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I Time is modelled as the naturals N = {0,1,2,3, . . .}.
I Note: focus on linear time (as opposed to branching time).
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Specification and Verification

I Linear Temporal Logic (LTL)

θ ::= P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ | ©θ | ♦θ | �θ | θ1 U θ2

For example, �(REQ → ♦ACK ).

I First-Order Logic (FO(<))

ϕ ::= x < y | P(x) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ∀x ϕ | ∃ xϕ

For example, ∀x (REQ(x)→ ∃y (x < y ∧ ACK (y))).

Verification is model checking: IMP |= SPEC ?
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(and may or may not hold at odd positions)’
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I It turns out it is impossible to capture this requirement
using LTL or FO(<).

I LTL and FO(<) can however capture the specification:
‘Q holds precisely at even positions’:

Q ∧�(Q →©¬Q) ∧�(¬Q →©Q)

I So one way to capture the original specification would be to
write: ‘Q holds precisely at even positions and �(Q → P)’.

I Finally, need to existentially quantify Q out:

∃Q (Q holds precisely at even positions and � (Q → P))
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Monadic Second-Order Logic

Monadic Second-Order Logic (MSO(<))

ϕ ::= x < y | P(x) | ϕ1∧ϕ2 | ϕ1∨ϕ2 | ¬ϕ | ∀x ϕ | ∃x ϕ | ∀P ϕ | ∃P ϕ

Theorem (Büchi 1960)
Any MSO(<) formula ϕ can be effectively translated into an
equivalent automaton Aϕ.

Corollary (Church 1960)
The model-checking problem for automata against MSO(<)
specifications is decidable:

M |= ϕ iff L(M) ∩ L(A¬ϕ) = ∅
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Complexity and Equivalence

In fact:

Theorem (Stockmeyer 1974)
FO(<) satisfiability has non-elementary complexity.

Theorem (Kamp 1968;
Gabbay, Pnueli, Shelah, Stavi 1980)
LTL and FO(<) have precisely the same expressive power.

But amazingly:

Theorem (Sistla & Clarke 1982)
LTL satisfiability and model checking are PSPACE-complete.
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Logics and Automata

“The paradigmatic idea of
the automata-theoretic
approach to verification is
that we can compile
high-level logical
specifications into an
equivalent low-level
finite-state formalism.”

Moshe Vardi

Theorem
Automata are closed under all Boolean operations.
Moreover, the language inclusion problem ( L(A) ⊆ L(B) ?) is
PSPACE-complete.
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From Qualitative to Quantitative

“Lift the classical theory
to the real-time world.”

Boris Trakhtenbrot, LICS 1995



Airbus A350 XWB



A350 XWB Fuel Management Sub-System

GROUND _OPS
entry :
GROUND _OPS _ACTIVE = TRUE;
evaluate _conditions ();
during :
evaluate _conditions ();

5.2 (1)

GROUND _MODE _SELECTION 5.2.1

AUTOMATIC_REFUELMANUAL _REFUEL

5.2.25.2.3

DEFUEL

5.2.4

AR _CONFIRM/
AR _AUTO_SOT = FALSE ;MR_CONFIRM /

DF_CONFIRM

GT_CONFIRM /

OFF_CONFIRM

SHUT _OFF_TESTGROUND _TRANSFER

5.2.5

OFF

5.2.65.2.7

 function 

evaluate _conditions

5.2 (2)

 function 

GO_ D = DELAY ( d_t)

[( MANUAL_REFUEL | ...
GROUND _SEL_FAULT) & ...
DELAY(DELAY_MODE _SEL)]

1

[(( IRP_AUTO _REFUEL & ...
~ GROUND _SEL_FAULT) | ...
(ICP_AUTO_REFUEL)) & ...
DELAY(DELAY_MODE _SEL)]

1

[(ICP_AUTO _REFUEL & ...
AR_AUTO_SOT ) | ...
(IRP_AUTO_REFUEL & ...
AR_AUTO_SOT )]

2

[(ICP_AUTO_REFUEL & ...
~ AR_AUTO_SOT ) | ...
(IRP_AUTO _REFUEL & ...
~ AR_AUTO_SOT ) ]

1

[( ~IRP_AUTO _REFUEL & ...
~ ICP_AUTO_REFUEL) | ...
GROUND _SEL_FAULT]

2

[~MANUAL_REFUEL & ...
~ GROUND _SEL_FAULT]

[(IRP_AUTO_REFUEL & ...
~ GROUND _SEL_FAULT) | ...
(ICP_AUTO _REFUEL)] / d_i=0;

1

[(DEFUEL _MODE & ...
~ GROUND _SEL_FAULT) & ...
DELAY(DELAY_MODE _SEL)]

1

[~ DEFUEL _MODE | ...
GROUND _SEL_FAULT]

[~MANUAL_REFUEL & ...
~ GROUND _SEL_FAULT]

2

[( ~IRP_AUTO_REFUEL & ...
~ ICP_AUTO_REFUEL ) | ...
GROUND _SEL_FAULT]

2

[MANUAL_REFUEL | ...
GROUND_SEL_FAULT] / d_i=0;

6

[DEFUEL _MODE & ...
~ GROUND _SEL_FAULT] / d_i=0;

5[~DEFUEL_MODE | ...
GROUND _SEL_FAULT]

2

[(SOT _INITIATED & ...
~ GROUND _SEL_FAULT)] ...
{AR_AUTO_SOT = FALSE;}

2

[GROUND _TRANSFER & ...
~GROUND _SEL_FAULT] / d_i= 0;

4

[~GROUND _TRANSFER | ...
GROUND _SEL_FAULT]

1

[System _State[SS_SOT _COMPLETE ] &... .
~ ICP_AUTO_REFUEL & ~ IRP_AUTO_REFUEL]

1

[~GROUND _TRANSFER | ...
GROUND _SEL_FAULT]

[OFF _MODE _SEL & ...
~ GROUND _SEL_FAULT] / d_i=0;

3

[~OFF _MODE _SEL | ...
GROUND _SEL_FAULT]

1

[~OFF _MODE _SEL | GROUND _SEL_FAULT]

[(GROUND _TRANSFER & ...
~ GROUND_SEL_FAULT) & ...
DELAY(DELAY_MODE _SEL)]

2

[( OFF_MODE _SEL & ...
~ GROUND _SEL_FAULT) & ...
DELAY(DELAY_MODE _SEL)]

2
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Timed Systems

Timed systems are everywhere. . .

I Hardware circuits
I Communication protocols
I Cell phones
I Plant controllers
I Aircraft navigation systems
I Sensor networks
I . . .
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Timed Automata

Timed automata were introduced by Rajeev Alur at Stanford
during his PhD thesis under David Dill:

I Rajeev Alur, David L. Dill: Automata For Modeling
Real-Time Systems. ICALP 1990: 322-335

I Rajeev Alur, David L. Dill: A Theory of Timed Automata.
TCS 126(2): 183-235, 1994

⇒ Led to inaugural CAV Award (2008) and
⇒ inaugural Church Award (2016)!
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Timed Automata

Time is modelled as the non-negative reals, R≥0.

Theorem (Alur, Courcourbetis, Dill 1990)
Reachability is decidable, in fact PSPACE-complete.
⇒ LICS Test-of-Time Award (2010)

Unfortunately:

Theorem (Alur & Dill 1990)
Language inclusion is undecidable for timed automata.
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Metric Temporal Logic

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli ∼1990]
is a central quantitative specification formalism for timed
systems.

I MTL = LTL + timing constraints on operators:

�(PEDAL→ ♦[5,10] BRAKE)

I Widely cited and used (over 1600 papers according to
Google Scholar!).

Unfortunately:

Theorem (Alur & Henzinger 1992)
MTL satisfiability and model checking are undecidable over R≥0.
(Decidable but non-primitive recursive under certain semantic
restrictions [O. & Worrell 2005].)
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(Decidable but non-primitive recursive under certain semantic
restrictions [O. & Worrell 2005].)



Metric Predicate Logic

The first-order metric logic of order (FO(<,+1)) extends FO(<)
by the unary function ‘+1’.

For example, �(PEDAL→ ♦[5,10] BRAKE) becomes

∀x (PEDAL(x)→ ∃y (x + 5 ≤ y ≤ x + 10 ∧ BRAKE(y)))
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Theorem (Hirshfeld & Rabinovich 2007)
FO(<,+1) is strictly more expressive than MTL over R≥0.

Theorem (Hunter, O., Worrell 2013)
FO(<,+Q) and MTLQ have precisely the same expressive
power.

Corollary: FO(<,+1), FO(<,+Q), MSO(<,+1), MSO(<,+Q)
satisfiability and model checking are all undecidable over R≥0.
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Key Stumbling Block

Theorem (Alur & Dill 1990)
Language inclusion is undecidable for timed automata.



Timed Language Inclusion: Some Related Work
I Topological restrictions and digitization techniques:

[Henzinger, Manna, Pnueli 1992], [Bošnački 1999],
[O. & Worrell 2003]

I Fuzzy semantics / noise-based techniques:
[Maass & Orponen 1996],
[Gupta, Henzinger, Jagadeesan 1997],
[Fränzle 1999], [Henzinger & Raskin 2000], [Puri 2000],
[Asarin & Bouajjani 2001], [O. & Worrell 2003],
[Alur, La Torre, Madhusudan 2005]

I Determinisable subclasses of timed automata:
[Alur & Henzinger 1992], [Alur, Fix, Henzinger 1994],
[Wilke 1996], [Raskin 1999]

I Timed simulation relations and homomorphisms:
[Lynch et al. 1992], [Taşiran et al. 1996],
[Kaynar, Lynch, Segala, Vaandrager 2003]

I Restrictions on the number of clocks:
[O. & Worrell 2004], [Emmi & Majumdar 2006]



Time-Bounded Language Inclusion
TIME-BOUNDED LANGUAGE INCLUSION PROBLEM

Instance: Timed automata A, B, and time bound T ∈ N
Question: Is LT (A) ⊆ LT (B) ?

I Inspired by Bounded Model Checking.
I Timed systems often have time bounds (e.g. timeouts),

even if total number of actions is potentially unbounded.
I Universe’s lifetime is believed to be bounded anyway. . .
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Timed Automata and Metric Logics

I Unfortunately, timed automata cannot be complemented
even over bounded time. . .

I Key to solution is to translate problem into logic:
Behaviours of timed automata can be captured in MSO(<,+1)

I This reverses Vardi’s ‘automata-theoretic approach to
verification’ paradigm!
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Monadic Second-Order Logic

Theorem (Shelah 1975)
MSO(<) is undecidable over [0,1).

By contrast,

Theorem
I MSO(<) is decidable over N [Büchi 1960]
I MSO(<) is decidable over Q, via [Rabin 1969]
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Finite Variability
Timed behaviours are modelled as flows (or signals):

f : [0,T )→ 2MP

P:

Q:

R:

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

Predicates must have finite variability:

Disallow e.g. Q:

0 1 2 3 4 5
P:

Then:

Theorem (Rabinovich 2002)
MSO(<) satisfiability over finitely-variable flows is decidable.
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The Time-Bounded Theory of Verification

Theorem
For any bounded time domain [0,T ), satisfiability and
model checking are decidable as follows:

MSO(<,+1) NON-ELEMENTARY

FO(<,+1) NON-ELEMENTARY

MTL EXPSPACE-complete

Theorem
MTL and FO(<,+1) are equally expressive over any fixed
bounded time domain [0,T ).

Theorem
Given timed automata A, B, and time bound T ∈ N, the
time-bounded language inclusion problem LT (A) ⊆ LT (B) is
decidable and 2EXPSPACE-complete.
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MSO(<,+1) Time-Bounded Satisfiability

Key idea: eliminate the metric by ‘vertical stacking’.

I Let ϕ be an MSO(<,+1) formula and let T ∈ N.
I Construct an MSO(<) formula ϕ such that:

ϕ is satisfiable over [0,T ) ⇐⇒ ϕ is satisfiable over [0,1)

I Conclude by invoking decidability of MSO(<).
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I ∀x ψ(x)
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I x + k1 < y + k2

by


x < y if k1 = k2
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by ∀P0 ∀P1 ∀P2 ψ
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Conclusion and Perspective

I For real-time systems, the time-bounded theory is much
better behaved than the real-time theory.

Going forward:

I Extend the theory further!
I Branching-time
I Timed games and synthesis
I Weighted and hybrid automata
I . . .

I Algorithmic and complexity issues
I Expressiveness issues
I Implementation and case studies
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