An algebraic characterization of relations accepted by two-way unary transducers

Christian Choffrut ${ }^{1}$, Bruno Guillon ${ }^{1,2}$, Giovanni Pighizzini ${ }^{2}$
${ }^{1}$ LIAFA, Université Paris Diderot, Paris 7
${ }^{2}$ Dipartimento di Informatica, Università degli Studi di Milano

November 28, 2013

Two-way finite transducers

A
 $(Q, \Sigma, I, F, \delta)$

Two-way finite transducers

Two-way finite transducers

$$
(Q, \Sigma, I, F, \delta) \stackrel{(A, \phi)}{\longleftrightarrow}
$$

Two-way finite transducers

$$
(A, \phi)
$$

$(Q, \Sigma, I, F, \delta) \longleftarrow \longleftrightarrow$ production function: $\delta \rightarrow \Gamma \cup\{\epsilon\}$
ζ transition set: $\subseteq Q \times \bar{\Sigma} \times\{-1,0,+1\} \times Q$

Two-way finite transducers

(A, ϕ)

\longrightarrow transition set: $\subseteq Q \times \bar{\Sigma} \times\{-1,0,+1\} \times Q$

Two-way finite transducers

(A, ϕ)

$(Q, \Sigma, I, F, \delta) \longleftrightarrow \longrightarrow$ production function: $\delta \rightarrow \operatorname{Rat}\left(\Gamma^{*}\right)$
\longrightarrow transition set: $\subseteq Q \times \bar{\Sigma} \times\{-1,0,+1\} \times Q$

Example

$$
\Sigma=\Gamma=\{a\}
$$

Example

$$
\Sigma=\Gamma=\{a\}
$$

Example

$$
\Sigma=\Gamma=\{a\}
$$

Non-rational accepted relation: $\mathcal{R}=\left\{\left(a^{n}, a^{(2 k+1) n}\right), n, k \in \mathbb{N}\right\}$.

Formal series

Two-way transducers define binary relations (subsets of $\Sigma^{*} \times \Gamma^{*}$).

Formal series

Two-way transducers define binary relations (subsets of $\Sigma^{*} \times \Gamma^{*}$).

Given such a relation \mathcal{R}, we represent it as a formal serie:

$$
\tau=\sum_{w \in \Sigma^{*}} \alpha_{w} \cdot w \quad \tau(w)=\alpha_{w}=\left\{v \in \Gamma^{*} \mid(w, v) \in \mathcal{R}\right\}
$$

Formal series

Two-way transducers define binary relations (subsets of $\Sigma^{*} \times \Gamma^{*}$).

Given such a relation \mathcal{R}, we represent it as a formal serie:

$$
\begin{gathered}
\tau=\sum_{w \in \Sigma^{*}} \alpha_{w} \cdot w(w)=\alpha_{w}=\left\{v \in \Gamma^{*} \mid(w, v) \in \mathcal{R}\right\} \\
\mathcal{R}=\left\{\left(a^{n}, a^{(2 k+1) n}\right), n, k \in \mathbb{N}\right\} \rightarrow \tau_{\mathcal{R}}\left(a^{n}\right)=\left\langle a^{n}\left(a^{2 n}\right)^{*}\right\rangle
\end{gathered}
$$

Rational series

Rational series of $\mathbb{K}\langle\langle M\rangle\rangle$:

Rational series

Rational series of $\mathbb{K}\langle\langle M\rangle\rangle$:

Rational series

$$
\sum_{w \in \Sigma^{*}} \alpha(w) \cdot w
$$

Rational series of $\mathbb{K}\langle\langle M\rangle\rangle$:

```
2 [** }\langle\langle\mp@subsup{\Sigma}{}{*}\rangle
```


Rational series

$$
\sum_{w \in \Sigma^{*}} \alpha(w) \cdot w
$$

Rational series of $\mathbb{K}\langle\langle M\rangle\rangle$:

```
2 「* }\langle\langle\mp@subsup{\Sigma}{}{*}\rangle
```

- contains polynomial,

Rational series

$$
\sum_{w \in \Sigma^{*}} \alpha(w) \cdot w
$$

Rational series of $\mathbb{K}\langle\langle M\rangle\rangle$:

```
2 「* }\langle\langle\mp@subsup{\Sigma}{}{*}\rangle
```

- contains polynomial,
- closed under sum,

Rational series

$$
\sum_{w \in \Sigma^{*}} \alpha(w) \cdot w
$$

Rational series of $\mathbb{K}\langle\langle M\rangle\rangle$:

```
2 「*}\langle\langle\mp@subsup{\Sigma}{}{*}\rangle
```

- contains polynomial,
- closed under sum,
- Cauchy product

Rational series

$$
\sum_{w \in \Sigma^{*}} \alpha(w) \cdot w
$$

Rational series of $\mathbb{K}\langle\langle M\rangle\rangle$:

```
2 「*}\langle\langle\mp@subsup{\Sigma}{}{*}\rangle
```

- contains polynomial,
- closed under sum,
- Cauchy product
- and Kleene star.

Rational series

$$
\sum_{w \in \Sigma^{*}} \alpha(w) \cdot w
$$

Rational series of $\mathbb{K}\langle\langle M\rangle\rangle$:

```
2 「* }\langle\langle\mp@subsup{\Sigma}{}{*}\rangle
```

- contains polynomial,
- closed under sum,
- Cauchy product
- and Kleene star.

Theorem
One-way transducers accept exactly $\quad R A T\left(\Gamma^{*}\right)\left\langle\left\langle\Sigma^{*}\right\rangle\right\rangle$.

Two-way Transducers: known results

Theorem (Engelfriet, Hoogeboom, 2001)

- deterministic case: two-way transducers accept exactly the class of MSO-definable functions.

Two-way Transducers: known results

Theorem (Engelfriet, Hoogeboom, 2001)

- deterministic case: two-way transducers accept exactly the class of MSO-definable functions.

$$
\mathcal{T}=\left\{(w, w \cdot w) \mid w \in \Sigma^{*}\right\}
$$

Two-way Transducers: known results

Theorem (Engelfriet, Hoogeboom, 2001)

- deterministic case: two-way transducers accept exactly the class of MSO-definable functions.
- nondeterministic case: the class of MSO-definable transductions and the class of relations accepted by two-way transducers are incomparable.

Two-way transducers: known results

Theorem (Filiot, Gauwin, Reynier, Servais, 2013)
It is decidable whether some function accepted by two-way
transducer is accepted by some one-way transducer.
\rightarrow construction of equivalent one-way transducer, whenever one exists.

Unary case - our result

$$
\Sigma=\Gamma=\{a\}
$$

Unary case - our result

$$
\Sigma=\Gamma=\{a\}
$$

Theorem

$$
\begin{gathered}
\tau: \Sigma^{\mathbb{N}} \rightarrow 2^{\Gamma^{\mathbb{N}}} \text { is accepted by a two-way transducer } \\
\text { if and only if }
\end{gathered}
$$

there exists finitely many rational series α_{i} and β_{i} such that

$$
\forall n \quad \tau\left(a^{n}\right)=\bigcup_{i} \quad\left(\alpha_{i}\left(a^{n}\right) \cdot \beta_{i}\left(a^{n}\right)^{*}\right)
$$

Example

$\mathcal{R}=\left\{\left(a^{n}, a^{(2 k+1) n}\right), n \in \mathbb{N}\right\}$

Example

$\mathcal{R}=\left\{\left(a^{n}, a^{(2 k+1) n}\right), n \in \mathbb{N}\right\}$

$$
\tau_{\mathcal{R}}\left(a^{n}\right)=\left\langle a^{n} \cdot\left(a^{2 n}\right)^{*}\right\rangle
$$

Example

$\mathcal{R}=\left\{\left(a^{n}, a^{(2 k+1) n}\right), n \in \mathbb{N}\right\}$

Example

$\mathcal{R}=\left\{\left(a^{n}, a^{(2 k+1) n}\right), n \in \mathbb{N}\right\}$

Unary case - our result

Theorem

$$
\begin{gathered}
\tau: \Sigma^{\mathbb{N}} \rightarrow 2^{\Gamma^{\mathbb{N}}} \text { is accepted by a two-way transducer } \\
\text { if and only if }
\end{gathered}
$$

there exists finitely many rational series α_{i} and β_{i} such that

$$
\forall n \quad \tau\left(a^{n}\right)=\bigcup_{i}\left(\alpha_{i}\left(a^{n}\right) \cdot \beta_{i}\left(a^{n}\right)^{*}\right)
$$

Unary case - our result

Theorem

$$
\begin{gathered}
\tau: \Sigma^{\mathbb{N}} \rightarrow 2^{\Gamma^{\mathbb{N}}} \text { is accepted by a two-way transducer } \\
\text { if and only if }
\end{gathered}
$$

there exists finitely many rational series α_{i} and β_{i} such that

$$
\forall n \quad \tau\left(a^{n}\right)=\bigcup_{i}\left(\alpha_{i}\left(a^{n}\right) \cdot \beta_{i}\left(a^{n}\right)^{*}\right)
$$

Unary case - our result

Theorem

$$
\begin{gathered}
\tau: \Sigma^{\mathbb{N}} \rightarrow 2^{\Gamma^{\mathbb{N}}} \text { is accepted by a two-way transducer } \\
\text { if and only if }
\end{gathered}
$$

there exists finitely many rational series α_{i} and β_{i} such that

$$
\forall n \quad \tau\left(a^{n}\right)=\bigcup_{i}\left(\alpha_{i}\left(a^{n}\right) \cdot \beta_{i}\left(a^{n}\right)^{*}\right)
$$

Unary case - our result

Theorem

$$
\begin{gathered}
\tau: \Sigma^{\mathbb{N}} \rightarrow 2^{\Gamma^{\mathbb{N}}} \text { is accepted by a two-way transducer } \\
\text { if and only if }
\end{gathered}
$$

there exists finitely many rational series α_{i} and β_{i} such that

$$
\forall n \quad \tau\left(a^{n}\right)=\bigcup_{i} \quad\left(\alpha_{i}\left(a^{n}\right) \cdot \beta_{i}\left(a^{n}\right)^{*}\right)
$$

Unary case - our result

Theorem

$$
\begin{gathered}
\tau: \Sigma^{\mathbb{N}} \rightarrow 2^{\Gamma^{\mathbb{N}}} \text { is accepted by a two-way transducer } \\
\text { if and only if }
\end{gathered}
$$

there exists finitely many rational series α_{i} and β_{i} such that

$$
\forall n \quad \tau\left(a^{n}\right)=\bigcup_{i}\left(\alpha_{i}\left(a^{n}\right) \cdot \beta_{i}\left(a^{n}\right)^{*}\right)
$$

Unary case - our result

Theorem

$$
\begin{gathered}
\tau: \Sigma^{\mathbb{N}} \rightarrow 2^{\Gamma^{\mathbb{N}}} \text { is accepted by a two-way transducer } \\
\text { if and only if }
\end{gathered}
$$

there exists finitely many rational series α_{i} and β_{i} such that

$$
\forall n \quad \tau\left(a^{n}\right)=\bigcup_{i}\left(\alpha_{i}\left(a^{n}\right) \cdot \beta_{i}\left(a^{n}\right)^{*}\right)
$$

Unary case - our result

Theorem

$$
\begin{gathered}
\tau: \Sigma^{\mathbb{N}} \rightarrow 2^{\Gamma^{\mathbb{N}}} \text { is accepted by a two-way transducer } \\
\text { if and only if }
\end{gathered}
$$

there exists finitely many rational series α_{i} and β_{i} such that

$$
\forall n \quad \tau\left(a^{n}\right)=\bigcup_{i}\left(\alpha_{i}\left(a^{n}\right) \cdot \beta_{i}\left(a^{n}\right)^{*}\right)
$$

Unary case - our result

Theorem

$$
\begin{gathered}
\tau: \Sigma^{\mathbb{N}} \rightarrow 2^{\Gamma^{\mathbb{N}}} \text { is accepted by a two-way transducer } \\
\text { if and only if }
\end{gathered}
$$

there exists finitely many rational series α_{i} and β_{i} such that

$$
\forall n \quad \tau\left(a^{n}\right)=\bigcup_{i} \quad\left(\alpha_{i}\left(a^{n}\right) \cdot \beta_{i}\left(a^{n}\right)^{*}\right)
$$

Definition

- Hadamard Product: $\forall n(\alpha \oplus \beta)(w)=\alpha(w) \cdot \beta(w)$

Unary case - our result

Theorem

$$
\begin{gathered}
\tau: \Sigma^{\mathbb{N}} \rightarrow 2^{\Gamma^{\mathbb{N}}} \text { is accepted by a two-way transducer } \\
\text { if and only if }
\end{gathered}
$$

there exists finitely many rational series α_{i} and β_{i} such that

Definition

- Hadamard Product: $\forall n(\alpha \oplus \beta)(w)=\alpha(w) \cdot \beta(w)$
- Hadamard Star: $\forall n\left(\alpha^{H \star}\right)(w)=(\alpha(w))^{*}$

Unary case - our result

Theorem

$$
\begin{gathered}
\tau: \Sigma^{\mathbb{N}} \rightarrow 2^{\Gamma^{\mathbb{N}}} \text { is accepted by a two-way transducer } \\
\text { if and only if }
\end{gathered}
$$

there exists finitely many rational series α_{i} and β_{i} such that

$$
\tau=\sum_{i}\left(\begin{array}{ll}
\alpha_{i} & \oplus
\end{array} \beta_{i}^{H \star}\right)
$$

Definition

- Hadamard Product: $\forall n(\alpha \oplus \beta)(w)=\alpha(w) \cdot \beta(w)$
- Hadamard Star: $\forall n\left(\alpha^{H \star}\right)(w)=(\alpha(w))^{*}$

Analogy with Probabilistic Automata

Theorem (Anselmo,Bertoni, 1994)
Acceptation probability of two-way finite automata is of the form:

$$
\tau(w)=\alpha(w) \times \frac{1}{\beta(w)}
$$

where α and β are rational series of $\mathbb{Q}\left\langle\left\langle\Sigma^{*}\right\rangle\right\rangle$.

HRAT relations

Definition
A relation is HRAT if and only if its serie is equal to

$$
\sum_{i} \alpha_{i} \oplus \beta_{i}^{H \star}
$$

for some finite family of rational series α_{i} and β_{i}.

Properties

- RAT is include in HRAT.
- HRAT is closed under sum.

HRAT relations

Definition
A relation is HRAT if and only if its serie is equal to

$$
\sum_{i} \alpha_{i} \oplus \beta_{i}^{H \star}
$$

for some finite family of rational series α_{i} and β_{i}.

Properties

- RAT is include in HRAT.
- HRAT is closed under sum.
- In unary case, RAT is closed under H-product.

HRAT relations

Definition
A relation is HRAT if and only if its serie is equal to

$$
\sum_{i} \alpha_{i} \oplus \beta_{i}^{H \star}
$$

for some finite family of rational series α_{i} and β_{i}.

Properties

- RAT is include in HRAT.
- HRAT is closed under sum.
- In unary case, RAT is closed under H-product.
- In unary case, HRAT is closed under H-product and H-star.

Sketch of the proof

Sketch of the proof

- decompose computation into traversals

Sketch of the proof

- decompose computation into traversals
- elimination of central nondeterministic loops

Sketch of the proof

- decompose computation into traversals
- elimination of central nondeterministic loops

Sketch of the proof

- decompose computation into traversals
- elimination of central nondeterministic loops

Sketch of the proof

- decompose computation into traversals
- elimination of central nondeterministic loops

Sketch of the proof

- decompose computation into traversals
- elimination of central nondeterministic loops

Sketch of the proof

- decompose computation into traversals
- elimination of central nondeterministic loops

Sketch of the proof

- decompose computation into traversals
- elimination of central nondeterministic loops

Sketch of the proof

- decompose computation into traversals
- elimination of central nondeterministic loops
- one-way simulation of each traversal

Sketch of the proof

- decompose computation into traversals
- elimination of central nondeterministic loops
- one-way simulation of each traversal
- one traversal $\operatorname{TRAV} V_{\left(q_{1}, b_{1}\right),\left(q_{2}, b_{2}\right)}$: rational relation

Sketch of the proof

- decompose computation into traversals
- elimination of central nondeterministic loops
- one-way simulation of each traversal
- one traversal $\operatorname{TRAV}_{\left(q_{1}, b_{1}\right),\left(q_{2}, b_{2}\right)}$: rational relation
- composition of traversals

Sketch of the proof

- decompose computation into traversals
- elimination of central nondeterministic loops
- one-way simulation of each traversal
- one traversal $\operatorname{TRAV}_{\left(q_{1}, b_{1}\right),\left(q_{2}, b_{2}\right)}$: rational relation
- composition of traversals

Matrix TRAV of size $(|Q| \times 2)^{2}: \operatorname{TRAV}_{\left(q_{1}, b_{1}\right),\left(q_{2}, b_{2}\right)}$.

Sketch of the proof

- decompose computation into traversals
- elimination of central nondeterministic loops
- one-way simulation of each traversal
- one traversal $\operatorname{TRAV}_{\left(q_{1}, b_{1}\right),\left(q_{2}, b_{2}\right)}$: rational relation
- composition of traversals

Matrix TRAV of size $(|Q| \times 2)^{2}: \operatorname{TRAV}_{\left(q_{1}, b_{1}\right),\left(q_{2}, b_{2}\right)}$.
$T R A V^{*}$ is the composition of traversals.

Sketch of the proof

- decompose computation into traversals
- elimination of central nondeterministic loops
- one-way simulation of each traversal
- one traversal $\operatorname{TRAV}_{\left(q_{1}, b_{1}\right),\left(q_{2}, b_{2}\right)}$: rational relation
- composition of traversals

Matrix TRAV of size $(|Q| \times 2)^{2}: \operatorname{TRAV}_{\left(q_{1}, b_{1}\right),\left(q_{2}, b_{2}\right)}$.
$T R A V^{\star}$ is the composition of traversals.
$T R A V^{\star} \in H R A T_{2|Q| \times 2|Q|}$.

Conclusion

Conclusion

- formal series accepted by two-way nondeterministic unary transducers are not rational

Conclusion

- formal series accepted by two-way nondeterministic unary transducers are not rational
- characterization:

$$
\tau=\sum_{i} \alpha_{i} \oplus \beta_{i}^{H \star}
$$

Conclusion

- formal series accepted by two-way nondeterministic unary transducers are not rational
- characterization:

$$
\tau=\sum_{i} \alpha_{i} \oplus \beta_{i}^{H \star}
$$

- Deterministic case: two-way \Leftrightarrow one-way

Conclusion

- formal series accepted by two-way nondeterministic unary transducers are not rational
- characterization:

$$
\tau=\sum_{i} \alpha_{i} \oplus \beta_{i}^{H \star}
$$

- Deterministic case: two-way \Leftrightarrow one-way
- two-way \rightarrow sweeping

Conclusion

- formal series accepted by two-way nondeterministic unary transducers are not rational
- characterization:

$$
\tau=\sum_{i} \alpha_{i} \oplus \beta_{i}^{H \star}
$$

- Deterministic case: two-way \Leftrightarrow one-way
- two-way \rightarrow sweeping
- non-unary transducers?

Conclusion

- formal series accepted by two-way nondeterministic unary transducers are not rational
- characterization:

$$
\tau=\sum_{i} \alpha_{i} \oplus \beta_{i}^{H \star}
$$

- Deterministic case: two-way \Leftrightarrow one-way
- two-way \rightarrow sweeping
- non-unary transducers?
- Is HRAT closed under Cauchy-product (unary case)?

Conclusion

- formal series accepted by two-way nondeterministic unary transducers are not rational
- characterization:

$$
\tau=\sum_{i} \alpha_{i} \oplus \beta_{i}^{H \star}
$$

- Deterministic case: two-way \Leftrightarrow one-way
- two-way \rightarrow sweeping
- non-unary transducers?
- Is HRAT closed under Cauchy-product (unary case)?
- application to communicating automata systems?

Conclusion

- formal series accepted by two-way nondeterministic unary transducers are not rational
- characterization:

$$
\tau=\sum_{i} \alpha_{i} \oplus \beta_{i}^{H \star}
$$

- Deterministic case: two-way \Leftrightarrow one-way
- two-way \rightarrow sweeping
- non-unary transducers?
- Is HRAT closed under Cauchy-product (unary case)?
- application to communicating automata systems?

Do you have any questions?

