
A New Modality for Almost Everywhere

Properties in Timed Automata?

Houda Bel Mokadem1, Béatrice Bérard2, Patricia Bouyer1, François
Laroussinie1

1 LSV, CNRS & ENS de Cachan
61 av. du Président Wilson, 94235 Cachan Cedex, France

Emails: {mokadem,bouyer,fl}@lsv.ens-cachan.fr
2 LAMSADE, CNRS & Université Paris-Dauphine

Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France
Email: berard@lamsade.dauphine.fr

Abstract. The context of this study is timed temporal logics for timed
automata. In this paper, we propose an extension of the classical logic
TCTL with a new Until modality, called “Until almost everywhere”. In
the extended logic, it is possible, for instance, to express that a property
is true at all positions of all runs, except on a negligible set of posi-
tions. Such properties are very convenient, for example in the framework
of boolean program verification, where transitions result from changing
variable values. We investigate the expressive power of this modality and
in particular, we prove that it cannot be expressed with classical TCTL

modalities. However, we show that model-checking the extended logic
remains PSPACE-complete as for TCTL.

1 Introduction

Verification of timed temporal logic properties. Temporal logic provides
a fundamental framework for formally specifying systems and reasoning about
them. Furthermore, model-cheking techniques lead to the automatic verification
that a finite-state model of a system satisfies some temporal logic specification.
Since the introduction of timed automata [AD90,AD94] and timed logics like
MITL, Lν or TCTL [AH92,LLW95,AFH96], model-checking has been extended to
real-time models [HNSY94] and analysis tools have been developped [DOTY96,
HHWT95,LPY97] and successfully applied to numerous case studies.
Among these case studies, some examples concern the verification of programs
which handle boolean or integer variables. The usual way to build a (possibly
timed) model of the program consists in defining the discrete control states
as tuples of variable values. The transitions are thus equipped with updates
for the variables (and possibly time constraints). In such a model, a variable
may change its value exactly upon leaving a control state and reaching another
one, which gives an ambiguous semantics: a variable can have several different

? Work partially supported by the project VSMT of ENS de Cachan

values at a given time. This may lead to detect errors in the system, which are
only due to the modeling phase. Such problems occur in the area of industrial
automation, for the verification of Programmable Logic Controllers. In this case,
programs are written from a set of languages described by the IEC-61131-3
specification [IEC93].

Example. Consider the SFC (Sequential Function Chart, one of the languages
of the IEC standard) in Figure 1 below. It describes the control program of a
device, designed to start some machine when two buttons (L and R for left and
right button respectively) are pushed within 0.5 seconds. If only one button is
pushed (then L+R is true) and the 0.5 seconds delay is reached (time-out Et has
occurred), then the whole process must be started again. After the machine has
started, it stops as soon as one button is released, and it can start again only
after both buttons have been released (L.R is true).

L.R.Et
Et

1

2

3

4

start

L+R

L.R.Et

L+R

L.R

T=0.5s

Fig. 1. SFC program for the two button machine

This device can be modeled with three timed automata (Figure 2), which com-
municate through the boolean variables L and R. The two automata for the
buttons simply give arbitrary values in {0, 1} to L and R, while the automaton
for the control program is a straightforward translation of the SFC, with the
only addition of an initialization step. The latter automaton handles a clock
to measure the time interval of length 0.5. Note that some transitions must be
urgent: for instance, the transition into state running, which sets the output
variable s to 1, must be taken as soon as both buttons are pushed (if t < 0.5).

2

init

running

L:=1

L:=0

t>=0.5

R:=1

R:=0

!L ∧ !R

L ∨ R

t:=0

L ∧ R

∧ t<0.5

s:=1

!L ∨ !R

s:=0

!L ∧ !R

∧ t<0.5

Fig. 2. Timed automata for the control program and the buttons

Consider now the following property: it is always true that the machine has
started only if both buttons have been pushed, i.e. if s=1 then L=1 and R=1. This
property does not hold because the automaton is still in state running when
one of the buttons has been released, even if the transition into the next state
will occur instantaneously afterward. What we should require instead is that
this property be true almost everywhere, meaning that it could be false only on
intervals with null duration.

A similar problem can occur when a sequence of transitions must be executed in
an atomic way. To this purpose, a convenient feature was introduced in Uppaal:
when a location of a timed automaton is labeled as committed, no time delay
is permitted in this location and a new action transition has to be performed
to leave this location. This mechanism is used in particular to obtain n-ary
synchronization when only binary synchronization is possible. For example, the
sequence s1

a1−→ s2
a2−→ s3 executes atomically if location s2 is committed. Like

above, a given property may be true before s1 and after s3 but false in the
intermediate location s2 where the control stays for a null duration. Again in
this case, a property true “almost everywhere” would be sufficient.

Some solutions. A basic method to solve the particular example of the “two
buttons machine” described above would be to synchronize the update transi-
tions of the L and R variables with the control transitions. This would amount to
remove the variables in the model, introducing synchronizing channels instead.
However, the resulting models do not faithfully represent the control program of
the device, which receives the values of L and R by intermediate variables up-
dated through sensors. Since the control program may later be translated into
some other language of the standard (like Ladder Diagram), the model should
remain as close as possible to the original specification.

3

A simple way of dealing with the general case consists in defining restricted
semantics for timed automata, requiring that at most one configuration be as-
sociated with a given time. This holds for instance when only strictly increasing
time sequences are permitted. However, when practical issues are considered,
it is often useful to assume that several actions are executed in an atomic way
(as described above for synchronization). Moreover, this hypothesis yields sim-
pler models in the specification step and reduce the time needed for reachability
analysis. Restricting the expressive power of a model is generally not a good
idea. When such atomicity hypotheses are made, it is then possible to modify
the property to be checked, requiring it to be true only in specified states where
no ambiguity can occur. Such methods were used for instance in the verification
with HyTech of the ABR protocol [BFKM03]. But this is an ad-hoc construc-
tion, where all the details of the system must be carefully investigated.

Finally, one could think of introducing an observer automaton. For example, to
test if some atomic proposition a is true almost everywhere, such an automaton
would move to an error state if it has stayed in ¬a for a non null duration.
However, it is well known that this method does not apply to full TCTL, but is
restricted to a fragment expressing safety properties [ABBL03].

Contribution. In this paper, we propose a solution that does not depend on
the model, which can thus remain as it was originally designed (often in a long
and difficult process) for a given system. This solution consists in extending the
syntax of the TCTL logic with an almost everywhere until modality Ua. We
obtain for instance formulae like AGaϕ, meaning that property ϕ is true almost
everywhere.

Section 2 recalls the main features of the timed automata model and gives def-
initions for the syntax and semantics of our extended logic. In Section 3, we
investigate the expressive power of this extension, comparing it with TCTL. In
particular, we prove that the modality U

a cannot be expressed with TCTL oper-
ators and conversely that Ua cannot express TCTL modalities. Finally, in the last
section, we show that model-checking the extended logic TCTLext is decidable
by some labeling procedure, with the same complexity as TCTL.

2 Timed Automata and TCTL
ext

Let N and R≥0 denote respectively the sets of natural and non-negative real
numbers. Let X be a set of real valued clocks. The set of valuations is the
set R

X
≥0

of mappings from X to R≥0. We write C(X) for the set of boolean
expressions over atomic formulae of the form x ∼ k with x ∈ X , k ∈ N, and
∼ ∈ {<,≤,=,≥, >}. Constraints of C(X) are interpreted over clock valuations.
For every v ∈ R

X
≥0

and d ∈ R≥0, we use v + d to denote the time assignment
which maps each clock x ∈ X to the value v(x) + d. For a subset r of X , we
write v[r ← 0] for the valuation which maps each clock in r to the value 0 and
agrees with v over X \ r. Let AP be a set of atomic propositions.

4

2.1 Timed Automata

Definition 1. A timed automaton (TA) is a tuple A = 〈X,QA, qinit,→A, InvA,
lA〉 where X is a finite set of clocks, QA is a finite set of locations or control states
and qinit ∈ QA is the initial location. The set →A ⊆ QA × C(X)× 2X ×QA is a
finite set of action transitions: for (q, g, r, q′) ∈ →A, g is the enabling condition

and r is a set of clocks to be reset with the transition (we write q
g,r
−→A q′).

InvA : QA → C(X) assigns an invariant to each control state. Finally lA : QA →
2AP labels every location with a subset of AP.

A configuration of a TA A is a pair (q, v), where q ∈ QA is the current location
and v ∈ R

X
≥0

is the current clock valuation. The initial state of A is (qinit, v0)
with v0(x) = 0 for any x in X . There are two kinds of transition. From (q, v),

it is possible to perform the action transition q
g,r
−→A q′ if v |= g and v[r ← 0] |=

InvA(q′) and then the new configuration is (q′, v[r ← 0]). It is also possible to
let time elapse, and reach (q, v + t) for some t ∈ R whenever the invariant is
satisfied along the delay. Formally the semantics of a TA A is given by a Timed
Transition System (TTS) TA = (S, sinit,→TA

, l) where:

– S = {(q, v) | q ∈ QA and v ∈ R
X
≥0

s.t. v |= InvA(q)} and sinit = (qinit, v0).
– →TA

⊆ S × S and we have (q, v)→TA
(q′, v′) iff

• either q′ = q, v′ = v + t and v + t′ |= InvA(q) for any t′ ≤ t. This is a

delay transition, written (q, v)
t
−→ (q, v + t),

• or ∃q
g,r
−→A q′ and v |= g, v′ = v[r ← 0] and v′ |= InvA(q′). This is an

action transition, written (q, v)→a (q′, v′).
– l : S → 2AP labels every state (q, v) with the subset lA(q) of AP .

A run of A is an infinite path s0 →TA
s1 →TA

s2 . . . in TA such that (1) time
diverges and (2) there are infinitely many action transitions. Note that a run can

always be described as an alternating infinite sequence s0
t0−→→a s1

t1−→→a · · ·
for some ti ∈ R. Such a run ρ goes through any configuration s′ reachable from
some si by a delay transition of duration t ∈ [0, ti]. We write Exec(s) for the set
of all runs starting from s. A configuration can occur several times along some
run ρ. A particular occurrence p of a configuration is called a position, we write
p ∈ ρ. For such a p, the corresponding configuration is denoted by sp.
The standard notions of prefix, suffix and subrun apply for paths in TTS: given
a position p ∈ ρ, ρ≤p is the prefix leading to p, ρ≥p is the suffix issued from p.
Finally a subrun σ from p to p′ is denoted by p

σ
7→ p′.

Given two positions p and p′, we say that p precedes strictly p′ along ρ (written

p <ρ p
′) iff there exists a finite subrun σ of ρ s.t. p

σ
7→ p′ and σ contains at least

one non null delay transition or one action transition (i.e. σ is not reduced to
0
−→). Note that the set of positions along ρ is totally ordered by <ρ, independently
of the representation of the run.
Given a position p ∈ ρ, the prefix ρ≤p has a duration, Time(ρ≤p), defined as the
sum of all delays along ρ≤p. Since time diverges along an execution, we have:
for any t ∈ R, there exists p ∈ ρ such that Time(ρ≤p) > t. For a subset P ⊆ ρ
of positions in ρ, we define a natural measure µ̂(P) = µ{Time(ρ≤p) | p ∈ P},
where µ is Lebesgue measure on the set of real numbers.

5

2.2 Definition of TCTLext.

We extend the syntax of TCTL to express that a formula holds almost every-
where: TCTLext is obtained by adding the two modalities E_Ua

∼c_ and A_Ua
∼c_

to TCTL.

Definition 2 (Syntax of TCTLext). TCTLext formulae are given by the follow-
ing grammar:

ϕ, ψ ::= P1 | P2 | . . . | ¬ϕ | ϕ ∧ ψ | EϕU∼cψ | AϕU∼cψ | EϕU
a

∼cψ | AϕU
a

∼cψ

where Pi ∈ AP, ∼ belongs to the set {<,>,≤,≥,=} and c ∈ N.

Standard abbreviations include >,⊥, ϕ ∨ ψ, ϕ⇒ ψ, . . . as well as :

EF
a
∼c ϕ

def

= E(> Ua
∼c ϕ) AFa

∼c ϕ
def

= A(> Ua
∼c ϕ)

EGa
∼c ϕ

def

= ¬AFa
∼c¬ϕ AGa

∼c ϕ
def

= ¬EFa
∼c¬ϕ

Definition 3 (Semantics of TCTL
ext). The following clauses define when a

state s of some TTS T = 〈S, sinit,→, l〉 satisfies a TCTLext formula ϕ, written
s |= ϕ, by induction over the structure of ϕ (the semantics of boolean operators
is omitted).

s |= EϕU∼cψ iff ∃ ρ ∈ Exec(s) s.t. ρ |= ϕU∼cψ
s |= AϕU∼cψ iff ∀ ρ ∈ Exec(s) we have ρ |= ϕU∼cψ
s |= EϕUa

∼cψ iff ∃ ρ ∈ Exec(s) s.t. ρ |= ϕUa
∼cψ

s |= AϕUa
∼cψ iff ∀ ρ ∈ Exec(s) we have ρ |= ϕUa

∼cψ

ρ |= ϕU∼cψ iff ∃p ∈ ρ s.t. Time(ρ≤p) ∼ c ∧ sp |= ψ ∧ ∀p′ <ρ p, sp′ |= ϕ
ρ |= ϕUa

∼cψ iff there exists a subrun σ s.t. µ̂(σ) > 0, ∃p ∈ σ, Time(ρ≤p) ∼ c,
∀p′ ∈ σ, sp′ |= ψ, µ̂({p′ | p′ <ρ p ∧ sp′ 6|= ϕ}) = 0

Note that in the case of the almost modality Ua, we ask that ϕ holds almost
everywhere before ψ occurs. Moreover, we require that ψ holds not only at a
single position (which has a measure equal to 0), like in the usual framework,
but on a whole interval around the position satisfying the time constraint.

For example, AG
a
≥0ϕ specifies that along every run, the set of positions at which

ϕ does not hold has a measure equal to 0, i.e. ϕ holds almost everywhere along
all paths. It was precisely this kind of property we wanted to be able to express.
Note that the positions where some formula ϕ does not hold are not restricted to
discrete transitions, contrary to some intuition. Indeed, consider the automaton
below, with two atomic propositions a and b, and the formula ϕ = EaU=1b. Let ρ
be the run starting in (q0, 0) -there is only one-. Clearly ϕ is not satisfied in each
position of ρ except in (q0, 1), then (q0, 0) 6|= AG(¬ϕ) but (q0, 0) |= AG

a(¬ϕ).

q0
a,¬b

q1
¬a, b

x = 2

6

The standard TCTL logic is the fragment of TCTLext without E_Ua
∼c_ and

A_Ua
∼c_, while the logic TCTLa is the restriction of TCTLext where classical

E_U∼c_ and A_U∼c_ are forbidden.
The size |ϕ| of a formula ϕ is defined in the standard way, with constants written
in binary notation.

3 Expressiveness of Ua Modality

In this section we show that the modality Ua cannot be expressed with TCTL

operators and conversely that Ua cannot express TCTL modalities.
Formally we say that two formulae ϕ and ψ are equivalent for a class of models
C whenever their truth value is the same for any element of C, this is denoted

ϕ
C
≡ ψ or just ϕ ≡ ψ when C is clear from the context. Let L and L′ be two

logical languages interpreted over the same models. L′ is said to be as expressive
as L (denoted L � L′) iff for any formula ϕ ∈ L there exist ϕ′ ∈ L′ s.t. ϕ ≡ ϕ′.
Moreover L′ is strictly more expressive than L (written L ≺ L′) iff L � L′ and
L′ 6� L.

3.1 TCTL ≺ TCTLext

First we show that Ua cannot be expressed with standard U modality. The
proof is based on classical techniques used in untimed temporal logics (see for
ex. [Eme91,EH86]). However, adapting them to the timed framework results in
more involved constructions.
Let Ψ be the TCTLa formula E(aUa

>0
b). We will prove that there is no TCTL

formula equivalent to Ψ . Consider the timed automata Mi and Ni with i ≥ 1 in
Figure 3. Clearly we have Mi, (qi, 0) |= Ψ while Ni, (q

′
i, 0) 6|= Ψ . The next lemma

states that Mi and Ni satisfy the same TCTL formula whose size is less than i.
We first introduce some notations. Given two configurations s and s′, we write
s ≡k

TCTL
s′ iff for any ϕ ∈ TCTL with |ϕ| ≤ k, we have s |= ϕ ⇔ s′ |= ϕ. We

write s ≡TCTL s
′ iff s ≡k

TCTL
s′ for any k ≥ 1.

Automata Mi and Ni contain only one clock, any configuration is then defined
as a pair (`, t) where ` is a location and t ∈ R≥0 is a value for x. Moreover the
automata have only one cycle on r0: for any configuration of the form (qj , t),
(q′j , t), (rj , t), or (r′j , t) with j ≥ 1, there is at most one such position along ρ.
Proof of expressiveness will be a consequence of the following Lemma:

Lemma 4. Given the automata described in Figure 3, ∀k ≥ 1, ∀i ≥ k and
∀t ∈ R, we have:

(qi, t) ≡
k
TCTL (q′i, t) (ri, t) ≡

k
TCTL (r′i, t)

Let ρ be a run starting in (q′i, t) in Ni with i > 0. The run ρ is characterized by
the time elapsed δ0 in q′i, the time elapsed δ1 in r′i and a suffix ρ1 in Ni−1 or
Mi−1. Then ρ has the following structure:

(q′i, t)
δ0−→ (q′i, δ0 + t)→a (r′i, 0)

δ1−→ (r′i, δ1)→a
ρ1
7→

7

M1:
q1

a
r1

c
q0

a
r0

b

x > 0, x := 0 x ≥ 0, x := 0 x > 0

N1:
q′1
a

r′1
c

x > 0, x := 0
x > 0, x := 0

x > 0

Mi:
qi

a
ri

c Mi−1

x > 0, x := 0 x ≥ 0, x := 0

Ni:
q′i
a

r′i
c Ni−1

x > 0, x := 0 x ≥ 0, x := 0

x ≥ 0, x := 0

x > 0, x := 0

Fig. 3. Automata Mi and Ni, i = 1, 2, . . .

Note that the suffix ρ1 is in Mi−1 only if δ1 > 0. Let fMi
(ρ) be the run of

Mi defined by: (qi, t)
δ0−→ (qi, δ0 + t) →a (ri, 0)

δ1−→ (ri, δ1) →a
ρ1
7→. The same can

be done for a run issued from (r′i, t), but in this case there is only the delay
transition labeled by δ1. Note that ρ and fMi

(ρ) share the same suffix ρ1.

Given a run ρ in Mi from (qi, t) or (ri, t), one can also define a corresponding
run fNi

(ρ) in Ni whenever the delay δ1 spent in ri is strictly positive.

Proof (of Lemma 4). The proof is done by induction over k, the size of formulae.

First note that, given the guards and the resets on transitions of Mi and Ni, we
clearly have for every j ≥ 0 and locations ` ∈ {qj , rj , q

′
j , r

′
j}

(rj , 0) ≡TCTL (rj , t) ∀t > 0 (1)

(`, t) ≡TCTL (`, t′) ∀t, t′ > 0 (2)

For formulae of size k = 1, the equivalences of the lemma hold because qi and
q′i (resp. ri and r′i) are labeled by the same atomic propositions.

We assume now that k > 1 and that equivalences of the lemma hold for for-
mulae with size < k. The case of boolean combinations is obvious, so we now
concentrate on formulae A(ϕ1U∼cϕ2) and E(ϕ1U∼cϕ2).

From equivalences (1) and (2) and from induction hypothesis, if ρ is a run in Ni,
then fMi

(ρ) exists and ρ |= (ϕ1U∼cϕ2) ⇐⇒ fMi
(ρ) |= (ϕ1U∼cϕ2). Similarly,

if ρ is a run in Mi and if fNi
(ρ) exists, then ρ |= (ϕ1U∼cϕ2) ⇐⇒ fNi

(ρ) |=
(ϕ1U∼cϕ2). Note that there exist some runs ρ in Mi for which there is no corre-
sponding fNi

(ρ) (when there is no delay in location ri).

8

We thus deduce immediately that

(qi, t) |= A(ϕ1U∼cϕ2) =⇒ (q′i, t) |= A(ϕ1U∼cϕ2)
(ri, t) |= A(ϕ1U∼cϕ2) =⇒ (r′i, t) |= A(ϕ1U∼cϕ2)

(q′i, t) |= E(ϕ1U∼cϕ2) =⇒ (qi, t) |= E(ϕ1U∼cϕ2)
(r′i, t) |= E(ϕ1U∼cϕ2) =⇒ (ri, t) |= E(ϕ1U∼cϕ2)

To get all equivalences of Lemma 4, we need some extra work for several impli-
cations.

– Assume that (qi, t) |= E(ϕ1U∼cϕ2) and take a run ρ from state (qi, t) satis-
fying ϕ1U∼cϕ2 with no corresponding run fNi

(ρ) (the delay in location ri

is thus 0). We note (`, v) the position along ρ which satisfies ϕ2 while all
previous positions satisfy ϕ1. If that position is before (qi−1, 0), then taking
a run which starts with the prime version of the prefix of ρ ending in (`, v),
by induction hypothesis, we get a run which satisfies ϕ1U∼cϕ2. Otherwise
we need to change delays in ρ (to get a run ρ′) as follows: on ρ, there is no
delay in location ri, we add one small delay in this state, small enough such
that the run is unchanged after state ri−1 (the accumulated delays in states
ri and qi−1 in ρ′ corresponds to the delay in qi−1 on run ρ, see the figure
below) and such that if ` = qi−1 (in which case v > 0 by assumption), then
the corresponding position on ρ′ is some (qi−1, v

′) with v′ > 0.

qi ri qi−1 ri−1

ρ

(`, v) |= ϕ2

ρ′

|= ϕ1U∼cϕ2

q′i r′i qi−1 ri−1

fNi
(ρ′) |= ϕ1U∼cϕ2

The run ρ′ then satisfies ϕ1U∼cϕ2: the position which corresponds to (`, v) on
ρ′ also satisfies ϕ2, and all previous positions satisfy ϕ1 (using equivalences
(1) and (2)). We thus get that fNi

(ρ′) also satisfies ϕ1U∼cϕ2. Thus, (q′i, t) |=
E(ϕ1U∼cϕ2).
A similar construction can be done to prove that (ri, 0) |= E(ϕ1U∼cϕ2)
implies (r′i, 0) |= E(ϕ1U∼cϕ2).

– For the formula A(ϕ1U≺cϕ2) where ≺ is either < or ≤ and c > 0, we consider
a location ` ∈ {qi, ri, q

′
i, r

′
i}. The following then holds:

• if t > 0, (`, t) |= A(ϕ1U≺cϕ2) iff (`, t) |= ϕ2 as we can take a run waiting
at least c time units in location `, and for some delay d ≺ c, (`, t + d)
will have to satisfy ϕ2 (which entails by (2) that (`, t) must satisfy ϕ2)

• similarly (`, 0) |= A(ϕ1U≺cϕ2) iff (`, 0) |= ϕ2 or ((`, 0) |= ϕ1 and (`, t) |=
ϕ2 for every t > 0)

Using induction hypothesis (on formulae ϕ1 and ϕ2), we get that (`′, t) |=
A(ϕ1U≺cϕ2) implies (`, t) |= A(ϕ1U≺cϕ2) if ` ∈ {qi, ri}.

9

– We consider formula A(ϕ1U=cϕ2) with c > 0. Any reachable state from some
(`, t) can be reached in exactly c units of time and in strictly less than c units
of time (because there is no real constraints on delays in states). This formula
is then equivalent to ϕ1∧ϕ2 over states (`, t) with ` ∈ {qi, ri, q

′
i, r

′
i} and t > 0,

and (`, 0) |= A(ϕ1U=cϕ2) iff (`, 0) |= ϕ1 and all reachable states from (`, 0)
satisfy ϕ1∧ϕ2 (` is in {qi, ri, q

′
i, r

′
i}). Using induction hypothesis, we get that

(`′, t) |= A(ϕ1U=cϕ2) implies (`, t) |= A(ϕ1U=cϕ2) for ` ∈ {qi, ri}.
– We assume that (q′i, t) |= A(ϕ1U≥cϕ2) and we want to prove that (qi, t) |=

A(ϕ1U≥cϕ2). We consider a run ρ in Mi starting in (qi, t) such that fNi
(ρ)

is not defined (the delay in state ri is 0). We will construct a run in Ni from
state (q′i, t) “equivalent” to ρ, and distinguish two cases, depending on the
delay δ in location qi. We first consider the case where δ < c.

qi ri qi−1 ri−1

ρ

ρ′

|= ϕ1U≥cϕ2

< c

< c

q′i r′i qi−1 ri−1

fNi
(ρ′) |= ϕ1U≥cϕ2

|= ϕ2

In ρ, the delay in qi is < c whereas the delay in ri is null. We first construct
a run ρ′ with a positive delay in ri (however smaller than the initial delay of
ρ in state qi−1) such that the accumulated delay in qi and ri is still < c (see
the figure above). From ρ′ we construct run fNi

(ρ′) in Ni. Using induction
hypothesis, at all positions, the two runs ρ′ and fNi

(ρ′) agree on properties
ϕ1 and ϕ2. As (q′i, t) |= A(ϕ1U≥cϕ2), this implies that fNi

(ρ′) |= ϕ1U≥cϕ2,
and thus that ρ′ |= ϕ1U≥cϕ2. In particular, ϕ1 has to hold in states (ri, t)
for every t ≥ 0. Moreover, property ϕ2 holds at some position along ρ′, and
ϕ2 will also hold at the same position on ρ. We thus get that ρ also satisfies
property ϕ1U≥cϕ2.
We now assume that δ ≥ c. From ρ which does not delay in state ri, we
construct a run ρ′ which waits a small amout of time (as in the previous
case), and then consider the corresponding run fNi

(ρ′) inNi. By assumption,
this runs satisfies ϕ1U≥cϕ2. Then several cases can happen: (i) the property
ϕ2 holds in some (q′i, t+d) with d ≥ c, in which case ϕ2 also holds in (qi, t+d)
by induction hypothesis, and ϕ1 holds in all (qi, t + d′) for d′ < d (also by
induction hypothesis) which implies that ρ |= ϕ1U≥cϕ2; (ii) the property
holds in some (r′i, d) for some d ≥ 0, which implies that ϕ2 also holds in
(ri, d) by i.h. and thus that (ri, 0) |= ϕ2 using (1), thus ρ |= ϕ1U≥cϕ2; (iii)
the property ϕ2 holds for some other state (`, d), which will be also true on
run ρ, thus in that case also ρ |= ϕ1U≥cϕ2.

In both cases we can conclude that (qi, t) |= A(ϕ1U≥cϕ2).

Similar constructions can be done to prove that (r′i, t) |= A(ϕ1U≥cϕ2) implies
(ri, t) |= A(ϕ1U≥cϕ2).

10

– Formula A(ϕ1U>cϕ2) is almost handled in a similar way as A(ϕU≥cϕ2). Like
before, we consider a run ρ in Mi which has no corresponding run fNi

(ρ). If
δ is the delay in location qi, we have also to distinguish three cases (instead
of two): cases where δ < c or δ > c can be done exactly as previously. The
only different case is when δ = c. As previously we first construct a run
ρ′ which waits some positive delay in location ri, and then consider run
fNi

(ρ′) which has to satisfy ϕ1U>cϕ2, and then using induction hypothesis
we get that ρ′ |= ϕ1U>cϕ2, from which we get that ρ |= ϕ1U>cϕ2 (using
equivalences (1) and (2)). In that case, the delay in location qi is shortened,
and the accumulated delay in qi and ri (in run ρ′) is precisely c, as seen in
the figure below.

qi ri qi−1 ri−1

ρ

ρ′

|= ϕ1U>cϕ2

= c

= c

q′i r′i qi−1 ri−1

fNi
(ρ′) |= ϕ1U>cϕ2

– It is easy to see that formula A(ϕ1U=0ϕ2) is equivalent to ϕ2 over states of
Mi and Ni.

This concludes the proof of Lemma 4. ut

Now we have the following result:

Theorem 5. TCTLext is strictly more expressive than TCTL.

Proof. This is a consequence of Lemma 4: assume that there exists a TCTL

formula Φ equivalent to formula E(aUa
>0b). Then (qi, 0) |= Φ and (q′i, 0) 6|= Φ for

any i ≥ 0, but this contradicts (qi, 0) ≡
|Φ|
TCTL

(q′i, 0) for any i ≥ |Φ| provided by
Lemma 4. ut

3.2 TCTLa
≺ TCTLext

However, modality Ua is no help to express the classical U modality:

Theorem 6. TCTLext is strictly more expressive than TCTLa.

Proof. Let A be the automaton described in Figure 4.
It can be easily proven that (q0, t) and (q′0, t) agree on the same TCTLa formulae.
Indeed the only difference is that the state (r′0, 0) belongs to any run from q′0. But
this state has to be left immediately and then this position has a measure null
along any run and cannot have an effect on the truth value of TCTLa formulae.

ut

11

A :

q0

a

q1

b

x > 0, x := 0

q′0
a

r′0
c

x > 0, x := 0

x = 0

Fig. 4. (q0, 0) |= E(aUb), (q′

0, 0) 6|= E(aUb), but (q0, 0) ≡TCTLa (q′0, 0).

4 Model-Checking TCTLext

We now address the model-checking problem for TCTLext: given a TA A and
a formula Φ ∈ TCTLext, we want to decide whether Φ holds for A or not. The
number of states of the TTS TA is infinite, we then use the standard region
graph technique introduced by Alur, Courcoubetis and Dill [ACD93] for TCTL

model-checking. This method consists in defining an equivalence ∼= over clocks
valuations such that (1) (q, v) and (q, v′) satisfy the same formulae when v ∼= v′,
and (2) the quotient R

X
≥0
/∼= is finite. Then model-checking TCTL reduces to

model-checking a CTL-like logic over a (finite) abstracted graph. This technique
can be extended to TCTLext by using the same equivalence over valuations as
the one used for TCTL.
Given A and some clock x ∈ X , we use cx ∈ N to denote the maximal constant
that x is compared with in the guards and invariants of A. Let ∼= be the following
equivalence [AD90] over clocks valuations of v, v′ ∈ R

X
≥0

: v ∼= v′ iff (1) bv(x)c =
bv′(x)c ∨ (v(x) > cx ∧ v

′(x) > cx) for any x ∈ X , and (2) for any x, y ∈ X
s.t. v(x) ≤ cx and v(y) ≤ cy, we have: frac(v(x)) ≤ frac(v(y)) ⇔ frac(v′(x)) ≤
frac(v′(y)) and frac(v(x)) = 0 ⇔ frac(v′(x)) = 0. This equivalence is of finite
index. An equivalence class of ∼= is called a region and [v] denotes the class of
v. Now we can show that this equivalence is consistent with the truth values of
TCTLext formulae:

Lemma 7. Given a TA A = 〈X,QA, qinit,→A, InvA, lA〉, q ∈ QA, a formula
Φ ∈ TCTLext and v, v′ ∈ R

X
≥0

s.t. v ∼= v′, we have: (q, v) |= Φ ⇔ (q, v′) |= Φ.

Proof (sketch). The proof follows the same steps as the corresponding one for
TCTL. First, given a run ρ ∈ Exec(q, v), we can build a run ρ′ ∈ Exec(q, v′) where
the same action transitions are taken at “almost” the same times and where the
regions visited for a duration strictly positive are the same. Let ρ ∈ Exec(q, v) be

the run (q0, v0)
t0−→→a (q1, v1)

t1−→→a . . . with q0 = q and v0 = v. Let δi =
∑

j<i tj
be the time at which the i-th action transition takes place, and δ0 = 0. Let v∗i
be the extended valuation over X ∪ {δ} – where δ is a new symbol – defined by
v∗i (x) = vi(x) and v∗i (δ) = δi. Now we consider the equivalence ∼= extended to

12

valuations over X ∪ {δ} by assuming cδ = ∞. Like in [ACD93], we can build

a run ρ′ ∈ Exec(q, v′) of the form (q0, v
′
0)

t′0−→→a (q1, v
′
1)

t′1−→→a . . . with v′0 = v′

such that for any i we have: v∗i
∼= v′∗i . This clearly entails that there is no strictly

positive delay between the i-th and (i+ 1)-th action transitions in ρ iff there is
no strictly positive delay between the i-th and (i+1)-th action transitions in ρ′.
We now prove the lemma by structural induction over the TCTL

ext formulae.
Since the property holds for TCTL formulae, we only have to consider the Ua

modalities.
Assume (q, v) |= EϕUa

∼cψ and assume that the truth value of ϕ and ψ are homo-
geneous over regions (q, [u]) (i.e. for any region γ, they hold for any valuation of
γ, or for no valuation of γ). There exists some run ρ ∈ Exec(q, v) with a subrun
σ s.t. : µ̂(σ) > 0, ∃p ∈ σ s.t. Time(ρ≤p) ∼ c, ∀p′ ∈ σ we have sp′ |= ψ and
µ̂({p′ | p′ <ρ p ∧ sp′ 6|= ϕ}) = 0. Now consider a run ρ′ corresponding to ρ as
described above. Clearly there exists a subrun σ′ in ρ′ corresponding to the same
regions as σ, and then these regions also satisfy ψ. Moreover, like for the TCTL

case, there exists some position p′ in ρ′ s.t. Time(ρ′≤p′

) ∼ c⇔ Time(ρ≤p) ∼ c.
The set of positions {p′ |p′ <ρ p∧sp′ 6|= ϕ} corresponds to a set of regions along ρ
where no time elapses. In ρ′ the same regions are visited and no delay transition
occur. Then this set will also have a null measure. Thus (q, v′) |= EϕUa

∼cψ.
The same argument can be used for AϕUa

∼cψ because any run from (q, v) has a
corresponding run from (q, v′) and vice versa. ut

Given some region γ ∈ R
X
≥0
/∼=, the successor region of γ, when it exists, is

the region distinct from γ s.t. for any v ∈ γ, there exists some t ∈ R≥0 s.t.
v+ t ∈ Succ(γ) and v+ t′ ∈ γ∪Succ(γ) for any 0 ≤ t′ < t. We will write γ(x) ∼ c
when any valuation v in γ satisfies v(x) ∼ c. Finally the region γ[r ← 0] denotes
the region [v[r ← 0]] for any v ∈ γ.
Model-checking TCTL

ext reduces to a model-checking problem for a CTL-like
logic over a finite graph, called the region graph. Let X∗ be the set of clocks
X∪{xΦ}. The new clock xΦ is used to handle subscripts ∼ c in U modalities, the
value cxΦ

is the maximal constant occurring in a subscript. For any subscript ∼ c
in Φ we add new atomic propositions p<c, p>c and p=c, that hold for regions γ s.t.
γ(xΦ) ∼ c. Let pb be another proposition that holds for boundary regions : γ |= pb

iff there is some clock x ∈ X∗ with frac(x) = 0 in γ. Let AP
+ = AP∪{pb, p<c, . . .}

be the extended set of atomic propositions.
We can now recall the region graph of [ACD93]: For a TA A = 〈X,QA, qinit,→A,
InvA, lA〉 and a TCTLext formula Φ, the region graph RA,Φ is the finite fair graph
(V,→, l, F) with:

– V = {(q, γ) | q ∈ QA and γ ∈ R
X∗

≥0
/∼=}

– The set of transitions →=→t ∪ →a contains two kinds of transitions:
• (q, γ)→t (q, Succ(γ)) if Succ(γ) |= InvA(q).

• (q, γ)→a (q, γ′) s.t. there exists q
g,r
−→A q′ with γ |= g, γ′ = γ[r ← 0] and

γ′ |= InvA(q′).

– l : V → 2AP
+

labels the vertices with the atomic propositions it satisfies:
l(q, γ) contains lA(q) and the propositions for γ.

13

– F is a set of fairness constraints: F = {Fx |x ∈ X
∗} with Fx = {(q, γ)|γ(x) =

0∨γ(x) > cx}. A fair path inRA,Φ has to visit infinitely often a configuration
in Fx for any x ∈ X∗.

We now define R+

A,Φ an extension of RA,Φ where we consider the transitive

closure of→a: R+

A,Φ = (V,→, l, F) where V , l and F are defined as for RA,Φ, and

→=→t ∪ →
+
a . Then an action transition in R+

A,Φ (q, γ)→+
a (q′, γ′) corresponds

to a sequence of action transitions in A which can be performed with no delay
in between. Note that all the intermediate configurations along such a sequence
are visited but the set of their positions is of measure 0 w.r.t. µ̂. We call these
configurations transient configurations, and more formally, a configuration along
a run ρ is non-transient iff its region is non-boundary and the previous or the
next transition on ρ is a delay transition (a strictly positive delay has to elapse
in the state along ρ). We will use this extended region graph when looking for
the existence of a run satisfying ϕUa

∼cψ because we do not need to consider such
intermediate transient configuration.

We reduce model-checking TCTLext to model-checking CTL over R+

A,Φ. We will
use the classical E_U_ and A_U_ operators where E and A deal with paths
in RA,Φ, whereas E+ and A+ deal with paths in R+

A,Φ, that is when transitions
corresponding to transitive closure of action transitions in RA,Φ are allowed.
Finally we also assume that for any state (q, γ) of RA,Φ, there is a fair path
rooted at (q, γ).
It remains to describe a labeling procedure to label every state of RA,Φ with
the Φ-subformulae it satisfies. This is done by adapting the procedure for the
TCTL case [ACD93], using the graphs RA,Φ and R+

A,Φ. For example, in the case
of formula EGa

≤c
ϕ, a state (q, γ) is labeled by EGa

≤c
ϕ iff (q, γ[xΦ ← 0]) satisfies

the CTL formula:

E
+(pb ∨ ϕ)U

(

p=c ∧
(

(ϕ ∧ EXp>c) ∨ EX(p>c ∧ ϕ)
)

)

where the next operator (EX) ensures that the position for which the right-hand
side of the Until has to hold, is the last position at duration = c along a run.
This leads to the following result:

Theorem 8. Given a TA A and a TCTLext formula Φ, deciding whether Φ
holds for A is a PSPACE-complete problem.

5 Conclusion

In this work, we studied the extension TCTLext of the classical logic TCTL,
obtained by introducing a new modality Ua

∼c. The superscript a means “almost
everywhere” and expresses the fact that a property must be true except on a
negligible set of positions. We proved that this modality cannot be expressed by
the classical ones, and conversely. We also proposed a model-checking procedure
for TCTLext, with the same complexity result than TCTL, where the classical

14

constructions must be adapted to take into account the set of negligible positions
on a run. Further work could consist in extending this new modality for the
verification of “permanent” properties, i.e. properties that hold on an sufficiently
large interval, the length of which could be a parameter.

References

[ABBL03] Luca Aceto, Patricia Bouyer, Augusto Burgueño, and Kim G. Larsen. The
power of reachability testing for timed automata. Theoretical Computer
Science, 300(1–3):411–475, 2003.

[ACD93] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking in
dense real-time. Information and Computation, 104(1):2–34, 1993.

[AD90] Rajeev Alur and David Dill. Automata for modeling real-time systems.
In Proc. 17th International Colloquium on Automata, Languages and Pro-
gramming (ICALP’90), volume 443 of Lecture Notes in Computer Science,
pages 322–335. Springer, 1990.

[AD94] Rajeev Alur and David Dill. A theory of timed automata. Theoretical
Computer Science (TCS), 126(2):183–235, 1994.

[AFH96] Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The benefits of
relaxing punctuality. Journal of the Association for Computing Machinery
(JACM), 43(1):116–146, 1996.

[AH92] Rajeev Alur and Thomas A. Henzinger. Logics and models of real-time:
a survey. In Real-Time: Theory in Practice, Proc. REX Workshop 1991,
volume 600 of Lecture Notes in Computer Science, pages 74–106. Springer,
1992.

[BFKM03] Béatrice Bérard, Laurent Fribourg, Francis Klay, and Jean-François Monin.
A compared study of two correctness proofs for the standardized algorithm
of abr conformance. Formal Methods in System Design, 22(1):59–86, 2003.

[DOTY96] Conrado Daws, Alfredo Olivero, Stavros Tripakis, and Sergio Yovine.
The tool kronos. In Proc. Hybrid Systems III: Verification and Control
(1995), volume 1066 of Lecture Notes in Computer Science, pages 208–219.
Springer, 1996.

[EH86] E. Allen Emerson and Joseph Y. Halpern. "Sometimes" and "not never"
revisited: On branching versus linear time temporal logic. Journal of the
ACM, 33(1):151–178, 1986.

[Eme91] E. Allen Emerson. Temporal and Modal Logic, volume B (Formal Models
and Semantics) of Handbook of Theoretical Computer Science, pages 995–
1072. MIT Press Cambridge, 1991.

[HHWT95] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HyTech:
the next generation. In Proc. 16th IEEE Real-Time Systems Symposium
(RTSS’95), pages 56–65. IEEE Computer Society Press, 1995.

[HNSY94] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine.
Symbolic model-checking for real-time systems. Information and Compu-
tation, 111(2):193–244, 1994.

[IEC93] IEC (International Electrotechnical Commission). IEC Standard 61131-3:
Programmable controllers - Part 3, 1993.

[LLW95] François Laroussinie, Kim G. Larsen, and Carsten Weise. From timed
automata to logic – and back. In Proc. 20th International Symposium on
Mathematical Foundations of Computer Science (MFCS’95), volume 969
of Lecture Notes in Computer Science, pages 529–539. Springer, 1995.

15

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell.
Journal of Software Tools for Technology Transfer (STTT), 1(1–2):134–
152, 1997.

16

