A Brief History of Real-Time

Joél Ouaknine

Department of Computer Science, Oxford University &
Max Planck Institute for Software Systems

EQINOCS Workshop, Paris, May 2016

The Classical Linear Theory of Verification

Automata

The Classical Linear Theory of Verification

Automata
\C
L%, RN

» Qualitative (order-theoretic), rather than quantitative (metric).

The Classical Linear Theory of Verification

Automata

\e

by
e’b Q ‘eé\g\o

090 eV

» Qualitative (order-theoretic), rather than quantitative (metric).
» Time is modelled as the naturals N = {0,1,2,3,...}.

The Classical Linear Theory of Verification

Automata
\C
L%, RN

» Qualitative (order-theoretic), rather than quantitative (metric).
» Time is modelled as the naturals N = {0,1,2,3,...}.
» Note: focus on linear time (as opposed to branching time).

‘P occurs infinitely often’

‘P occurs infinitely often’

~(

‘P occurs infinitely often’

~(

aoP

‘P occurs infinitely often’

L

aoP Vx3dy (x <y AP(y))

Specification and Verification

» Linear Temporal Logic (LTL)
=P | O1NO2 | 61VO | =0 OO | 00| 00| 01U 0

For example, O(REQ — OACK).

Specification and Verification

» Linear Temporal Logic (LTL)
=P | 01NOx | O1VO | =0 | OO | 00| 06| 01U B6:
For example, O(REQ — OACK).

» First-Order Logic (FO(<))

pu=x<y | PX) | o1 N2 | o1V | mp | VXxo | Ixp

For example, Vx (REQ(x) — Jy (x < y N ACK(Y)))-

Specification and Verification

» Linear Temporal Logic (LTL)
O:=P | 03A0 | 01V0O: | =0 | OO | 00 | OO | 61U 05
For example, O(REQ — OACK).

» First-Order Logic (FO(<))
pu=X<y | P(X) | p1Ap2 | @1 Vea | —p | Vx| Ixp

For example, Vx (REQ(x) — Jy (x < y N ACK(Y)))-

Verification is model checking: IMP = SPEC ?

‘P holds at every even position
(and may or may not hold at odd positions)’

‘P holds at every even position
(and may or may not hold at odd positions)’

‘P holds at every even position
(and may or may not hold at odd positions)’

» It turns out it is impossible to capture this requirement
using LTL or FO(<).

‘P holds at every even position
(and may or may not hold at odd positions)’

» It turns out it is impossible to capture this requirement
using LTL or FO(<).

» LTL and FO(<) can however capture the specification:
‘Q holds precisely at even positions’.

‘P holds at every even position
(and may or may not hold at odd positions)’

» It turns out it is impossible to capture this requirement
using LTL or FO(<).

» LTL and FO(<) can however capture the specification:
‘Q holds precisely at even positions’.

QNO(Q— O-Q ADO(-Q— OQ)

‘P holds at every even position
(and may or may not hold at odd positions)’

» It turns out it is impossible to capture this requirement
using LTL or FO(<).

» LTL and FO(<) can however capture the specification:
‘Q holds precisely at even positions’.

QNO(Q— O-Q ADO(-Q— OQ)

» So one way to capture the original specification would be to
write:

‘P holds at every even position
(and may or may not hold at odd positions)’

» It turns out it is impossible to capture this requirement
using LTL or FO(<).

» LTL and FO(<) can however capture the specification:
‘Q holds precisely at even positions’.

QNO(Q— O-Q ADO(-Q— OQ)

» So one way to capture the original specification would be to
write: ‘Q holds precisely at even positions and 0O(Q — P)’.

‘P holds at every even position
(and may or may not hold at odd positions)’

It turns out it is impossible to capture this requirement
using LTL or FO(<).

LTL and FO(<) can however capture the specification:
‘Q holds precisely at even positions’.

QNO(Q— O-Q ADO(-Q— OQ)

So one way to capture the original specification would be to
write: ‘Q holds precisely at even positions and 0O(Q — P)’.

Finally, need to existentially quantify Q out:

‘P holds at every even position
(and may or may not hold at odd positions)’

It turns out it is impossible to capture this requirement
using LTL or FO(<).

LTL and FO(<) can however capture the specification:
‘Q holds precisely at even positions’.

QNO(Q— O-Q ADO(-Q— OQ)

So one way to capture the original specification would be to
write: ‘Q holds precisely at even positions and 0O(Q — P)’.

Finally, need to existentially quantify Q out:

3Q (Q holds precisely at even positions and 00 (Q — P))

Monadic Second-Order Logic

Monadic Second-Order Logic (MSO(<))

pu=x<y|PX) | e1hp2 | o1V |~ | Vx| Ixp | VP | 3Py

Monadic Second-Order Logic

Monadic Second-Order Logic (MSO(<))

u=Xx<y|PX) | e1Ap2 | o1Vea | o | VX | Ix @ [VP@ | IP

Theorem (Bichi 1960)
Any MSO(<) formula ¢ can be effectively translated into an
equivalent automaton A,.

Monadic Second-Order Logic

Monadic Second-Order Logic (MSO(<))
pu=xX <Y PX) [@r1Ap2 | p1Vea | o | Vx| Ixp | VP | 3P

Theorem (Bichi 1960)

Any MSO(<) formula ¢ can be effectively translated into an
equivalent automaton A,.

Corollary (Church 1960)

The model-checking problem for automata against MSO(<)
specifications is decidable:

Mo iff LM)nL(A,) =0

Complexity

UNDECIDABLE

NON-PRIMITIVE RECURSIVE

NON-ELEMENTARY
(PRIMITIVE RECURSIVE)

ELEMENTARY

3EXPSPACE
2EXPSPACE
EXPSPACE

PSPACE

NP

P
NLOG-

UNDECIDABLE

NON-PRIMITIVE RECURSIVE

NON-ELEMENTARY
(PRIMITIVE RECURSIVE)

ELEMENTARY

3EXPSPACE
2EXPSPACE
EXPSPACE

PSPACE

Complexity

n

» NON-ELEMENTARY: 22°
——

n
» NON-PRIMITIVE RECURSIVIZE:

Ackerman: 3, 4, 8, 2048, 22° ...
~——
2048

Complexity

UNDECIDABLE

NON-PRIMITIVE RECURSIVE

® \ON-ELEMENTARY
(PRIMITIVE RECURSIVE)

ELEMENTARY
» NON-ELEMENTARY: 22°
——
3EXPSPACE n
T JEXPSPACE » NON-PRIMITIVE RECURSIVE:
EXPSPACE 2'~'2
PSPACE Ackerman: 3, 4, 8, 2048, 2% ...
~——

2048

Complexity and Equivalence

In fact:

Theorem (Stockmeyer 1974)
FO(<) satisfiability has non-elementary complexity.

Complexity and Equivalence

In fact:

Theorem (Stockmeyer 1974)
FO(<) satisfiability has non-elementary complexity.

Theorem (Kamp 1968;
Gabbay, Pnueli, Shelah, Stavi 1980)
LTL and FO(<) have precisely the same expressive power.

Complexity and Equivalence

In fact:

Theorem (Stockmeyer 1974)
FO(<) satisfiability has non-elementary complexity.

Theorem (Kamp 1968;
Gabbay, Pnueli, Shelah, Stavi 1980)
LTL and FO(<) have precisely the same expressive power.

But amazingly:

Theorem (Sistla & Clarke 1982)
LTL satisfiability and model checking are PSPACE-complete.

Logics and Automata

“The paradigmatic idea of
the automata-theoretic
approach to verification is
that we can compile
high-level logical
specifications into an
equivalent low-level
finite-state formalism.”

Moshe Vardi

Logics and Automata

“The paradigmatic idea of
the automata-theoretic
approach to verification is
that we can compile
high-level logical
specifications into an
equivalent low-level
finite-state formalism.”

Moshe Vardi

Theorem

Automata are closed under all Boolean operations.

Moreover, the language inclusion problem (L(A) C L(B) ?) is
PSPACE-complete.

The Classical Theory: Expressiveness

FO(<) ------------- LTL

The Classical Theory: Expressiveness

counter—free
automata T FO(<)--==rrrmmmmmeees LTL

The Classical Theory: Expressiveness

automata ----------- MSO(<)

counter—free
automata T FO(<)--==rrrmmmmmeees LTL

The Classical Theory: Expressiveness

automata --

counter—free
automata

--------- MSO(<)

FO(<)

The Classical Theory: Complexity

UNDECIDABLE

NON-PRIMITIVE RECURSIVE

NON-ELEMENTARY
(PRIMITIVE RECURSIVE)

)

ELEMENTARY

3EXPSPACE
2EXPSPACE
EXPSPACE

PSPACE

The Classical Theory: Complexity

UNDECIDABLE

NON-PRIMITIVE RECURSIVE

NON-ELEMENTARY
(PRIMITIVE RECURSIVE)

)

ELEMENTARY

3EXPSPACE
2EXPSPACE
EXPSPACE

PSPACE

NP

P
OG-

NL.
ility SPACE
NLOGSPACE-complete

The Classical Theory: Complexity

UNDECIDABLE

NON-PRIMITIVE RECURSIVE

NON-ELEMENTARY
(PRIMITIVE RECURSIVE)

-/

ELEMENTARY
.
3EXPSPACE
2EXPSPACE
EXPSPACE
PSPACE
language inclusion
PSPACE-complete b0

P

OG-

NL.
" ility SRACE
NLOGSPACE-complete

The Classical Theory: Complexity

UNDECIDABLE

NON-PRIMITIVE RECURSIVE

NON-ELEMENTARY
(PRIMITIVE RECURSIVE)

-/

ELEMENTARY
.
3EXPSPACE
LTL model checking 2EXPSPACE
PSPACE-complete —
— EXPSPACE

|[[[= PsPACE

language inclusion =1 |
PSPACE-complete b0
P
1 ility
NLOGSPACE-complete

NLOG-
SPACE

The Classical Theory: Complexity

UNDECIDABLE

NON-PRIMITIVE RECURSIVE

NON-ELEMENTARY
(PRIMITIVE RECURSIVE)

FO(<) model checking
NON-ELEMENTARY

-/

ELEMENTARY
.
3EXPSPACE
LTL model checking 2EXPSPACE
PSPACE-complete —
| EXPSPACE
| ||I= pspace
language inclusion =1 |
PSPACE-complete b0
P
NLOG-
" ility SRACE
NLOGSPACE-complete
|

The Classical Theory: Complexity

UNDECIDABLE

MSO(<) model checking NON-PRIMITIVE RECURSIVE
NON-ELEMENTARY

FO(<) model checking
NON-ELEMENTARY

NON-ELEMENTARY
(PRIMITIVE RECURSIVE)

-/

ELEMENTARY
.
3EXPSPACE
LTL model checking 2EXPSPACE
PSPACE-complete —
| EXPSPACE
| ||I= pspace
language inclusion =1 |
PSPACE-complete b0
P
NLOG-
" ility SRACE
NLOGSPACE-complete
|

From Qualitative to Quantitative

“Lift the classical theory
to the real-time world.”

Boris Trakhtenbrot, LICS 1995

Airbus A350 XWB

A350 XWB Fuel Management Sub-System

GROUND _OPS 52(1)
&R3ino_ops acmive = TAuE
it onsians

521

duing GROUN HODE _SELECTION
e — T

5.28 522

e a0 e

el | MANUAL _REFUEL

AUTOMATIC_REFUEL

DEFUEL

-
B P
T
Erder L e
o s | | R frgmamns,

wee auro merue s
S AS S
(BB AVTD Rekye's
RN S

ERUEL ooE &
EGnouno Set Faiur s oo

o0 aerue &
A At
GRoAD Sel FAuT

oot auro perveL o

I-DEFvEL wooE |
R0 SEL FALLT Ao o
i Ao Rk

0G0

rouo_Tasren &
ot S P

GAOUND SEL PAT, O yooe ses

0 one seu
BRNIREBE Fuuy

-orouND_TRANSEER |
Ao Sl Faonn

Syion. Sus(ss 50T COMPLETE &
S ThTO neruey & - mp AU, ReruRy

(oroD TAvSTEn 5
Lo S
SRR

Qg oo se
USROS s e hiin &
DELAYIDELAY OO B

(-0F*_woDE _seL I GRoup.seL_FALT

526

SHUT_OFF_TEST

BMW Hydrogen 7

BMW Hydrogen 7

[
L

L]

L

U

Timed Systems

Timed systems are everywhere. ..

Hardware circuits
Communication protocols
Cell phones

Plant controllers

Aircraft navigation systems
Sensor networks

v

v

v

v

v

v

Automata

Timed Automata

Timed automata were introduced by Rajeev Alur at Stanford
during his PhD thesis under David Dill:

» Rajeev Alur, David L. Dill: Automata For Modeling
Real-Time Systems. ICALP 1990: 322-335

» Rajeev Alur, David L. Dill: A Theory of Timed Automata.
TCS 126(2): 183-235, 1994

Timed Automata

Timed automata were introduced by Rajeev Alur at Stanford
during his PhD thesis under David Dill:

» Rajeev Alur, David L. Dill: Automata For Modeling
Real-Time Systems. ICALP 1990: 322-335

» Rajeev Alur, David L. Dill: A Theory of Timed Automata.
TCS 126(2): 183-235, 1994

= Led to inaugural CAV Award (2008) and
inaugural Church Award (2016)!

Timed Automata

Time is modelled as the non-negative reals, R>p.

Timed Automata

Time is modelled as the non-negative reals, R>p.

Theorem (Alur, Courcourbetis, Dill 1990)
Reachability is decidable, in fact PSPACE-complete.

Timed Automata

Time is modelled as the non-negative reals, R>p.

Theorem (Alur, Courcourbetis, Dill 1990)
Reachability is decidable, in fact PSPACE-complete.
= LICS Test-of-Time Award (2010)

Timed Automata

Time is modelled as the non-negative reals, R>p.

Theorem (Alur, Courcourbetis, Dill 1990)
Reachability is decidable, in fact PSPACE-complete.
= LICS Test-of-Time Award (2010)

Unfortunately:

Theorem (Alur & Dill 1990)
Language inclusion is undecidable for timed automata.

An Uncomplementable Timed Automaton

a a a

A @ = @ = @

An Uncomplementable Timed Automaton

a a a

A @ = @ = @

An Uncomplementable Timed Automaton

a a a

A @ = @ = @

An Uncomplementable Timed Automaton

o e e
LA oo e
L(A): S

An Uncomplementable Timed Automaton

A ul ; x:—0 U x=17 EQE
LA): v — N
- S S -
L(A): e [

A cannot be complemented:
There is no timed automaton B with L(B) = L(A).

Metric Temporal Logic

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli ~1990]
is a central quantitative specification formalism for timed
systems.

Metric Temporal Logic

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli ~1990]
is a central quantitative specification formalism for timed
systems.

» MTL = LTL + timing constraints on operators:

O(PEDAL — Oy5,10) BRAKE)

Metric Temporal Logic

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli ~1990]
is a central quantitative specification formalism for timed
systems.

» MTL = LTL + timing constraints on operators:
O(PEDAL — Oy5,10) BRAKE)

» Widely cited and used (over 1600 papers according to
Google Scholar!).

Metric Temporal Logic

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli ~1990]
is a central quantitative specification formalism for timed
systems.

» MTL = LTL + timing constraints on operators:
O(PEDAL — Oy5,10) BRAKE)

» Widely cited and used (over 1600 papers according to
Google Scholar!).
Unfortunately:

Theorem (Alur & Henzinger 1992)
MTL satisfiability and model checking are undecidable over Rx.

Metric Temporal Logic

Metric Temporal Logic (MTL) [Koymans; de Roever; Pnueli ~1990]
is a central quantitative specification formalism for timed
systems.

» MTL = LTL + timing constraints on operators:
O(PEDAL — Oy5,10) BRAKE)
» Widely cited and used (over 1600 papers according to
Google Scholar!).
Unfortunately:

Theorem (Alur & Henzinger 1992)

MTL satisfiability and model checking are undecidable over Rx.
(Decidable but non-primitive recursive under certain semantic
restrictions [O. & Worrell 2005].)

Metric Predicate Logic

The first-order metric logic of order (FO(<,+1)) extends FO(<)
by the unary function ‘+1’.

Metric Predicate Logic

The first-order metric logic of order (FO(<,+1)) extends FO(<)
by the unary function ‘+1’.

For example, O(PEDAL — §5 10) BRAKE) becomes

Vx (PEDAL(X) — 3y (x + 5 < y < x + 10 A BRAKE(y)))

Theorem (Hirshfeld & Rabinovich 2007)
FO(<, +1) is strictly more expressive than MTL over R>.

Theorem (Hirshfeld & Rabinovich 2007)
FO(<, +1) is strictly more expressive than MTL over R>.

Theorem (Hunter, O., Worrell 2013)

FO(<,+Q) and MTLq have precisely the same expressive
power.

Theorem (Hirshfeld & Rabinovich 2007)
FO(<, +1) is strictly more expressive than MTL over R>.

Theorem (Hunter, O., Worrell 2013)

FO(<,+Q) and MTLq have precisely the same expressive
power.

Corollary: FO(<, +1), FO(<,+Q), MSO(<, +1), MSO(<, +Q)
satisfiability and model checking are all undecidable over R .

The Real-Time Theory: Expressiveness

MSO(<,+1)

FO(<,+1)

MTL

The Real-Time Theory: Expressiveness

MSO(<,+1)

timed
au’lfomata FO(E

MTL

The Real-Time Theory: Complexity

Classical Theory Real-Time Theory

UNDECIDABLE
MSO(<) model checking NON-PRIMITIVE RECURSIVE
NON-ELEMENTARY L
NON-ELEMENTARY
FO(<) model checking
NON-ELEMENTARY

(PRIMITIVE RECURSIVE)

/)

ELEMENTARY
.
.
.
3EXPSPACE
LTL model checking 2EXPSPACE
PSPACE-complete -
EXPSPACE

||I= pspACE

NLOGSPACE-complete

The Real-Time Theory: Complexity

Classical Theory Real-Time Theory

UNDECIDABLE
MSO(<) model checking NON-PRIMITIVE RECURSIVE
NON-ELEMENTARY L
NON-ELEMENTARY
FO(<) model checking
NON-ELEMENTARY

(PRIMITIVE RECURSIVE)

/)

ELEMENTARY
.
.
.
3EXPSPACE
LTL model checking 2EXPSPACE
PSPACE-complete -
EXPSPACE

||I= pspACE

1-clock i
NLOGSPACE-complete

NLOGSPACE-complete

The Real-Time Theory: Complexity

Classical Theory Real-Time Theory

UNDECIDABLE
MSO(<) model checking NON-PRIMITIVE RECURSIVE
NON-ELEMENTARY L
NON-ELEMENTARY
FO(<) model checking
NON-ELEMENTARY

(PRIMITIVE RECURSIVE)

/)

ELEMENTARY
.
.
.
3EXPSPACE
LTL model checking 2EXPSPACE
PSPACE-complete -
EXPSPACE
@ 2—clock m
| [I— PSPACE PSPACE-complete

1-clock i
NLOGSPACE-complete

NLOGSPACE-complete

The Real-Time Theory: Complexity

Classical Theory Real-Time Theory

UNDECIDABLE
MSO(<) model checking NON-PRIMITIVE RECURSIVE
NON-ELEMENTARY L !
NON-ELEMENTARY
FO(<) model checking
NON-ELEMENTARY

(PRIMITIVE RECURSIVE)

/)
ELEMENTARY

3EXPSPACE . -
1-clock language inclusion

LTL model checking 2EXPSPACE NON-PRIMITIVE RECURSIVE
PSPACE-complete —

EXPSPACE

2_clock. i

PSPACE-complete

||I= pspACE

1-clock i
NLOGSPACE-complete

NLOGSPACE-complete

The Real-Time Theory: Complexity

Classical Theory Real-Time Theory

UNDECIDABLE

MSO(<) model checking NON-PRIMITIVE RECURSIVE
NON-ELEMENTARY L !
NON-ELEMENTARY
(PRIMITIVE RECURSIVE)

FO(<) model checking
NON-ELEMENTARY 2-clock+ language inclusion
UNDECIDABLE

ELEMENTARY

3EXPSPACE . -
1-clock language inclusion ‘

LTL model checking 2EXPSPACE NON-PRIMITIVE RECURSIVE
PSPACE-complete —
EXPSPACE

2_clock.

- -
[l — PSPACE PSPACE-complete

1-clock i
NLOGSPACE-complete

NLOGSPACE-complete

The Real-Time Theory: Complexity

Classical Theory

UNDECIDABLE

MSO(<) model checking NON-PRIMITIVE RECURSIVE
NON-ELEMENTARY L !

NON-ELEMENTARY
(PRIMITIVE RECURSIVE)

FO(<) model checking
NON-ELEMENTARY

/)

Real-Time Theory

2-clock+ language inclusion
UNDECIDABLE

MTL model checking
NON-PRIMITIVE RECURSIVE/
UNDECIDABLE

1-clock language inclusion
NON-PRIMITIVE RECURSIVE

2_clock. i

ELEMENTARY

.
.
.

3EXPSPACE

LTL model checking 2EXPSPACE

PSPACE-complete -
EXPSPACE
||I= pspACE

PSPACE-complete

1-clock

NLOGSPACE-complete

NLOGSPACE-complete

The Real-Time Theory: Complexity

Classical Theory

MSO(<) model checking
NON-ELEMENTARY
FO(<) model checking
NON-ELEMENTARY

LTL model checking
PSPACE-complete

UNDECIDABLE

NON-PRIMITIVE RECURSIVE

NON-ELEMENTARY
(PRIMITIVE RECURSIVE)

/)
ELEMENTARY

3EXPSPACE
2EXPSPACE
EXPSPACE

FO(<,+1) model checking
UNDECIDABLE
2-clock+ language inclusion
UNDECIDABLE

Real-Time Theory

MTL model checking
NON-PRIMITIVE RECURSIVE/
UNDECIDABLE

1-clock language inclusion
NON-PRIMITIVE RECURSIVE

2_clock. i

||I= pspACE

PSPACE-complete

1-clock

NLOGSPACE-complete

NLOGSPACE-complete

The Real-Time Theory: Complexity

Classical Theory

MSO(<) model checking
NON-ELEMENTARY
FO(<) model checking
NON-ELEMENTARY

LTL model checking
PSPACE-complete

UNDECIDABLE

NON-PRIMITIVE RECURSIVE

NON-ELEMENTARY
(PRIMITIVE RECURSIVE)

/)
ELEMENTARY

3EXPSPACE
2EXPSPACE
EXPSPACE

Real-Time Theory

MSO(<,+1) model checking
UNDECIDABLE

FO(<,+1) model checking
UNDECIDABLE

2-clock+ language inclusion
UNDECIDABLE

MTL model checking
NON-PRIMITIVE RECURSIVE/
UNDECIDABLE

1-clock language inclusion
NON-PRIMITIVE RECURSIVE

2_clock. i

||I= pspACE

PSPACE-complete

1-clock

NLOGSPACE-complete

NLOGSPACE-complete

Key Stumbling Block

Theorem (Alur & Dill 1990)
Language inclusion is undecidable for timed automata.

Timed Language Inclusion: Some Related Work

» Topological restrictions and digitization techniques:
[Henzinger, Manna, Pnueli 1992], [BoSnacki 1999],
[O. & Worrell 2003]

» Fuzzy semantics / noise-based techniques:

[Maass & Orponen 1996],

[Gupta, Henzinger, Jagadeesan 1997],

[Franzle 1999], [Henzinger & Raskin 2000], [Puri 2000],
[Asarin & Bouajjani 2001], [O. & Worrell 2003],

[Alur, La Torre, Madhusudan 2005]

» Determinisable subclasses of timed automata:

[Alur & Henzinger 1992], [Alur, Fix, Henzinger 1994],
[Wilke 1996], [Raskin 1999]

» Timed simulation relations and homomorphisms:
[Lynch et al. 1992], [Tasiran et al. 1996],

[Kaynar, Lynch, Segala, Vaandrager 2003]

» Restrictions on the number of clocks:

[O. & Worrell 2004], [Emmi & Majumdar 2006]

Time-Bounded Language Inclusion

’TIME-BOUNDED LANGUAGE INCLUSION PROBLEM\
Instance: Timed automata A, B, and time bound T € N
Question: Is Lv(A) C L1(B) ?

Time-Bounded Language Inclusion

’TIME-BOUNDED LANGUAGE INCLUSION PROBLEM\
Instance: Timed automata A, B, and time bound T € N
Question: Is Lv(A) C L1(B) ?

» Inspired by Bounded Model Checking.

Time-Bounded Language Inclusion

’TIME-BOUNDED LANGUAGE INCLUSION PROBLEM\
Instance: Timed automata A, B, and time bound T € N
Question: Is Lv(A) C L1(B) ?

» Inspired by Bounded Model Checking.
» Timed systems often have time bounds (e.g. timeouts),
even if total number of actions is potentially unbounded.

Time-Bounded Language Inclusion

’TIME-BOUNDED LANGUAGE INCLUSION PROBLEM\
Instance: Timed automata A, B, and time bound T € N

Question: Is Lv(A) C L1(B) ?

» Inspired by Bounded Model Checking.

» Timed systems often have time bounds (e.g. timeouts),
even if total number of actions is potentially unbounded.

» Universe’s lifetime is believed to be bounded anyway. . .

Timed Automata and Metric Logics

» Unfortunately, timed automata cannot be complemented
even over bounded time. ..

Timed Automata and Metric Logics

» Unfortunately, timed automata cannot be complemented
even over bounded time. ..

» Key to solution is to translate problem into logic:
Behaviours of timed automata can be captured in MSO(<,+1)

Timed Automata and Metric Logics

» Unfortunately, timed automata cannot be complemented
even over bounded time. . .
» Key to solution is to translate problem into logic:
Behaviours of timed automata can be captured in MSO(<,+1)
» This reverses Vardi’s ‘automata-theoretic approach to
verification’ paradigm!

Monadic Second-Order Logic

Theorem (Shelah 1975)
MSO(<) is undecidable over [0,1).

Monadic Second-Order Logic

Theorem (Shelah 1975)
MSO(<) is undecidable over [0,1).

By contrast,
Theorem

» MSO(<) is decidable over N [Blichi 1960]
» MSO(<) is decidable over Q, via [Rabin 1969]

Finite Variability

Timed behaviours are modelled as flows (or signals):

Finite Variability

Timed behaviours are modelled as flows (or signals):

f:[0,T)— 2MP

Finite Variability

Timed behaviours are modelled as flows (or signals):
P:
f:[0,T)— 2MP Q:

R..

Finite Variability

Timed behaviours are modelled as flows (or signals):

Finite Variability
Timed behaviours are modelled as flows (or signals):

b I_IIHI_

0

f:[0,T)— 2MP Q: —| 1 |_| | |

Finite Variability

Timed behaviours are modelled as flows (or signals):

b I_IIHI_

0
f:[0,T)— 2MP Q: —| 1 |_| | |
0 1
A JlDﬂJlDﬂJl
0 1 2 3 4 5

Predicates must have finite variability:

Finite Variability

Timed behaviours are modelled as flows (or signals):

P,.;I_IIHI_

0
f:[0,T)— 2MP Q: —| 1 |_| | |
0 1
A JlDﬂJlDﬂJl
0 1 2 3 4 5

Predicates must have finite variability:

Disallow e.g. Q- I
0 1 2 3 4

5

Finite Variability

Timed behaviours are modelled as flows (or signals):

b I_IIHI_

0
f:[0,T)— 2MP Q: —| 1 |_| | |
0 1
A JlDﬂJlDﬂJl
0 1 2 3 4 5

Predicates must have finite variability:

Disallow e.g. Q- I
0

5
Then:

Theorem (Rabinovich 2002)
MSO(<) satisfiability over finitely-variable flows is decidable.

The Time-Bounded Theory of Verification

Theorem
For any bounded time domain [0, T), satisfiability and
model checking are decidable as follows:

MSO(<, +1) NON-ELEMENTARY
FO(<,+1) NON-ELEMENTARY
MTL EXPSPACE-complete

The Time-Bounded Theory of Verification

Theorem
For any bounded time domain [0, T), satisfiability and
model checking are decidable as follows:

MSO(<, +1) NON-ELEMENTARY
FO(<,+1) NON-ELEMENTARY
MTL EXPSPACE-complete

Theorem
MTL and FO(<,+1) are equally expressive over any fixed
bounded time domain [0, T).

The Time-Bounded Theory of Verification

Theorem
For any bounded time domain [0, T), satisfiability and
model checking are decidable as follows:

MSO(<, +1) NON-ELEMENTARY
FO(<,+1) NON-ELEMENTARY
MTL EXPSPACE-complete

Theorem
MTL and FO(<,+1) are equally expressive over any fixed
bounded time domain [0, T).

Theorem

Given timed automata A, B, and time bound T € N, the
time-bounded language inclusion problem Lt(A) C Ly(B) is
decidable and 2EXPSPACE-complete.

MSO(<,+1) Time-Bounded Satisfiability

Key idea: eliminate the metric by ‘vertical stacking’.

MSO(<,+1) Time-Bounded Satisfiability

Key idea: eliminate the metric by ‘vertical stacking’.

» Let p be an MSO(<,+1) formulaand let T € N.

MSO(<,+1) Time-Bounded Satisfiability

Key idea: eliminate the metric by ‘vertical stacking’.

» Let p be an MSO(<,+1) formulaand let T € N.
» Construct an MSO(<) formula i such that:

¢ is satisfiable over [0, T) <= ¥ is satisfiable over [0, 1)

MSO(<,+1) Time-Bounded Satisfiability

Key idea: eliminate the metric by ‘vertical stacking’.

» Let p be an MSO(<,+1) formulaand let T € N.
» Construct an MSO(<) formula i such that:

¢ is satisfiable over [0, T) <= ¥ is satisfiable over [0, 1)

» Conclude by invoking decidability of MSO(<).

From MSO(<,+1) to MSO(<)

From MSO(<,+1) to MSO(<)

From MSO(<,+1) to MSO(<)

From MSO(<,+1) to MSO(<)

m[ii _—

0 1

From MSO(<,+1) to MSO(<)

MM .

From MSO(<,+1) to MSO(<)

P

0 1

\ ‘ ; ”” F Py o
0 1 2 3 0 1
| Y —

0 1

From MSO(<,+1) to MSO(<)

aliif] P L

0 1

From MSO(<,+1) to MSO(<)

P

0 1
\ | ; ””E P L
0 1 2 3 0 1

b AL

0 1

From MSO(<,+1) to MSO(<)

P

0 1
\ | ; ””E P L
0 1 2 3 0 1

b AL

0 1

From MSO(<,+1) to MSO(<)

P

0 1
% N ””r Py: :—1
0 1 2 3 0 1

b AL

0 1

From MSO(<,+1) to MSO(<)

P

0 1
% N ””r Py: :—1
0 1 2 3 0 1

b AL

0 1

From MSO(<,+1) to MSO(<)

s

0

1

mli[T}

-

—_

From MSO(<,+1) to MSO(<)

pr - LI P

0 1

o —
—_

o
—

Replace every:
> Vx(X)

From MSO(<,+1) to MSO(<)

Po N)—'-J:

0 1
P: } f}\\ 1 ”” F P1 Do
0 1 2 3 0 1
P2.')J]-[L
0 1

Replace every:
» Vx(x) by Vx (¥(x) Av(x+1)Av(x+2))

From MSO(<,+1) to MSO(<)

Po N)—'-J:

0 1

o LI

0 1 0 1

b AL

0 1

Replace every:
» Vx(x) by Vx (¥(x) Av(x+1)Av(x+2))

> X+ Kk <y-+k

From MSO(<,+1) to MSO(<)

Po N)—'-J:

0 1

o LI -

0 1

b AL

0 1

Replace every:
> Vxip(x) by Vx ((x) Ag(x +1) Ad(x +2))
X<y if ki = ko
» X+ ki<y-+k by true ifky <k
false ifky > ko

From MSO(<,+1) to MSO(<)

Po N)—'-J:

0 1

o LI -

0 1

b AL

0 1

Replace every:
> Vxip(x) by Vx ((x) Ag(x +1) Ad(x +2))
X<y if ki = ko
» X+ ki<y-+k by true ifky <k
false ifky > ko

» P(x + k)

From MSO(<,+1) to MSO(<

Po N)—'-J:

0

)

1

o LI -

0

b AL

0
Replace every:

1

1

» Vx(x) by Vx (¥(x) Av(x+1)Av(x+2))

X<y if ki = ko

» X+ ki<y-+k by true ifky <k
false ifky > ko

» P(x+ k) by Px(x)

From MSO(<,+1) to MSO(<)

Po N)—'-J:

0 1

p A LN P

0 1

b AL

0 1

Replace every:
> Vxip(x) by Vx ((x) Ag(x +1) Ad(x +2))
X<y if ki = ko
» X+ ki<y-+k by true ifky <k
false ifky > ko
» P(x+ k) by Px(x)
» VP

From MSO(<,+1) to MSO(<)

Po N)—'-J:

0 1

p A LN P

0 1

b AL

0 1

Replace every:
> Vxip(x) by Vx ((x) Ag(x +1) Ad(x +2))
X<y if ki = ko
» X+ ki<y-+k by true ifky <k
false ifky > ko
» P(x+ k) by Px(x)
> VP'lp by VP, VP; \legw

From MSO(<,+1) to MSO(<)

Po N)—'-J:

0 1

P: —d s ””r P:

0 1

b AL

0 1

Replace every:
> Vx(x) by VX (9(X) Ad(x + 1) A(x +2))
X<y if ki = ko
» X+ ki<y-+k by true ifky <k
{ false ifky > ko
» P(x+ k) by Px(x)
> VPw by VP, VP; \V/PQ"(ﬁ

Then ¢ is satisfiable over [0, T) <= ¥ is satisfiable over [0, 1).

The Time-Bounded Theory: Expressiveness

The Time-Bounded Theory: Expressiveness

The Time-Bounded Theory: Expressiveness

timed
automata

automata

The Time-Bounded Theory: Expressiveness

alternating
timed automata

timed
automata

automata---—--

The Time-Bounded Theory: Complexity

Classical Theory

MSO(<) model checking
NON-ELEMENTARY
FO(<) model checking
NON-ELEMENTARY

LTL model checking
PSPACE-complete

language incl; L
PSPACE-complete

UNDECIDABLE

NON-PRIMITIVE RECURSIVE

NON-ELEMENTARY
(PRIMITIVE RECURSIVE)

N
ELEMENTARY

3EXPSPACE

2EXPSPACE

EXPSPACE

L= pspACE

reachability
NLOGSPACE-complete

Time-Bounded Theory

The Time-Bounded Theory: Complexity

Classical Theory

MSO(<) model checking
NON-ELEMENTARY
FO(<) model checking
NON-ELEMENTARY

LTL model checking
PSPACE-complete

UNDECIDABLE

NON-PRIMITIVE RECURSIVE

NON-ELEMENTARY
(PRIMITIVE RECURSIVE)

N
ELEMENTARY

3EXPSPACE
2EXPSPACE
EXPSPACE

L= pspACE

reachability
NLOGSPACE-complete

Time-Bounded Theory

The Time-Bounded Theory: Complexity

Classical Theory Time-Bounded Theory
UNDECIDABLE
s Y
NON-PRIMITIVE RECURSIVE
NON-ELEMENTARY B S

NON-ELEMENTARY
PRIMITIVE RECURSIVE
FO(<) model checking ()
NON-ELEMENTARY
e —
ELEMENTARY

3EXPSPACE

LTL model checking 2EXPSPACE
:PSPACE‘COWP‘Q“’ MTL model checkini
g
2GEEE EXPSPACE-complete
reachability
PSPACE-complete

PSPACE

reachability
NLOGSPACE-complete

The Time-Bounded Theory: Complexity

Classical Theory Time-Bounded Theory
UNDECIDABLE
s Y
NON-PRIMITIVE RECURSIVE
NON-ELEMENTARY B S

NON-ELEMENTARY
(PRIMITIVE RECURSIVE)

FO(<) model checking
NON-ELEMENTARY
e —
ELEMENTARY

language inclusion
3EXPSPACE || 2EXPSPACE-complete
L—
LTL model checking 2EXPSPACE —|
PSPACE-complete MTL model checking
EXPSPACE-complete

EXPSPACE
reachability
PSPACE-complete

PSPACE

reachability
NLOGSPACE-complete

The Time-Bounded Theory: Complexity

Classical Theory Time-Bounded Theory

UNDECIDABLE

MSO(<) model checking NON-PRIMITIVE RECURSIVE
NON-ELEMENTARY B

NON-ELEMENTARY
(PRIMITIVE RECURSIVE)

FO(<) model checking
NON-ELEMENTARY —_— FO(<,+1) model checking
NON-ELEMENTARY

ELEMENTARY

language inclusion
3EXPSPACE || 2EXPSPACE-complete
L—
LTL model checking 2EXPSPACE —|
PSPACE-complete CYDPARE MTL model checking
EXPSPACE-complete

EXPSPACE
reachability
PSPACE-complete

PSPACE

reachability
NLOGSPACE-complete

The Time-Bounded Theory: Complexity

Classical Theory Time-Bounded Theory

UNDECIDABLE

(Y
WS01<) model chacking NON-PRIMITIVE RECURSIVE
NON-ELEMENTARY |
il
® |\ ON_ELEMENTARY @ MSO,&S,QLT;&Z';?:;?"“
(PRIMITIVE RECURSIVE)

FO(<) model checking
NON-ELEMENTARY) EEE— FO(<,+1) model checking
ELEMENTARY NON-ELEMENTARY
.

language inclusion
3EXPSPACE || 2EXPSPACE-complete
L—
LTL model checking 2EXPSPACE —|
PSPACE-complete MTL model checking
EXPSPACE-complete

EXPSPACE
reachability
PSPACE-complete

PSPACE

reachability
NLOGSPACE-complete

The Time-Bounded Theory: Complexity

Classical Theory Time-Bounded Theory
UNDECIDABLE
f |
NON-ELEMENTARY

MSO(<) model checking NON-PRIMITIVE RECURSIVE

NON-ELEMENTARY S .
- (PRIMITIVE RECURSIVE)
FO(<) model checking

ELEMENTARY NON-ELEMENTARY

language inclusion
3EXPSPACE || 2EXPSPACE-complete
L—
LTL model checking 2EXPSPACE —|
PSPACE-complete MTL model checking
EXPSPACE-complete

EXPSPACE
reachability
PSPACE-complete

PSPACE

reachability
NLOGSPACE-complete

Conclusion and Perspective

» For real-time systems, the time-bounded theory is much
better behaved than the real-time theory.

Conclusion and Perspective

» For real-time systems, the time-bounded theory is much
better behaved than the real-time theory.

Going forward:

» Extend the theory further!

» Branching-time
» Timed games and synthesis
» Weighted and hybrid automata

> ..

» Algorithmic and complexity issues
» Expressiveness issues
» Implementation and case studies

