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Prediction Setting

• We consider an “emitter” and a “predictor”.

• The emitter takes no input, but just emits 
symbols one at a time, continuing indefinitely.

• The predictor receives each symbol output 
by the emitter, and tries to guess the next 
symbol.

• We say that the predictor “masters” the 
emitter if there is a point after which all of 
the predictor’s guesses are correct.
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Our Model
• We view the emitter as an infinite word α, i.e., an 

infinite sequence of symbols drawn from a finite 
alphabet A.

• We view the predictor as an automaton M whose 
input is α and whose output is an infinite word 
M(α).  We call each symbol of M(α) a guess.

• M is required to output the i-th symbol of M(α) 
before it can read the i-th symbol of α.

• If for some n ≥ 1, for all i ≥ n, M(α)[i] = α[i], 
then M masters α.
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Prediction Example
• A DFA predictor is a DFA which takes an 

infinite word as input, and on each transition, 
tries to guess the next symbol.

• Consider a DFA predictor M which always 
guesses that the next symbol is a.

• An ultimately periodic word is an infinite word 
of the form xyω = xyyy... for some x,y in A*.

• M masters aω, baω, abaω, bbaω, ..., i.e., every 
ultimately periodic word ending in aω.
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Limitations of DFA 
predictors

• A purely periodic word is an infinite word of the 
form xω = xxx... for some x in A*.

• Theorem: No DFA predictor masters every 
purely periodic word.

• Proof by contradiction: Suppose there is a DFA 
predictor M which masters every purely 
periodic word.   Let n be the number of states 
of M.  Then M does not master the purely 
periodic word (an+1 b)ω.
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Research Direction

• [Smith 2016] Prediction of infinite words with 
automata CSR 2016 (forthcoming)

• Considers various classes of automata and infinite 
words in a prediction setting.

• Studies the question of which automata can master 
which infinite words.

• Motivation: Make connections among automata, 
infinite words, and learning theory, via the notion of 
mastery or “learning in the limit” [Gold 1967].
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Automata Considered
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Class Name

DFA deterministic finite automata

DPDA deterministic pushdown automata

DSA deterministic stack automata

multi-DFA multihead deterministic finite automata 

sensing 
multi-DFA

sensing multihead deterministic finite automata

• All of the automata have a one-way input tape.



Infinite Words Considered
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Class Example

purely periodic words ababab...

ultimately periodic words abaaaaa...

multilinear words abaabaaab...

• We have the proper containments:

• purely periodic ⊂ ultimately periodic ⊂ multilinear



Prediction Results
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∃  masters  ∀ purely 
periodic
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DSA

multi-DFA

sensing 
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✕ ✕ ✕

infinite words

automata



Multihead Finite Automata

• Finite automata with one or more input heads on a 
single tape [Rosenberg 1965].

• We are interested in multi-DFA, the class of one-way 
multihead deterministic finite automata.

• What are the predictive capabilities of multi-DFA?
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Prediction by Multihead Automata

• Theorem: Some multihead DFA masters every 
ultimately periodic word.

• Construction: Variation of the “tortoise and hare” 
algorithm.  Let M be a two-head DFA which 
always guesses that the symbols under the heads 
will match, and

• if the last guess was correct, M moves each 
head one square to the right;

• otherwise, M moves the left head one square 
to the right and the right head two squares to 
the right.
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↵ = (aaab)!

a ?

2-head DFA which masters all 
ultimately periodic words



13

↵ = (aaab)!

a a X

2-head DFA which masters all 
ultimately periodic words



14

↵ = (aaab)!

a a ?

2-head DFA which masters all 
ultimately periodic words
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↵ = (aaab)!

a a a X

2-head DFA which masters all 
ultimately periodic words
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↵ = (aaab)!

a a a ?

2-head DFA which masters all 
ultimately periodic words
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↵ = (aaab)!

a a a b ⇥

2-head DFA which masters all 
ultimately periodic words
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↵ = (aaab)!

a a a b a ?

2-head DFA which masters all 
ultimately periodic words
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↵ = (aaab)!

a a a b a a ⇥

2-head DFA which masters all 
ultimately periodic words
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↵ = (aaab)!

a a a b a a a ?

2-head DFA which masters all 
ultimately periodic words
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↵ = (aaab)!

a a a b a a a b ⇥

2-head DFA which masters all 
ultimately periodic words
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↵ = (aaab)!

a a a b a a a b a ?

2-head DFA which masters all 
ultimately periodic words
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↵ = (aaab)!

a a a b a a a b a a X

2-head DFA which masters all 
ultimately periodic words
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↵ = (aaab)!

a a a b a a a b a a ?

2-head DFA which masters all 
ultimately periodic words
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↵ = (aaab)!

a a a b a a a b a a a X

2-head DFA which masters all 
ultimately periodic words
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↵ = (aaab)!

a a a b a a a b a a a ?

2-head DFA which masters all 
ultimately periodic words
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↵ = (aaab)!

a a a b a a a b a a a b X

2-head DFA which masters all 
ultimately periodic words



Prediction Results
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∃  masters  ∀ purely 
periodic

ultimately 
periodic multilinear

DFA

DPDA

DSA

multi-DFA

sensing 
multi-DFA

✕ ✕ ✕

✓ ✓

✓ ✓

infinite words

automata



DPDA predictors
• [Smith 2016] No DPDA predictor masters every purely 

periodic word.

• Proof idea:

• Suppose there is a DPDA predictor M which masters 
every purely periodic word.   Set n to be very large with 
respect to the number of states of M and the size of the 
stack alphabet.  Let α = (an b)ω.

• We show that in some block of consecutive a’s, there 
are configurations Ci and Cj of M with the same state 
and top-of-stack symbol, such that the stack below the 
top symbol at Ci is not accessed between Ci and Cj.  
Then M does not master α.
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Stack Automata

• Generalization of pushdown automata due 
to [Ginsburg, Greibach, & Harrison 1967].

• In addition to pushing and popping at the 
top of the stack, the stack head can move 
up and down the stack in read-only mode.

• We consider DSA, the class of one-way 
deterministic stack automata.
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Prediction with Stack Automata
• [Smith 2016] Some DSA predictor masters every purely 

periodic word.

• Algorithm: The goal is to build up the stack until it holds the 
period of the word.

• The stack automaton M makes guesses by repeatedly 
matching its stack against the input.  Call each traversal of the 
stack a “pass”. 

• In the event of a mismatch, M finishes the current pass, then 
continues making passes until one succeeds with no 
mismatches.  Then it pushes the next symbol of the input 
onto the stack and continues as before.

• Eventually the stack holds the period and M achieves mastery.
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Stack automaton which masters 
all purely periodic words

↵ = x

!

a

b

c

stack

· · · ?
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Stack automaton which masters 
all purely periodic words

↵ = x

!

a

b

c

stack

· · · a X
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Stack automaton which masters 
all purely periodic words

↵ = x

!

a

b

c

stack

· · · a ?
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Stack automaton which masters 
all purely periodic words

↵ = x

!

a

b

c

stack

· · · a

b

X
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Stack automaton which masters 
all purely periodic words

↵ = x

!

a

b

c

stack

· · · a

b ?
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Stack automaton which masters 
all purely periodic words

↵ = x

!

a

b

c

stack

· · · a

b

c X
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Stack automaton which masters 
all purely periodic words

↵ = x

!

a

b

c

stack

· · · a

b

c ?
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Stack automaton which masters 
all purely periodic words

↵ = x

!

a

b

c

stack

· · · a

b

c a X
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Stack automaton which masters 
all purely periodic words

↵ = x
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b
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· · · a
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c a ?
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Stack automaton which masters 
all purely periodic words

↵ = x
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b
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· · · a
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Stack automaton which masters 
all purely periodic words
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Stack automaton which masters 
all purely periodic words
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Stack automaton which masters 
all purely periodic words
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all purely periodic words
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all purely periodic words
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Stack automaton which masters 
all purely periodic words
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Prediction Results
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∃  masters  ∀ purely 
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DPDA

DSA
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multi-DFA

✕ ✕ ✕
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✓ ? ?

✓ ✓

✓ ✓
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Multilinear Words
• An infinite word α is multilinear if it has the form

• Thus, α is broken into blocks, each consisting of 
m segments of the form pisin.

• Example:

• [Endrullis et al. 2011], [Smith 2013]

• Normal form (unless α is ultimately periodic):

• pi ≠ ε, si ≠ ε, si[1] ≠ pi+1[1], and sm[1] ≠ p1[1] 
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Predicting Multilinear Words

• We have seen that there is a two-head DFA which 
masters every ultimately periodic word.

• Can some multihead DFA master every multilinear 
word?  Open problem.

• We consider sensing multihead DFAs, an extension of 
multihead DFAs able to sense, for each pair of heads, 
whether those two heads are at the same input position.

• [Smith 2016] Some sensing multihead DFA masters 
every multilinear word.
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Algorithm which masters every 
multilinear word

• The correction procedure 
tries to line up certain heads 
at segment boundaries so 
that the number of segments 
separating the heads is a 
multiple of m.

• The matching procedure 
tries to master the input α 
on the assumption that the 
correction procedure has 
successfully lined up the 
heads.
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 k = 0
 loop
     k += 1
     correction procedure
     matching procedure

• Uses a 10-head sensing DFA.  
Alternates between two 
procedures, correction and 
matching, with an increasing 
threshold k.



Correction Procedure

• Tries to line up the heads 
h1, h2, h3, and h4 to be k 
segments apart.

• k is a threshold which 
increases each time the 
procedure is entered.

• When the procedure is 
entered, h1 < h2 < h3 < h4.

• Uses a subroutine advance 
whose successful operation 
depends on k.
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 move h1 until h1 = h4

 advance h1 by 1 segment

 move h2 until h2 = h1

 advance h2 by k segments

 move h3 until h3 = h2

 advance h3 by k segments

 move h4 until h4 = h3

 advance h4 by k segments



advance subroutine
• Tries to advance a given head 

hi past its current segment 
pjsjn, leaving hi at pj+1.

• Uses a threshold k which 
increases between calls to the 
subroutine.

• Follows tortoise and hare 
algorithm until the number of 
consecutive correct guesses 
reaches k.

• Finally, moves t and hi 
together until they disagree.
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 move t until t = hi

 move hi

 correct = 0
 while correct < k
     if α[t] = α[hi]
         correct += 1
     else
         correct = 0
         move hi

     move t and hi

 while α[t] = α[hi]
     move t and hi



Matching Procedure

• Tries to master the 
multilinear word α.

• Works if h1, h2, h3, and h4 are 
a multiple of m segments 
apart, where m is the number 
of segments per block of α.

• Uses h1, h2, and h3 to 
coordinate and predict α[h4].

• If any guess is incorrect, exits 
so that the correction 
procedure can be called again.
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 loop
     move h3a until h3a = h3

     while α[h1] = α[h2] = α[h3] = α[h4]
         move h1, h2, h3a, h3

         move h4, guessing α[h2]
         exit procedure if guess was wrong
     while α[h2] = α[h3] = α[h4]
         move h2, h3

         move h4, guessing α[h3]
         exit procedure if guess was wrong
     while α[h3a] = α[h3] = α[h4]
         move h3a, h3

         move h4, guessing α[h3a]
         exit procedure if guess was wrong
     while h3a ≠ h3 and α[h3a] = α[h4]
         move h3a

         move h4, guessing α[h3a]
         exit procedure if guess was wrong



Prediction Results
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Further Work
• Consider other classes of automata and infinite 

words to see what connections can be made 
among them in a prediction setting.

• Open problems:

• Can some DSA master every ultimately 
periodic word?

• Can some (non-sensing) multi-DFA master 
every multilinear word?
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Thank you!
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