{1}\right) \in R_{1} \text { and }\left(u_{2}, v_{2}\right) \in R_{2}\right\}
$$

- Kleene star

$$
R^{*}=\left\{\left(u_{1} u_{2} \cdots u_{k}, v_{1} v_{2} \cdots v_{k}\right) \mid \forall i\left(u_{i}, v_{i}\right) \in R\right\}
$$

Definition $\left(\operatorname{Rat}\left(\Sigma^{*} \times \Gamma^{*}\right)\right)$
The class of rational relations is the smallest class:

- that contains finite relations
- and which is closed under rational operations

Rational operations

- Union
- Componentwise concatenation

$$
R_{1} \cdot R_{2}=\left\{\left(u_{1} u_{2}, v_{1} v_{2}\right) \mid\left(u_{1}, v_{1}\right) \in R_{1} \text { and }\left(u_{2}, v_{2}\right) \in R_{2}\right\}
$$

- Kleene star

$$
R^{*}=\left\{\left(u_{1} u_{2} \cdots u_{k}, v_{1} v_{2} \cdots v_{k}\right) \mid \forall i\left(u_{i}, v_{i}\right) \in R\right\}
$$

Definition $\left(\operatorname{Rat}\left(\Sigma^{*} \times \Gamma^{*}\right)\right)$
The class of rational relations is the smallest class:

- that contains finite relations
- and which is closed under rational operations

Theorem (Elgot, Mezei - 1965)
1-way transducers $=$ the class of rational relations.

Hadamard operations

- H-product

$$
R_{1} \oplus R_{2}=\left\{\left(u, v_{1} v_{2}\right) \mid\left(u, v_{1}\right) \in R_{1} \text { and }\left(u, v_{2}\right) \in R_{2}\right\}
$$

Hadamard operations

- H-product

$$
R_{1} \oplus R_{2}=\left\{\left(u, v_{1} v_{2}\right) \mid\left(u, v_{1}\right) \in R_{1} \text { and }\left(u, v_{2}\right) \in R_{2}\right\}
$$

Example: $\operatorname{SQUARE}=\left\{(w, w w) \mid w \in \Sigma^{*}\right\}=$ Identity \oplus Identity

- copy the input word
- rewind the input tape
- append a copy of the input word

Hadamard operations

- H-product

$$
R_{1} \oplus R_{2}=\left\{\left(u, v_{1} v_{2}\right) \mid\left(u, v_{1}\right) \in R_{1} \text { and }\left(u, v_{2}\right) \in R_{2}\right\}
$$

- H-star

$$
R^{H \star}=\left\{\left(u, v_{1} v_{2} \cdots v_{k}\right) \mid \forall i\left(u, v_{i}\right) \in R\right\}
$$

Hadamard operations

- H-product

$$
R_{1} \oplus R_{2}=\left\{\left(u, v_{1} v_{2}\right) \mid\left(u, v_{1}\right) \in R_{1} \text { and }\left(u, v_{2}\right) \in R_{2}\right\}
$$

- H-star

$$
R^{H \star}=\left\{\left(u, v_{1} v_{2} \cdots v_{k}\right) \mid \forall i\left(u, v_{i}\right) \in R\right\}
$$

Example: UnaryMult $=\left\{\left(a^{n}, a^{k n}\right) \mid k, n \in \mathbb{N}\right\}=$ Identity $^{H \star}$

H-Rat relations

Definition
A relation R is in $H-\operatorname{Rat}\left(\Sigma^{*} \times \Gamma^{*}\right)$ if

$$
R=\bigcup_{0 \leq i \leq n} A_{i} \oplus B_{i}^{H \star}
$$

where for each i, A_{i} and B_{i} are rational relations.

Main result

When $\Sigma=\{a\}$ and $\Gamma=\{a\}$:

Theorem (Elgot, Mezei - 1965)
1-way transducers $=$ the class of rational relations.

Main result

When $\Sigma=\{a\}$ and $\Gamma=\{a\}$:

Theorem (This talk .-)
2-way transducers $=$ the class of H -Rat relations.

Main result

When $\Sigma=\{a\}$ and $\Gamma=\{a\}$:

Theorem (- This talk .-)
2-way transducers $=$ the class of H -Rat relations.

Proof

- \supseteq : easy
- \subseteq : difficult part

Known results

- 2-way functional $=$ MSO definable functions
[Engelfriet, Hoogeboom - 2001]

Known results

- 2-way functional $=$ MSO definable functions
[Engelfriet, Hoogeboom - 2001]
- 2-way general incomparable MSO definable relations
[Engelfriet, Hoogeboom - 2001]

Known results

- 2-way functional $=$ MSO definable functions
[Engelfriet, Hoogeboom - 2001]
- 2-way general incomparable MSO definable relations
[Engelfriet, Hoogeboom - 2001]
- 1-way simulation of 2-way functional transducer:
decidable and constructible
[Filiot et al. - 2013]

Known results

- 2-way functional $=$ MSO definable functions
[Engelfriet, Hoogeboom - 2001]
- 2-way general incomparable MSO definable relations
[Engelfriet, Hoogeboom - 2001]
- 1-way simulation of 2-way functional transducer: decidable and constructible
[Filiot et al. - 2013]

When 「 $=\{a\}$:

- 2-way unambiguous \longrightarrow 1-way
[Anselmo - 1990]

Known results

- 2-way functional $=$ MSO definable functions
[Engelfriet, Hoogeboom - 2001]
- 2-way general incomparable MSO definable relations
[Engelfriet, Hoogeboom - 2001]
- 1-way simulation of 2-way functional transducer: decidable and constructible
[Filiot et al. - 2013]

When $\Gamma=\{a\}$:

- 2-way unambiguous \longrightarrow 1-way
[Anselmo - 1990]
- 2-way unambiguous $=$ 2-way deterministic
[Carnino, Lombardy - 2014]

From H-Rat to 2-way transducers (unary case)

Property
The family of relations accepted by 2-way transducers is closed under $U,(H)$ and $H \star$.

From H-Rat to 2-way transducers (unary case)

```
Property
The family of relations accepted by 2-way transducers is closed under \(\cup,(H)\) and \(H \star\).
Proof.
- \(R_{1} \cup R_{2}\) :
- simulate \(T_{1}\) or \(T_{2}\)
```


From H-Rat to 2-way transducers (unary case)

Property

The family of relations accepted by 2-way transducers is closed under $U,(H)$ and $H \star$.

Proof.

- $R_{1} \cup R_{2}$:
- simulate T_{1} or T_{2}
- $R_{1} \oplus R_{2}$:
- simulate T_{1}
- rewind the input tape
- simulate T_{2}

From H-Rat to 2-way transducers (unary case)

Property

The family of relations accepted by 2-way transducers is closed under $\cup,(H)$ and $H \star$.

Proof.

- $R_{1} \cup R_{2}$:
- simulate T_{1} or T_{2}
- $R_{1} \oplus R_{2}$:
- simulate T_{1}
- rewind the input tape
- simulate T_{2}
- $R^{H \star}$:
- repeat an arbitrary number of times:
- simulate T
- rewind the input tape
- reach the right endmarker and accept

From H -Rat to 2-way transducers (unary case)

Property

The family of relations accepted by 2-way transducers is closed under $U,(H)$ and $H \star$.

Corollary

From 2-way transducers to H-Rat (unary case)

A first ingredient, a preliminary result:
Lemma
With arbitrary Σ and $\Gamma=\{a\}$:

$$
\text { H-Rat is closed under } \cup,(H) \text { and } H \star \text {. }
$$

Proof.
Tedious formal computations. . .

From 2-way transducers to H-Rat (unary case)

We fix a transducer \mathcal{T}.

- Consider border to border run segments;

From 2-way transducers to H-Rat (unary case)

We fix a transducer \mathcal{T}.

- Consider border to border run segments;

From 2-way transducers to H-Rat (unary case)

We fix a transducer \mathcal{T}.

- Consider border to border run segments;
- Compose border to border segments;

$\longmapsto R_{1}=\left\{\left(u, v_{1}\right)\right\}$
$\longmapsto R_{2}=\left\{\left(u, v_{2}\right)\right\}$
$\longmapsto R_{3}=\left\{\left(u, v_{3}\right)\right\}$

From 2-way transducers to H-Rat (unary case)

We fix a transducer \mathcal{T}.

- Consider border to border run segments;
- Compose border to border segments;

From 2-way transducers to H-Rat (unary case)

We fix a transducer \mathcal{T}.

- Consider border to border run segments;
- Compose border to border segments;
- Conclude using the closure properties of H-Rat.

From 2-way transducers to H-Rat (unary case)

define a relation $R_{b_{i}}, b_{j}$

From 2-way transducers to H-Rat (unary case)

define a relation R

From 2-way transducers to H-Rat (unary case)

From 2-way transducers to H -Rat (unary case)
Second ingredient:
The behavior of \mathcal{T} is given by the matrix HIT $^{\text {Hᄎ }}$.

From 2-way transducers to H -Rat (unary case)

Second ingredient:
The behavior of \mathcal{T} is given by the matrix HIT $^{\text {H* }}$.
Third ingredient:
Lemma
Each entry $R_{b_{1}, b_{2}}$ of the matrix HIT is rational (constructible).

From 2-way transducers to H -Rat (unary case)

Second ingredient:
The behavior of \mathcal{T} is given by the matrix $H I T^{\text {H* }}$.
Third ingredient:
Lemma
Each entry $R_{b_{1}, b_{2}}$ of the matrix HIT is rational (constructible).

From 2-way transducers to H -Rat (unary case)

Second ingredient:
The behavior of \mathcal{T} is given by the matrix $H I T^{\text {H* }}$.
Third ingredient:
Lemma
Each entry $R_{b_{1}, b_{2}}$ of the matrix HIT is rational (constructible).

From 2-way transducers to H -Rat (unary case)

Second ingredient:
The behavior of \mathcal{T} is given by the matrix $H I T^{\text {Ht }}$.

Third ingredient:
Lemma
Each entry $R_{b_{1}, b_{2}}$ of the matrix HIT is rational (constructible).

By closure property:
Corollary
Each entry of HIT ${ }^{\text {H* }}$ is in H-Rat.

From 2-way transducers to H -Rat (unary case)

Second ingredient:
The behavior of \mathcal{T} is given by the matrix HIT $^{\text {H* }}$.

Third ingredient:
Lemma
Each entry $R_{b_{1}, b_{2}}$ of the matrix HIT is rational (constructible).

By closure property:
Corollary
Each entry of HIT ${ }^{\text {H* }}$ is in H-Rat.
Remark
The relation accepted by \mathcal{T} is a union of entries of HIT ${ }^{\text {H* }}$.

From 2-way transducers to H -Rat (unary case)

Second ingredient:
The behavior of \mathcal{T} is given by the matrix HIT $^{\text {H* }}$.

Third ingredient:
Lemma
Each entry $R_{b_{1}, b_{2}}$ of the matrix HIT is rational (constructible).

By closure property:
Corollary
Each entry of HIT ${ }^{\text {H* }}$ is in H-Rat.
Remark
The relation accepted by \mathcal{T} is a union of entries of HIT ${ }^{\text {H* }}$.
Corollary
accepted by 2-way transducers $\subseteq H-R a t$

Conclusion

Theorem
When $\Gamma=\{a\}$ and $\Sigma=\{a\}$:
2-way transducers accept exactly the H-Rat relations.

Conclusion

Theorem

$$
\text { When } \Gamma=\{a\} \text { and } \Sigma=\{a\}:
$$

2-way transducers accept exactly the H-Rat relations.

From our construction follows:

- 2-way transducers can be made sweeping.

Conclusion

Theorem

$$
\text { When } \Gamma=\{a\} \text { and } \Sigma=\{a\}:
$$

2-way transducers accept exactly the H-Rat relations.

From our construction follows:

- 2-way transducers can be made sweeping.

With only $\Gamma=\{a\}$:

- 2-way $\left\{\begin{array}{c}\text { deterministic } \\ \text { unambiguous } \\ \text { functional }\end{array}\right\}$ accept rational relations.

Conclusion

Theorem
When $\Gamma=\{a\}$ and $\Sigma=\{a\}$:
2-way transducers accept exactly the H-Rat relations.

From our construction follows:

- 2-way transducers can be made sweeping.

With only $\Gamma=\{a\}$:

- 2-way $\left\{\begin{array}{c}\text { deterministic } \\ \text { unambiguous } \\ \text { functional }\end{array}\right\}$ accept rational relations.
- 2-way transducers are uniformizable by 1-way transducers.

Conclusion

Theorem

$$
\text { When } \Gamma=\{a\} \text { and } \Sigma=\{a\}:
$$

2-way transducers accept exactly the H-Rat relations.

From our construction follows:

- 2-way transducers can be made sweeping.

With only $\Gamma=\{a\}$:

- 2-way $\left\{\begin{array}{c}\text { deterministic } \\ \text { unambiguous } \\ \text { functional }\end{array}\right\}$ accept rational relations.
- 2-way transducers are uniformizable by 1-way transducers.

Every thing is constructible.

Conclusion

Theorem

$$
\text { When } \Gamma=\{a\} \text { and } \Sigma=\{a\}:
$$

2-way transducers accept exactly the H-Rat relations.

From our construction follows:

- 2-way transducers can be made sweeping.

With only $\Gamma=\{a\}$:

- 2-way $\left\{\begin{array}{c}\text { deterministic } \\ \text { unambiguous } \\ \text { functional }\end{array}\right\}$ accept rational relations.
- 2-way transducers are uniformizable by 1-way transducers.

Every thing is constructible.

