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The Classical Linear Theory of Verification

Automata
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» Qualitative (order-theoretic), rather than quantitative (metric).
» Time is modelled as the naturals N = {0,1,2,3,...}.
» Note: focus on linear time (as opposed to branching time).
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Specification and Verification

» Linear Temporal Logic (LTL)
O:=P | 03A0 | 01V0O: | =0 | OO | 00 | OO | 61U 05
For example, O(REQ — OACK).

» First-Order Logic (FO(<))
pu=X<y | P(X) | p1Ap2 | @1 Vea | —p | Vx| Ixp

For example, Vx (REQ(x) — Jy (x < y N ACK(Y)))-

Verification is model checking: IMP = SPEC ?
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‘P holds at every even position
(and may or may not hold at odd positions)’

It turns out it is impossible to capture this requirement
using LTL or FO(<).

LTL and FO(<) can however capture the specification:
‘Q holds precisely at even positions’.

QNO(Q— O-Q ADO(-Q— OQ)

So one way to capture the original specification would be to
write: ‘Q holds precisely at even positions and 0O(Q — P)’.

Finally, need to existentially quantify Q out:

3Q (Q holds precisely at even positions and 00 (Q — P))
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Monadic Second-Order Logic (MSO(<))
pu=xX <Y PX) [ @r1Ap2 | p1Vea | o | Vx| Ixp | VP | 3P

Theorem (Bichi 1960)

Any MSO(<) formula ¢ can be effectively translated into an
equivalent automaton A,.

Corollary (Church 1960)

The model-checking problem for automata against MSO(<)
specifications is decidable:

Mo iff LM)nL(A,) =0
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Complexity and Equivalence

In fact:

Theorem (Stockmeyer 1974)
FO(<) satisfiability has non-elementary complexity.

Theorem (Kamp 1968;
Gabbay, Pnueli, Shelah, Stavi 1980)
LTL and FO(<) have precisely the same expressive power.

But amazingly:

Theorem (Sistla & Clarke 1982)
LTL satisfiability and model checking are PSPACE-complete.
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Logics and Automata

“The paradigmatic idea of
the automata-theoretic
approach to verification is
that we can compile
high-level logical
specifications into an
equivalent low-level
finite-state formalism.”

Moshe Vardi

Theorem

Automata are closed under all Boolean operations.

Moreover, the language inclusion problem ( L(A) C L(B) ?) is
PSPACE-complete.
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The Classical Theory: Expressiveness

automata --

counter—free
automata

--------- MSO(<)

FO(<)
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From Qualitative to Quantitative

“Lift the classical theory
to the real-time world.”

Boris Trakhtenbrot, LICS 1995
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A350 XWB Fuel Management Sub-System
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Timed Systems

Timed systems are everywhere. ..

Hardware circuits
Communication protocols
Cell phones

Plant controllers

Aircraft navigation systems
Sensor networks

v

v

v

v

v

v
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Timed automata were introduced by Rajeev Alur at Stanford
during his PhD thesis under David Dill:

» Rajeev Alur, David L. Dill: Automata For Modeling
Real-Time Systems. ICALP 1990: 322-335

» Rajeev Alur, David L. Dill: A Theory of Timed Automata.
TCS 126(2): 183-235, 1994




Timed Automata

Timed automata were introduced by Rajeev Alur at Stanford
during his PhD thesis under David Dill:

» Rajeev Alur, David L. Dill: Automata For Modeling
Real-Time Systems. ICALP 1990: 322-335

» Rajeev Alur, David L. Dill: A Theory of Timed Automata.
TCS 126(2): 183-235, 1994

= Led to inaugural CAV Award (2008) and
inaugural Church Award (2016)!
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Timed Automata

Time is modelled as the non-negative reals, R>p.

Theorem (Alur, Courcourbetis, Dill 1990)
Reachability is decidable, in fact PSPACE-complete.
= LICS Test-of-Time Award (2010)

Unfortunately:

Theorem (Alur & Dill 1990)
Language inclusion is undecidable for timed automata.
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An Uncomplementable Timed Automaton

A ul ; x:—0 U x=17 EQE
LA): v — N
- S S -
L(A): e [

A cannot be complemented:
There is no timed automaton B with L(B) = L(A).
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Metric Temporal Logic

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli ~1990]
is a central quantitative specification formalism for timed
systems.

» MTL = LTL + timing constraints on operators:
O(PEDAL — Oy5,10) BRAKE)
» Widely cited and used (over 1600 papers according to
Google Scholar!).
Unfortunately:

Theorem (Alur & Henzinger 1992)

MTL satisfiability and model checking are undecidable over Rx.
(Decidable but non-primitive recursive under certain semantic
restrictions [O. & Worrell 2005].)
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Metric Predicate Logic

The first-order metric logic of order (FO(<,+1)) extends FO(<)
by the unary function ‘+1’.

For example, O(PEDAL — §5 10) BRAKE) becomes

Vx (PEDAL(X) — 3y (x + 5 < y < x + 10 A BRAKE(y)))
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Theorem (Hirshfeld & Rabinovich 2007)
FO(<, +1) is strictly more expressive than MTL over R>.

Theorem (Hunter, O., Worrell 2013)

FO(<,+Q) and MTLq have precisely the same expressive
power.

Corollary: FO(<, +1), FO(<,+Q), MSO(<, +1), MSO(<, +Q)
satisfiability and model checking are all undecidable over R .
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Key Stumbling Block

Theorem (Alur & Dill 1990)
Language inclusion is undecidable for timed automata.



Timed Language Inclusion: Some Related Work

» Topological restrictions and digitization techniques:
[Henzinger, Manna, Pnueli 1992], [BoSnacki 1999],
[O. & Worrell 2003]

» Fuzzy semantics / noise-based techniques:

[Maass & Orponen 1996],

[Gupta, Henzinger, Jagadeesan 1997],

[Franzle 1999], [Henzinger & Raskin 2000], [Puri 2000],
[Asarin & Bouajjani 2001], [O. & Worrell 2003],

[Alur, La Torre, Madhusudan 2005]

» Determinisable subclasses of timed automata:

[Alur & Henzinger 1992], [Alur, Fix, Henzinger 1994],
[Wilke 1996], [Raskin 1999]

» Timed simulation relations and homomorphisms:
[Lynch et al. 1992], [Tasiran et al. 1996],

[Kaynar, Lynch, Segala, Vaandrager 2003]

» Restrictions on the number of clocks:

[O. & Worrell 2004], [Emmi & Majumdar 2006]
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Time-Bounded Language Inclusion

’TIME-BOUNDED LANGUAGE INCLUSION PROBLEM\
Instance: Timed automata A, B, and time bound T € N

Question: Is Lv(A) C L1(B) ?

» Inspired by Bounded Model Checking.

» Timed systems often have time bounds (e.g. timeouts),
even if total number of actions is potentially unbounded.

» Universe’s lifetime is believed to be bounded anyway. . .
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Timed Automata and Metric Logics

» Unfortunately, timed automata cannot be complemented
even over bounded time. . .
» Key to solution is to translate problem into logic:
Behaviours of timed automata can be captured in MSO(<,+1)
» This reverses Vardi’s ‘automata-theoretic approach to
verification’ paradigm!
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Monadic Second-Order Logic

Theorem (Shelah 1975)
MSO(<) is undecidable over [0,1).

By contrast,
Theorem

» MSO(<) is decidable over N [Blichi 1960]
» MSO(<) is decidable over Q, via [Rabin 1969]
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Finite Variability

Timed behaviours are modelled as flows (or signals):

b I_IIHI_

0
f:[0,T)— 2MP Q: —| 1 |_| | |
0 1
A JlDﬂJlDﬂJl
0 1 2 3 4 5

Predicates must have finite variability:

Disallow e.g. Q- I
0

5
Then:

Theorem (Rabinovich 2002)
MSO(<) satisfiability over finitely-variable flows is decidable.
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The Time-Bounded Theory of Verification

Theorem
For any bounded time domain [0, T), satisfiability and
model checking are decidable as follows:

MSO(<, +1) NON-ELEMENTARY
FO(<,+1) NON-ELEMENTARY
MTL EXPSPACE-complete

Theorem
MTL and FO(<,+1) are equally expressive over any fixed
bounded time domain [0, T).

Theorem

Given timed automata A, B, and time bound T € N, the
time-bounded language inclusion problem Lt(A) C Ly(B) is
decidable and 2EXPSPACE-complete.
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MSO(<,+1) Time-Bounded Satisfiability

Key idea: eliminate the metric by ‘vertical stacking’.

» Let p be an MSO(<,+1) formulaand let T € N.
» Construct an MSO(<) formula i such that:

¢ is satisfiable over [0, T) <= ¥ is satisfiable over [0, 1)

» Conclude by invoking decidability of MSO(<).
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From MSO(<,+1) to MSO(<)

Po N )—'-J:
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Replace every:
> Vx(x) by VX (9(X) Ad(x + 1) A(x +2))
X<y if ki = ko
» X+ ki<y-+k by true ifky <k
{ false ifky > ko
» P(x+ k) by Px(x)
> VPw by VP, VP; \V/PQ"(ﬁ

Then ¢ is satisfiable over [0, T) <= ¥ is satisfiable over [0, 1).
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Going forward:

» Extend the theory further!

» Branching-time
» Timed games and synthesis
» Weighted and hybrid automata

> ..

» Algorithmic and complexity issues
» Expressiveness issues
» Implementation and case studies



