
Tim Smith

LIGM
Université Paris-Est Marne-la-Vallée

1

EQINOCS workshop, Paris

Prediction of Infinite Words
with Automata

11 May 2016

Prediction Setting

• We consider an “emitter” and a “predictor”.

• The emitter takes no input, but just emits
symbols one at a time, continuing indefinitely.

• The predictor receives each symbol output
by the emitter, and tries to guess the next
symbol.

• We say that the predictor “masters” the
emitter if there is a point after which all of
the predictor’s guesses are correct.

2

Our Model
• We view the emitter as an infinite word α, i.e., an

infinite sequence of symbols drawn from a finite
alphabet A.

• We view the predictor as an automaton M whose
input is α and whose output is an infinite word
M(α). We call each symbol of M(α) a guess.

• M is required to output the i-th symbol of M(α)
before it can read the i-th symbol of α.

• If for some n ≥ 1, for all i ≥ n, M(α)[i] = α[i],
then M masters α.

3

Prediction Example
• A DFA predictor is a DFA which takes an

infinite word as input, and on each transition,
tries to guess the next symbol.

• Consider a DFA predictor M which always
guesses that the next symbol is a.

• An ultimately periodic word is an infinite word
of the form xyω = xyyy... for some x,y in A*.

• M masters aω, baω, abaω, bbaω, ..., i.e., every
ultimately periodic word ending in aω.

4

Limitations of DFA
predictors

• A purely periodic word is an infinite word of the
form xω = xxx... for some x in A*.

• Theorem: No DFA predictor masters every
purely periodic word.

• Proof by contradiction: Suppose there is a DFA
predictor M which masters every purely
periodic word. Let n be the number of states
of M. Then M does not master the purely
periodic word (an+1 b)ω.

5

Research Direction

• [Smith 2016] Prediction of infinite words with
automata CSR 2016 (forthcoming)

• Considers various classes of automata and infinite
words in a prediction setting.

• Studies the question of which automata can master
which infinite words.

• Motivation: Make connections among automata,
infinite words, and learning theory, via the notion of
mastery or “learning in the limit” [Gold 1967].

6

Automata Considered

7

Class Name

DFA deterministic finite automata

DPDA deterministic pushdown automata

DSA deterministic stack automata

multi-DFA multihead deterministic finite automata

sensing
multi-DFA

sensing multihead deterministic finite automata

• All of the automata have a one-way input tape.

Infinite Words Considered

8

Class Example

purely periodic words ababab...

ultimately periodic words abaaaaa...

multilinear words abaabaaab...

• We have the proper containments:

• purely periodic ⊂ ultimately periodic ⊂ multilinear

Prediction Results

9

∃ masters ∀ purely
periodic

ultimately
periodic multilinear

DFA

DPDA

DSA

multi-DFA

sensing
multi-DFA

✕ ✕ ✕

infinite words

automata

Multihead Finite Automata

• Finite automata with one or more input heads on a
single tape [Rosenberg 1965].

• We are interested in multi-DFA, the class of one-way
multihead deterministic finite automata.

• What are the predictive capabilities of multi-DFA?

10

multi-DFA =
[

k�1

k-DFA

Prediction by Multihead Automata

• Theorem: Some multihead DFA masters every
ultimately periodic word.

• Construction: Variation of the “tortoise and hare”
algorithm. Let M be a two-head DFA which
always guesses that the symbols under the heads
will match, and

• if the last guess was correct, M moves each
head one square to the right;

• otherwise, M moves the left head one square
to the right and the right head two squares to
the right.

11

12

↵ = (aaab)!

a ?

2-head DFA which masters all
ultimately periodic words

13

↵ = (aaab)!

a a X

2-head DFA which masters all
ultimately periodic words

14

↵ = (aaab)!

a a ?

2-head DFA which masters all
ultimately periodic words

15

↵ = (aaab)!

a a a X

2-head DFA which masters all
ultimately periodic words

16

↵ = (aaab)!

a a a ?

2-head DFA which masters all
ultimately periodic words

17

↵ = (aaab)!

a a a b ⇥

2-head DFA which masters all
ultimately periodic words

18

↵ = (aaab)!

a a a b a ?

2-head DFA which masters all
ultimately periodic words

19

↵ = (aaab)!

a a a b a a ⇥

2-head DFA which masters all
ultimately periodic words

20

↵ = (aaab)!

a a a b a a a ?

2-head DFA which masters all
ultimately periodic words

21

↵ = (aaab)!

a a a b a a a b ⇥

2-head DFA which masters all
ultimately periodic words

22

↵ = (aaab)!

a a a b a a a b a ?

2-head DFA which masters all
ultimately periodic words

23

↵ = (aaab)!

a a a b a a a b a a X

2-head DFA which masters all
ultimately periodic words

24

↵ = (aaab)!

a a a b a a a b a a ?

2-head DFA which masters all
ultimately periodic words

25

↵ = (aaab)!

a a a b a a a b a a a X

2-head DFA which masters all
ultimately periodic words

26

↵ = (aaab)!

a a a b a a a b a a a ?

2-head DFA which masters all
ultimately periodic words

27

↵ = (aaab)!

a a a b a a a b a a a b X

2-head DFA which masters all
ultimately periodic words

Prediction Results

28

∃ masters ∀ purely
periodic

ultimately
periodic multilinear

DFA

DPDA

DSA

multi-DFA

sensing
multi-DFA

✕ ✕ ✕

✓ ✓

✓ ✓

infinite words

automata

DPDA predictors
• [Smith 2016] No DPDA predictor masters every purely

periodic word.

• Proof idea:

• Suppose there is a DPDA predictor M which masters
every purely periodic word. Set n to be very large with
respect to the number of states of M and the size of the
stack alphabet. Let α = (an b)ω.

• We show that in some block of consecutive a’s, there
are configurations Ci and Cj of M with the same state
and top-of-stack symbol, such that the stack below the
top symbol at Ci is not accessed between Ci and Cj.
Then M does not master α.

29

Stack Automata

• Generalization of pushdown automata due
to [Ginsburg, Greibach, & Harrison 1967].

• In addition to pushing and popping at the
top of the stack, the stack head can move
up and down the stack in read-only mode.

• We consider DSA, the class of one-way
deterministic stack automata.

30

read

push/pop

Prediction with Stack Automata
• [Smith 2016] Some DSA predictor masters every purely

periodic word.

• Algorithm: The goal is to build up the stack until it holds the
period of the word.

• The stack automaton M makes guesses by repeatedly
matching its stack against the input. Call each traversal of the
stack a “pass”.

• In the event of a mismatch, M finishes the current pass, then
continues making passes until one succeeds with no
mismatches. Then it pushes the next symbol of the input
onto the stack and continues as before.

• Eventually the stack holds the period and M achieves mastery.

31

32

Stack automaton which masters
all purely periodic words

↵ = x

!

a

b

c

stack

· · · ?

33

Stack automaton which masters
all purely periodic words

↵ = x

!

a

b

c

stack

· · · a X

34

Stack automaton which masters
all purely periodic words

↵ = x

!

a

b

c

stack

· · · a ?

35

Stack automaton which masters
all purely periodic words

↵ = x

!

a

b

c

stack

· · · a

b

X

36

Stack automaton which masters
all purely periodic words

↵ = x

!

a

b

c

stack

· · · a

b ?

37

Stack automaton which masters
all purely periodic words

↵ = x

!

a

b

c

stack

· · · a

b

c X

38

Stack automaton which masters
all purely periodic words

↵ = x

!

a

b

c

stack

· · · a

b

c ?

39

Stack automaton which masters
all purely periodic words

↵ = x

!

a

b

c

stack

· · · a

b

c a X

40

Stack automaton which masters
all purely periodic words

↵ = x

!

a

b

c

stack

· · · a

b

c a ?

41

Stack automaton which masters
all purely periodic words

↵ = x

!

a

b

c

stack

· · · a

b

c a a ⇥

42

Stack automaton which masters
all purely periodic words

↵ = x

!

a

b

c

stack

· · · a

b

c a a ?

43

Stack automaton which masters
all purely periodic words

↵ = x

!

a

b

c

stack

· · · a

b

c a a

b

⇥

44

Stack automaton which masters
all purely periodic words

↵ = x

!

a

b

c

stack

· · · a

b

c a a

b ?

45

Stack automaton which masters
all purely periodic words

↵ = x

!

a

b

c

stack

· · · a

b

c a a

b ?

h h

46

Stack automaton which masters
all purely periodic words

↵ = x

!

a

b

c

stack

· · · a

b

c a a

b

c · · · ?

h h

h|x|

47

Stack automaton which masters
all purely periodic words

↵ = x

!

a

b

c

stack

· · · a

b

c a a

b

c · · · a

b

c

h h

h|x|

48

Stack automaton which masters
all purely periodic words

↵ = x

!

a

b

c

a

stack

· · · a

b

c a a

b

c · · · a

b

c a

h h

h|x|

49

Stack automaton which masters
all purely periodic words

↵ = x

!

a

b

c

a

stack

· · · a

b

c a a

b

c · · · a

b

c a ?

h h

h|x|

Prediction Results

50

∃ masters ∀ purely
periodic

ultimately
periodic multilinear

DFA

DPDA

DSA

multi-DFA

sensing
multi-DFA

✕ ✕ ✕

✕ ✕ ✕

✓ ? ?

✓ ✓

✓ ✓

infinite words

automata

Multilinear Words
• An infinite word α is multilinear if it has the form

• Thus, α is broken into blocks, each consisting of
m segments of the form pisin.

• Example:

• [Endrullis et al. 2011], [Smith 2013]

• Normal form (unless α is ultimately periodic):

• pi ≠ ε, si ≠ ε, si[1] ≠ pi+1[1], and sm[1] ≠ p1[1]

51

q
Y

n�1

mY

i�1

pis
n
i

Y

n�1

abncn = abcabbccabbbccc · · ·

Predicting Multilinear Words

• We have seen that there is a two-head DFA which
masters every ultimately periodic word.

• Can some multihead DFA master every multilinear
word? Open problem.

• We consider sensing multihead DFAs, an extension of
multihead DFAs able to sense, for each pair of heads,
whether those two heads are at the same input position.

• [Smith 2016] Some sensing multihead DFA masters
every multilinear word.

52

Algorithm which masters every
multilinear word

• The correction procedure
tries to line up certain heads
at segment boundaries so
that the number of segments
separating the heads is a
multiple of m.

• The matching procedure
tries to master the input α
on the assumption that the
correction procedure has
successfully lined up the
heads.

53

 k = 0
 loop
 k += 1
 correction procedure
 matching procedure

• Uses a 10-head sensing DFA.
Alternates between two
procedures, correction and
matching, with an increasing
threshold k.

Correction Procedure

• Tries to line up the heads
h1, h2, h3, and h4 to be k
segments apart.

• k is a threshold which
increases each time the
procedure is entered.

• When the procedure is
entered, h1 < h2 < h3 < h4.

• Uses a subroutine advance
whose successful operation
depends on k.

54

 move h1 until h1 = h4

 advance h1 by 1 segment

 move h2 until h2 = h1

 advance h2 by k segments

 move h3 until h3 = h2

 advance h3 by k segments

 move h4 until h4 = h3

 advance h4 by k segments

advance subroutine
• Tries to advance a given head

hi past its current segment
pjsjn, leaving hi at pj+1.

• Uses a threshold k which
increases between calls to the
subroutine.

• Follows tortoise and hare
algorithm until the number of
consecutive correct guesses
reaches k.

• Finally, moves t and hi
together until they disagree.

55

 move t until t = hi

 move hi

 correct = 0
 while correct < k
 if α[t] = α[hi]
 correct += 1
 else
 correct = 0
 move hi

 move t and hi

 while α[t] = α[hi]
 move t and hi

Matching Procedure

• Tries to master the
multilinear word α.

• Works if h1, h2, h3, and h4 are
a multiple of m segments
apart, where m is the number
of segments per block of α.

• Uses h1, h2, and h3 to
coordinate and predict α[h4].

• If any guess is incorrect, exits
so that the correction
procedure can be called again.

56

 loop
 move h3a until h3a = h3

 while α[h1] = α[h2] = α[h3] = α[h4]
 move h1, h2, h3a, h3

 move h4, guessing α[h2]
 exit procedure if guess was wrong
 while α[h2] = α[h3] = α[h4]
 move h2, h3

 move h4, guessing α[h3]
 exit procedure if guess was wrong
 while α[h3a] = α[h3] = α[h4]
 move h3a, h3

 move h4, guessing α[h3a]
 exit procedure if guess was wrong
 while h3a ≠ h3 and α[h3a] = α[h4]
 move h3a

 move h4, guessing α[h3a]
 exit procedure if guess was wrong

Prediction Results

57

∃ masters ∀ purely
periodic

ultimately
periodic multilinear

DFA

DPDA

DSA

multi-DFA

sensing
multi-DFA

✕ ✕ ✕

✕ ✕ ✕

✓ ? ?

✓ ✓ ?

✓ ✓ ✓

infinite words

automata

Further Work
• Consider other classes of automata and infinite

words to see what connections can be made
among them in a prediction setting.

• Open problems:

• Can some DSA master every ultimately
periodic word?

• Can some (non-sensing) multi-DFA master
every multilinear word?

58

Thank you!

59

