On relations accepted by two-way unary nondeterministic finite transducers

Christian Choffrut ${ }^{1}$, Bruno Guillon ${ }^{1,2}$, Giovanni Pighizzini ${ }^{2}$

1 LIAFA, Université Paris Diderot, Paris 7
${ }^{2}$ Dipartimento di Informatica, Università degli Studi di Milano
October 11, 2013

Two-way finite transducers

Two-way finite transducers

$$
\delta \subset Q \times \Sigma \times\{-1,0,+1\} \times Q \times \Gamma^{*}
$$

Example

$$
\Sigma=\Gamma=\{a\}
$$

Example

$$
\Sigma=\Gamma=\{a\}
$$

Example

$$
\Sigma=\Gamma=\{a\}
$$

Non-rational accepted relation: $\mathcal{R}=\left\{\left(a^{n}, a^{(2 k+1) n}\right), n, k \in \mathbb{N}\right\}$.

Relations

Two-way transducers define binary relations (subsets of $\Sigma^{*} \times \Gamma^{*}$).

Relations

Two-way transducers define binary relations (subsets of $\Sigma^{*} \times \Gamma^{*}$).

Given such a relation \mathcal{R}, we represent it as a formal serie:

$$
\tau=\sum_{w \in \Sigma^{*}} \alpha_{w} \cdot w \quad \tau(w)=\alpha_{w}=\left\{v \in \Gamma^{*} \mid(w, v) \in \mathcal{R}\right\}
$$

Rational series

Rational series of $\mathbb{K}\langle\langle M\rangle\rangle$:

Rational series

Rational series of $\mathbb{K}\langle\langle M\rangle\rangle$:

Rational series

$$
\sum_{w \in \Sigma^{*}} \alpha(w) \cdot w
$$

Rational series of $\mathbb{K}\langle\langle M\rangle\rangle$:

Rational series

$$
\sum_{w \in \Sigma^{*}} \alpha(w) \cdot w
$$

Rational series of $\mathbb{K}\langle\langle M\rangle\rangle$:

```
2 「* }\langle\langle\mp@subsup{\Sigma}{}{*}\rangle
```

- contains polynomial,

Rational series

$$
\sum_{w \in \Sigma^{*}} \alpha(w) \cdot w
$$

Rational series of $\mathbb{K}\langle\langle M\rangle\rangle$:

```
2 「* }\langle\langle\mp@subsup{\Sigma}{}{*}\rangle
```

- contains polynomial,
- closed under sum,

$$
(\sigma+\tau)(w)=\sigma(w)+\tau(w)
$$

Rational series

$$
\sum_{w \in \Sigma^{*}} \alpha(w) \cdot w
$$

Rational series of $\mathbb{K}\langle\langle M\rangle\rangle$:

```
2 「* }\langle\langle\mp@subsup{\Sigma}{}{*}\rangle
```

- contains polynomial,
- closed under sum,
- Cauchy product

Rational series

$$
\sum_{w \in \Sigma^{*}} \alpha(w) \cdot w
$$

Rational series of $\mathbb{K}\langle\langle M\rangle\rangle$:

```
2 「*}\langle\langle\mp@subsup{\Sigma}{}{*}\rangle
```

- contains polynomial,
- closed under sum,
- Cauchy product
- and Kleene star.

Rational series

$$
\sum_{w \in \Sigma^{*}} \alpha(w) \cdot w
$$

Rational series of $\mathbb{K}\langle\langle M\rangle\rangle$:

```
2 [** }\langle\langle\mp@subsup{\Sigma}{}{*}\rangle
```

- contains polynomial,
- closed under sum,
- Cauchy product
- and Kleene star.

Theorem
One-way transducers accept exactly $\quad \operatorname{RAT}\left(\Gamma^{*}\right)\left\langle\left\langle\Sigma^{*}\right\rangle\right\rangle$.

Known results

Theorem (Engelfriet, Hoogeboom, 2001)

- deterministic case: two-way transducers accept exactly the class of MSO-definable functions.

Known results

Theorem (Engelfriet, Hoogeboom, 2001)

- deterministic case: two-way transducers accept exactly the class of MSO-definable functions.

$$
\mathcal{T}=\left\{(w, w \cdot w) \mid w \in \Sigma^{*}\right\}
$$

Known results

Theorem (Engelfriet, Hoogeboom, 2001)

- deterministic case: two-way transducers accept exactly the class of MSO-definable functions.
- nondeterministic case: the class of MSO-definable transductions and the class of relations accepted by two-way transducers are incomparable.

Known results

Theorem (Filiot, Gauwin, Reynier, Servais, 2013)
It is decidable whether some relation accepted by two-way transducer is accepted by some one-way transducer.
\rightarrow construction of equivalent one-way transducer, whenever one exists.

Unary case - our result

$$
\Sigma=\Gamma=\{a\}
$$

Unary case - our result

$$
\Sigma=\Gamma=\{a\}
$$

Theorem

$$
\begin{gathered}
\tau: \Sigma^{\mathbb{N}} \rightarrow 2^{\Gamma^{\mathbb{N}}} \text { is accepted by a two-way transducer } \\
\text { if and only if }
\end{gathered}
$$

there exists finitely many rational series α_{i} and β_{i} such that

$$
\forall n \quad \tau\left(a^{n}\right)=\bigcup_{i} \quad\left(\alpha_{i}\left(a^{n}\right) \cdot \beta_{i}\left(a^{n}\right)^{*}\right)
$$

Analogy with Probabilistic Automata

Theorem (Anselmo,Bertoni,1994)

Acceptation probability of two-way finite automata is of the form:

$$
\tau(w)=\alpha(w) \times \frac{1}{\beta(w)}
$$

where α and β are rational series of $\mathbb{Q}\left\langle\left\langle\Sigma^{*}\right\rangle\right\rangle$.

Unary case - our result

$$
\Sigma=\Gamma=\{a\}
$$

Theorem

$$
\begin{gathered}
\tau: \Sigma^{\mathbb{N}} \rightarrow 2^{\Gamma^{\mathbb{N}}} \text { is accepted by a two-way transducer } \\
\text { if and only if }
\end{gathered}
$$

there exists finitely many rational series α_{i} and β_{i} such that

$$
\forall n \quad \tau\left(a^{n}\right)=\bigcup_{i} \quad\left(\alpha_{i}\left(a^{n}\right) \cdot \beta_{i}\left(a^{n}\right)^{*}\right)
$$

Example

$\mathcal{R}=\left\{\left(a^{n}, a^{(2 k+1) n}\right), n \in \mathbb{N}\right\}$

Example

$$
\mathcal{R}=\left\{\left(a^{n}, a^{(2 k+1) n}\right), n \in \mathbb{N}\right\}
$$

$$
\tau_{\mathcal{R}}\left(a^{n}\right)=a^{n} \cdot\left(a^{2 n}\right)^{*}
$$

Example

$$
\mathcal{R}=\left\{\left(a^{n}, a^{(2 k+1) n}\right), n \in \mathbb{N}\right\}
$$

Example

$\mathcal{R}=\left\{\left(a^{n}, a^{(2 k+1) n}\right), n \in \mathbb{N}\right\}$

Sketch of the proof

Sketch of the proof

- decompose computation into traversals

Sketch of the proof

- decompose computation into traversals
- elimination of central nondeterministic loops

Sketch of the proof

- decompose computation into traversals
- elimination of central nondeterministic loops

Sketch of the proof

- decompose computation into traversals
- elimination of central nondeterministic loops

Sketch of the proof

- decompose computation into traversals
- elimination of central nondeterministic loops

Sketch of the proof

- decompose computation into traversals
- elimination of central nondeterministic loops

Sketch of the proof

- decompose computation into traversals
- elimination of central nondeterministic loops

Sketch of the proof

- decompose computation into traversals
- elimination of central nondeterministic loops

Sketch of the proof

- decompose computation into traversals
- elimination of central nondeterministic loops
- one-way simulation of each traversal

Sketch of the proof

- decompose computation into traversals
- elimination of central nondeterministic loops
- one-way simulation of each traversal
- one traversal: rational relation

Sketch of the proof

- decompose computation into traversals
- elimination of central nondeterministic loops
- one-way simulation of each traversal
- one traversal: rational relation
- composition of traversals

Sketch of the proof

- decompose computation into traversals
- elimination of central nondeterministic loops
- one-way simulation of each traversal
- one traversal: rational relation
- composition of traversals
- conversely, from α_{i} and β_{i} we build a two-way nondeterministic transducer that accepts the relation

Sketch of the proof

- decompose computation into traversals
- elimination of central nondeterministic loops
- one-way simulation of each traversal
- one traversal: rational relation
- composition of traversals
- conversely, from α_{i} and β_{i} we build a two-way nondeterministic transducer that accepts the relation

Sketch of the proof

- decompose computation into traversals
- elimination of central nondeterministic loops
- one-way simulation of each traversal
- one traversal: rational relation
- composition of traversals
- conversely, from α_{i} and β_{i} we build a two-way nondeterministic transducer that accepts the relation

Conclusion

Conclusion

- formal series accepted by two-way nondeterministic unary transducers are not rational

Conclusion

- formal series accepted by two-way nondeterministic unary transducers are not rational
- characterization:

$$
\tau(w)=\bigcup_{i} \alpha_{i}(w) \cdot\left(\beta_{i}(w)\right)^{*}
$$

Conclusion

- formal series accepted by two-way nondeterministic unary transducers are not rational
- characterization:

$$
\tau(w)=\bigcup_{i} \alpha_{i}(w) \cdot\left(\beta_{i}(w)\right)^{*}
$$

- application to communicating automata systems?

Conclusion

- formal series accepted by two-way nondeterministic unary transducers are not rational
- characterization:

$$
\tau(w)=\bigcup_{i} \alpha_{i}(w) \cdot\left(\beta_{i}(w)\right)^{*}
$$

- application to communicating automata systems?

Conclusion

- formal series accepted by two-way nondeterministic unary transducers are not rational
- characterization:

$$
\tau(w)=\bigcup_{i} \alpha_{i}(w) \cdot\left(\beta_{i}(w)\right)^{*}
$$

- application to communicating automata systems?

Do you have any questions?

