Zero entropy systems

Dominique Perrin

May 12, 2016

Dominique Perrin

Zero entropy systems

■ ◆ ■ ト ■ つへで May 12, 2016 1 / 22

(ロ) (部) (目) (日) (日)

Subject: symbolic systems of zero entropy, focusing on systems of linear complexity. How can we describe them?

The iteration of a (primitive)morphism is well-known way to generate a system of linear complexity. We shall discuss a generalization called *S*-adic representation.

We will study in more detail a class of systems of linear complexity the so-called tree sets and prove a property of their *S*-adic representation. Joint work with Valérie Berthé, Clelia De Felice, Francesco Dolce, Julien Leroy, Christophe Reutenauer and Giuseppina Rindone.

Outline

- Symbolic systems
- Factor complexity
- S-adic representations
- Tree sets
- S-adic representation of tree sets

-

Image: A math a mat

Symbolic systems

Consider the set $A^{\mathbb{Z}}$ of biinfinite sequences $x = (x_n)_{n \in \mathbb{Z}}$ with the shift $\sigma : A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ defined by $y = \sigma(x)$ if $y_n = x_{n+1}$.

A symbolic system (or two-sided subshift) is a set $X \subset A^{\mathbb{Z}}$ of biinfinite sequences which is

closed for the product topology,

2 invariant by the shift, that is $\sigma(X) \subset X$.

A set of words on the alphabet A is factorial if it contains A and the factors (or substrings) of its elements. A factorial set F is biextendable if for any $w \in F$ there are letters $a, b \in A$ such that $awb \in F$. The set of words appearing in the sequences of a symbolic system X is a biextendable set and any biextendable set is obtained in this way. Variant: one sided subshift $X \subset A^{\mathbb{N}}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

The symbolic system X is minimal if it does not contain properly another nonempty one.

An infinite factorial set F is said to be uniformly recurrent if for any word $w \in F$ there is an integer $n \ge 1$ such that w is a factor of any word of F of length n.

Remark that a uniformly recurrent set F is recurrent: for every $u, v \in F$, there is some x such that $uxv \in F$.

A system is minimal if and only if the set of its factors is uniformly recurrent.

The factor complexity of a factorial set F on the alphabet A is the sequence $p_n(F) = \text{Card}(F \cap A^n)$. We have $p_0(F) = 1$ and we assume $p_1(F) = \text{Card}(A)$ for any factorial set. The sets of bounded complexity are the factors of eventually periodic sequences. The binary Sturmian sets are, by definition, those of complexity

n+1 (like the Fibonacci set).

Computing the complexity

Let *F* be a factorial set on the alphabet *A*. The multiplicity of $w \in F$ with respect to *F* is

$$m_F(w) = e_F(w) - \ell_F(w) - r_F(w) + 1$$

where $e_F(w)$ (resp. $\ell_F(w)$, resp. $r_F(w)$) is the number of pairs $a, b \in A$ (resp. the number of $a \in A$) such that $awb \in F$ (resp. $aw \in F$, resp. $wa \in F$).

Example

For
$$F = A^*$$
, one has $m_F(w) = (\operatorname{Card}(A) - 1)^2$ for any $w \in F$.

A word w is right-special if $r_F(w) > 1$, left-special if $\ell_F(w) > 1$ and bispecial if it is both right and left special.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Let $s_n = p_{n+1} - p_n$ and $b_n = s_{n+1} - s_n$ be the first and second differences of the sequence $p_n(F)$. The following result shows that the knowledge of special words is the key for computing the complexity.

Theorem (Cassaigne, 1997)

Let F be a factorial set on the alphabet A. One has

$$s_n = \sum_{w \in F \cap A^n} (r(w) - 1),$$

$$b_n = \sum_{w \in F \cap A^n} m(w).$$

Dominique Perrin	Zero entropy systems	May 12, 2016

A D > A B > A B > A B >

8 / 22

The entropy of a factorial set F is

$$h(F) = \lim \frac{1}{n} \log p_n(F)$$

The limit exists because $\log(p_n(F))$ is subadditive. For example, the entropy of the full shift $A^{\mathbb{Z}}$ on k letters is $\log(k)$.

The following result shows that the entropy of a minimal system can be almost arbitrary.

Theorem (Grillenberger, 1972)

Let A be an alphabet with $k \ge 2$ letters. For any $h \in [0, \log k[$ there is a minimal one sided subshift with entropy h.

Let S be a set of morphisms and $(\sigma_n)_{n\in\mathbb{N}}$ be a sequence in S with $\sigma_n: A_{n+1}^* \to A_n^*$ and (a_n) be a sequence of letters with $a_n \in A_n$ such that

$$x = \lim \sigma_0 \cdots \sigma_{n-1}(a_n)$$

exists and is an infinite word. The sequence is an S-adic representation of the set of factors of x.

The sequence $\sigma_0 \sigma_1 \dots \in S^{\omega}$ is the directive sequence of the representation.

Morphic words

A word $x \in A^{\mathbb{N}}$ is morphic if there exist morphisms $\tau : B^* \to B^*$ and $\sigma : B^* \to A^*$ and a letter $b \in B$ such that $x = \sigma \tau^{\omega}(b)$. It is purely morphic if σ is the identity.

The set of factors of x has an S-adic representation with $S = \{\sigma, \tau\}$ and directive word $\sigma \tau^{\omega}$.

A morphism $\varphi : A^* \to A^*$ is primitive if there is an integer $n \ge 1$ such that for every pair $a, b \in A$, the letter a appears in $\varphi^n(b)$.

Proposition

The set of factors of a fixed point of a primitive morphism is minimal with at most linear complexity.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

A set *F* is Sturmian if it is recurrent, closed under reversal and for every $n \ge 1$ there is exactly one right-special word *w* of length *n*, which is such that $r_F(w) = \text{Card}(A)$.

A word x is Sturmian if its set of factors is Sturmian. It is standard if all its left-special factors are prefixes of x.

Any Sturmian set is S-adic with a finite set S. This results from the fact that any standard Sturmian word is obtained by iterating a sequence of morphisms of the form ψ_a for $a \in A$ defined by $\psi_a(a) = a$ and $\psi_a(b) = ab$ for $b \neq a$ (Arnoux, Rauzy, 1991).

イロト イポト イヨト イヨト 二日

An S-adic representation (σ_n) is everywhere growing if $\lim |\sigma_0 \cdots \sigma_n(a)| = \infty$ for every $a \in A_{n+1}$.

Theorem (Ferenczi, 1996)

Any minimal symbolic system on a finite alphabet A with at most linear factor complexity has an everywhere growing S-adic representation with S finite.

The *S*-adic conjecture: under which additional condition does a set with a finite *S*-adic representation have linear complexity?

Extension graphs

Let F be a factorial set. For a given word $w \in F$, set

$$L(w) = \{a \in A \mid aw \in F\},\$$

$$E(w) = \{(a, b) \in A \times A \mid awb \in F\},\$$

$$R(w) = \{b \in A \mid wb \in F\}.$$

The extension graph of w in F is the graph on the set vertices which is the disjoint union of L(w) and R(w) and with edges the set E(w). For example, if $A = \{a, b\}$ and $F \cap A^2 = \{aa, ab, ba\}$, the extension graph of ε is

A factorial set F is a tree set if for any $w \in F$, the extension graph of w is a tree.

Any Sturmian sets is a tree set.

Proposition

The complexity of a tree set F on k letters is $p_n(F) = (k-1)n + 1$.

This results from the fact that $m_F(w) = 0$ for all $w \in F$ since G(w) is a tree.

E 990

(日) (同) (日) (日) (日)

The set S_e of elementary positive automorphisms on A is formed by the permutations on A and for every $a, b \in A$ with $a \neq b$ by the morphisms

$$\alpha_{a,b}(c) = \begin{cases} ab & \text{if } c = a, \\ c & \text{otherwise} \end{cases} \text{ and } \quad \tilde{\alpha}_{a,b}(c) = \begin{cases} ba & \text{if } c = a, \\ c & \text{otherwise} \end{cases}$$

Note that $\alpha_{a,b}$ (resp. $\tilde{\alpha}_{a,b}$) places a *b* after (resp. before) each *a*. The monoid generated by elementary positive automorphisms is the monoid of tame positive automorphisms. It is stricly included in the monoid of positive automorphisms.

The morphisms ψ_a giving the S-adic representation of Sturmian sets are tame.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

An S-adic representation (σ_n) is primitive if for all $r \ge 0$ there is an s > r such that every letter of A_r occurs in every $\sigma_r \cdots \sigma_{s-1}(a)$ for $a \in A_s$.

Theorem (BDDLPRR, Discrete Math., 2014)

Any uniformly recurrent tree set has a primitve S_e -adic representation.

The converse is false. For example, let $\varphi : a \mapsto ac, b \mapsto bac, c \mapsto cb$. Then $\varphi = \alpha_{a,c}\alpha_{c,b}\alpha_{b,a}$ although the set F of factors of its fixed point $\varphi^{\omega}(a)$ is not a tree set since $bb, bc, cb, cc \in F$. A characterization of tree sets by their S_e -adic representation is known for 3 letters (Leroy, 2014).

A return word to u in a factorial set F is a word v such that $uv \in F$ ends with u and has no proper prefix with the same property (i.e. the first time we see u again).

Theorem (BDDLPRR, Monatsh. Math., 2014)

If F is a uniformly recurrent tree set, the set of return words to any $u \in F$ is a basis of the free group on A.

Let F be a uniformly recurrent tree set and let φ map bijectively B onto the set $\mathcal{R}_F(u)$ of return words to u. The derived set of F is $\varphi^{-1}(F)$. The following generalizes the well-known fact that the derived set of a Sturmian set is Sturmian.

Theorem (BDDLPRR, Discrete Math., 2014)

The derived set of a uniformly recurrent tree set is a uniformly recurrent tree set.

An automorphism of the free group is tame if if it belongs to the submonoid generated by the elementary positive automorphisms (in particular it is positive). A basis X of the free group is tame if there is a tame automorphism α such that $X = \alpha(A)$.

Theorem (BDDLPRR, Discrete Mat., 2014)

Any basis of the free group contained in a uniformly recurrent tree set is tame.

Let $a_0 \in A_0 = A$. Let σ_0 map bijectively A_1 onto $\mathcal{R}_F(a_0)$. Then σ_0 is a positive automorphism (by step 1) and tame (by step 3). Then the derived set $T_1 = \sigma_0^{-1}(T)$ is a uniformly recurrent tree set (by step 2) and we can iterate infinitely, choosing $a_1 \in A_1$ and σ_1 mapping bijectively A_2 onto $R_{T_1}(a_1)$, and so on.

< ロ > < 同 > < 回 > < 回 > < 回

The landscape

Figure : The classes of uniformly recurrent sets: Sturmian (S), Tree (T), of linear complexity (L), of zero entropy (Z).

3