Polynomial time approximation of entropy of shifts of finite type

Stefan Adams, Raimundo Briceno, Brian Marcus, Ronnie Pavlov

Equinocs Workshop, Paris, May 10, 2016

\mathbb{Z}^{d} Shift spaces

- Full shift: $\mathcal{A}^{\mathbb{Z}^{d}}$ over a finite alphabet \mathcal{A}.
- Shift space: for some list \mathcal{F} of "forbidden" configurations on finite shapes,
$X=X_{\mathcal{F}}:=\left\{x \in \mathcal{A}^{\mathbb{Z}^{d}}: x\right.$ contains no elements of $\left.\mathcal{F}\right\}$
- Shift of finite type (SFT): a shift space where \mathcal{F} can be chosen finite.
- Nearest neighbor (n.n.) SFT: a shift space where all elements of \mathcal{F} are configurations on edges of \mathbb{Z}^{d}.

\mathbb{Z}^{d} Shift spaces

- Full shift: $\mathcal{A}^{\mathbb{Z}^{d}}$ over a finite alphabet \mathcal{A}.
- Shift space: for some list \mathcal{F} of "forbidden" configurations on finite shapes,
$X=X_{\mathcal{F}}:=\left\{x \in \mathcal{A}^{\mathbb{Z}^{d}}: x\right.$ contains no elements of $\left.\mathcal{F}\right\}$
- Shift of finite type (SFT): a shift space where \mathcal{F} can be chosen finite.
- Nearest neighbor (n.n.) SFT: a shift space where all elements of \mathcal{F} are configurations on edges of \mathbb{Z}^{d}

\mathbb{Z}^{d} Shift spaces

- Full shift: $\mathcal{A}^{\mathbb{Z}^{d}}$ over a finite alphabet \mathcal{A}.
- Shift space: for some list \mathcal{F} of "forbidden" configurations on finite shapes,
$X=X_{\mathcal{F}}:=\left\{x \in \mathcal{A}^{\mathbb{Z}^{d}}: x\right.$ contains no elements of $\left.\mathcal{F}\right\}$
- Shift of finite type (SFT): a shift space where \mathcal{F} can be chosen finite.
- Nearest neighbor (n.n.) SFT: a shift space where all elements of \mathcal{F} are configurations on edges of \mathbb{Z}^{d}

\mathbb{Z}^{d} Shift spaces

- Full shift: $\mathcal{A}^{\mathbb{Z}^{d}}$ over a finite alphabet \mathcal{A}.
- Shift space: for some list \mathcal{F} of "forbidden" configurations on finite shapes,
$X=X_{\mathcal{F}}:=\left\{x \in \mathcal{A}^{\mathbb{Z}^{d}}: x\right.$ contains no elements of $\left.\mathcal{F}\right\}$
- Shift of finite type (SFT): a shift space where \mathcal{F} can be chosen finite.
- Nearest neighbor (n.n.) SFT: a shift space where all elements of \mathcal{F} are configurations on edges of \mathbb{Z}^{d}.

Topological entropy

- $B_{n}:=[0, n-1]^{d}$
- globally admissible configurations:

$$
G A_{n}(X)=\left\{x\left(B_{n}\right): x \in X\right\}
$$

- Topological entropy:

$$
h(X):=\lim _{n \rightarrow \infty} \frac{\log \left|G A_{n}(X)\right|}{n^{d}}
$$

- locally admissible configurations:

$$
I A_{n}(X)=\left\{\text { configs on } B_{n} \text { forbidding } \mathcal{F}\right\}
$$

- Theorem (Ruelle, Friedland):

$$
h(X)=\lim _{n \rightarrow \infty} \frac{\log \left|\operatorname{LA} A_{n}(X)\right|}{n^{d}}
$$

Topological entropy

- $B_{n}:=[0, n-1]^{d}$
- globally admissible configurations:

$$
G A_{n}(X)=\left\{x\left(B_{n}\right): x \in X\right\}
$$

- Topological entropy:

- locally admissible configurations:

$I A_{n}(X)=\left\{\right.$ configs on B_{n} forbidding $\left.\mathcal{F}\right\}$

- Theorem (Ruelle, Friedland):

Topological entropy

- $B_{n}:=[0, n-1]^{d}$
- globally admissible configurations:

$$
G A_{n}(X)=\left\{x\left(B_{n}\right): x \in X\right\}
$$

- Topological entropy:

$$
h(X):=\lim _{n \rightarrow \infty} \frac{\log \left|G A_{n}(X)\right|}{n^{d}}
$$

- locally admissible configurations:

$I A_{n}(X)=\left\{\right.$ configs on B_{n} forbidding $\left.\mathcal{F}\right\}$

- Theorem (Ruelle, Friedland):

Topological entropy

- $B_{n}:=[0, n-1]^{d}$
- globally admissible configurations:

$$
G A_{n}(X)=\left\{x\left(B_{n}\right): x \in X\right\}
$$

- Topological entropy:

$$
h(X):=\lim _{n \rightarrow \infty} \frac{\log \left|G A_{n}(X)\right|}{n^{d}}
$$

- locally admissible configurations:
$L A_{n}(X)=\left\{\right.$ configs. on B_{n} forbidding $\left.\mathcal{F}\right\}$
- Theorem (Ruelle, Friedland):

Topological entropy

- $B_{n}:=[0, n-1]^{d}$
- globally admissible configurations:

$$
G A_{n}(X)=\left\{x\left(B_{n}\right): x \in X\right\}
$$

- Topological entropy:

$$
h(X):=\lim _{n \rightarrow \infty} \frac{\log \left|G A_{n}(X)\right|}{n^{d}}
$$

- locally admissible configurations:
$L A_{n}(X)=\left\{\right.$ configs. on B_{n} forbidding $\left.\mathcal{F}\right\}$
- Theorem (Ruelle, Friedland):

$$
h(X)=\lim _{n \rightarrow \infty} \frac{\log \left|L A_{n}(X)\right|}{n^{d}}
$$

- A \mathbb{Z} n.n. SFT X over alphabet \mathcal{A} is specified by a directed graph G with vertices indexed by \mathcal{A} and an edge from a to b iff $a b \notin \mathcal{F}$.

Golden Mean Shift:

- Adjacency matrix A of G is the square matrix indexed by \mathcal{A} : $A_{a b}=\left\{\begin{array}{cc}1 & a b \notin \mathcal{F} \\ 0 & a b \in \mathcal{F}\end{array}\right\}$
- $h(X)=\log \lambda(A)$, where $\lambda(A)$ is the spectral radius of A.
- Characterization of entropies for $d=1$ (Lind):

where λ is a Perron number and $q \in \mathbb{N}$
- A \mathbb{Z} n.n. SFT X over alphabet \mathcal{A} is specified by a directed graph G with vertices indexed by \mathcal{A} and an edge from a to b iff $a b \notin \mathcal{F}$.

Golden Mean Shift:

- Adjacency matrix A of G is the square matrix indexed by \mathcal{A} : $\Lambda_{a b}=\left\{\begin{array}{ll}1 & a b \notin \mathcal{F} \\ 0 & a b \in \mathcal{F}\end{array}\right\}$
- $h(X)=\log \lambda(A)$, where $\lambda(A)$ is the spectral radius of A.
- Characterization of entropies for $d=1$ (Lind):
$\left\{\log \lambda^{1 / q}\right\}$
where λ is a Perron number and $q \in \mathbb{N}$
- A \mathbb{Z} n.n. SFT X over alphabet \mathcal{A} is specified by a directed graph G with vertices indexed by \mathcal{A} and an edge from a to b iff $a b \notin \mathcal{F}$.

Golden Mean Shift:

- Adjacency matrix A of G is the square matrix indexed by \mathcal{A} :

$$
A_{a b}=\left\{\begin{array}{cc}
1 & a b \notin \mathcal{F} \\
0 & a b \in \mathcal{F}
\end{array}\right\}
$$

- $h(X)=\log \lambda(A)$, where $\lambda(A)$ is the spectral radius of A.
- Characterization of entropies for $d=1$ (Lind):
\square
where λ is a Perron number and $q \in \mathbb{N}$

SFT's, $d=1$

- A \mathbb{Z} n.n. SFT X over alphabet \mathcal{A} is specified by a directed graph G with vertices indexed by \mathcal{A} and an edge from a to b iff $a b \notin \mathcal{F}$.

Golden Mean Shift:

- Adjacency matrix A of G is the square matrix indexed by \mathcal{A} :
$A_{a b}=\left\{\begin{array}{ll}1 & a b \notin \mathcal{F} \\ 0 & a b \in \mathcal{F}\end{array}\right\}$
- $h(X)=\log \lambda(A)$, where $\lambda(A)$ is the spectral radius of A.
- Characterization of entropies for $d=1$ (Lind):
$\left\{\log \lambda^{1 / q}\right\}$
where λ is a Perron number and $q \in \mathbb{N}$

SFT's, $d=1$

- A \mathbb{Z} n.n. SFT X over alphabet \mathcal{A} is specified by a directed graph G with vertices indexed by \mathcal{A} and an edge from a to b iff $a b \notin \mathcal{F}$.

Golden Mean Shift:

- Adjacency matrix A of G is the square matrix indexed by \mathcal{A} :

$$
A_{a b}=\left\{\begin{array}{cc}
1 & a b \notin \mathcal{F} \\
0 & a b \in \mathcal{F}
\end{array}\right\}
$$

- $h(X)=\log \lambda(A)$, where $\lambda(A)$ is the spectral radius of A.
- Characterization of entropies for $d=1$ (Lind):

$$
\left\{\log \lambda^{1 / q}\right\}
$$

where λ is a Perron number and $q \in \mathbb{N}$

Examples of \mathbb{Z}^{2} SFTs: hard squares

- hard squares $\mathcal{A}=\{0,1\}, \mathcal{F}=\left\{11, \begin{array}{l}1 \\ 1\end{array}\right\}$
- h (hard squares) = ???
- $h($ hard hexagons $)=\log (\lambda)$ where λ is an algebraic integer of degree 24 .

Examples of \mathbb{Z}^{2} SFTs: hard squares

- hard squares $\mathcal{A}=\{0,1\}, \mathcal{F}=\left\{11, \begin{array}{l}1 \\ 1\end{array}\right\}$

1	0	1	0	0	1
0	1	0	1	0	0
0	0	0	0	1	0
1	0	0	1	0	1
0	1	0	0	1	0
0	0	1	0	0	1

- h(hard squares $)=$???
- h(hard hexagons $)=\log (\lambda)$ where λ is an algebraic integer of degree 24.

Examples of \mathbb{Z}^{2} SFTs: hard squares

- hard squares $\mathcal{A}=\{0,1\}, \mathcal{F}=\left\{11, \begin{array}{l}1 \\ 1\end{array}\right\}$

1	0	1	0	0	1
0	1	0	1	0	0
0	0	0	0	1	0
1	0	0	1	0	1
0	1	0	0	1	0
0	0	1	0	0	1

- $\mathrm{h}($ hard squares $)=$???
) where λ is an algebraic integer of degree 24.

Examples of \mathbb{Z}^{2} SFTs: hard squares

- hard squares $\mathcal{A}=\{0,1\}, \mathcal{F}=\left\{11, \begin{array}{l}1 \\ 1\end{array}\right\}$

1	0	1	0	0	1
0	1	0	1	0	0
0	0	0	0	1	0
1	0	0	1	0	1
0	1	0	0	1	0
0	0	1	0	0	1

- h(hard squares) = ???
- h (hard hexagons $)=\log (\lambda)$ where λ is an algebraic integer of degree 24.

Examples of \mathbb{Z}^{2} SFTs: checkerboard (coloring) constraints

- q-checkerboard $\mathcal{C}_{q}: \mathcal{A}=\{1, \ldots, q\}, \mathcal{F}=\left\{\right.$ aa,, $\left.\begin{array}{l}a \\ a\end{array}\right\}$
- $h\left(C_{2}\right)=0$
- (Lieb): $h\left(C_{3}\right)=(3 / 2) \log (4 / 3)$
- $h\left(C_{4}\right)=$???

Examples of \mathbb{Z}^{2} SFTs: checkerboard (coloring) constraints

- q-checkerboard $\mathcal{C}_{q}: \mathcal{A}=\{1, \ldots, q\}, \mathcal{F}=\left\{\right.$ aa,, $\left.\begin{array}{l}a \\ a\end{array}\right\}$
- $h\left(C_{2}\right)=0$
- (Lieb): $h\left(C_{3}\right)=(3 / 2) \log (4 / 3)$
- $h\left(C_{4}\right)=$???

Examples of \mathbb{Z}^{2} SFTs: checkerboard (coloring) constraints

- q-checkerboard $\mathcal{C}_{q}: \mathcal{A}=\{1, \ldots, q\}, \mathcal{F}=\left\{\right.$ aa,, $\left.\begin{array}{l}a \\ a\end{array}\right\}$
- $h\left(C_{2}\right)=0$
- (Lieb): $h\left(C_{3}\right)=(3 / 2) \log (4 / 3)$
- $h\left(C_{4}\right)=$???

Examples of \mathbb{Z}^{2} SFTs: checkerboard (coloring) constraints

- q-checkerboard $\mathcal{C}_{q}: \mathcal{A}=\{1, \ldots, q\}, \mathcal{F}=\left\{a a, \quad \begin{array}{l}a \\ a\end{array}\right\}$

- $h\left(C_{2}\right)=0$
- (Lieb): $h\left(C_{3}\right)=(3 / 2) \log (4 / 3)$
- $h\left(C_{4}\right)=$???

Examples of \mathbb{Z}^{2} SFTs: checkerboard (coloring) constraints

- q-checkerboard $\mathcal{C}_{q}: \mathcal{A}=\{1, \ldots, q\}, \mathcal{F}=\left\{\begin{array}{ll}\text { aa, } & a \\ a\end{array}\right\}$

- $h\left(C_{2}\right)=0$
- (Lieb): $h\left(C_{3}\right)=(3 / 2) \log (4 / 3)$
- $h\left(C_{4}\right)=$???

Examples of \mathbb{Z}^{2} SFTs: checkerboard (coloring) constraints

- q-checkerboard $\mathcal{C}_{q}: \mathcal{A}=\{1, \ldots, q\}, \mathcal{F}=\left\{\begin{array}{ll}\text { aa, } & a \\ a\end{array}\right\}$

- $h\left(C_{2}\right)=0$
- (Lieb): $h\left(C_{3}\right)=(3 / 2) \log (4 / 3)$
- $h\left(C_{4}\right)=$???

Examples of \mathbb{Z}^{2} SFTs: checkerboard (coloring) constraints

- q-checkerboard $\mathcal{C}_{q}: \mathcal{A}=\{1, \ldots, q\}, \mathcal{F}=\left\{\begin{array}{ll}\text { aa, } & a \\ a\end{array}\right\}$

- $h\left(C_{2}\right)=0$
- (Lieb): $h\left(C_{3}\right)=(3 / 2) \log (4 / 3)$
- $h\left(C_{4}\right)=$???

Examples of \mathbb{Z}^{2} SFT's: dimers

- dimers:

- (Fisher-Kastelyn-Temperley (1961)):
$h($ Dimers $)=\frac{1}{16 \pi^{2}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \log (4+2 \cos \theta+2 \cos \phi) d \theta d \phi$
- h(Monomers-Dimers) = ???

Examples of \mathbb{Z}^{2} SFT's: dimers

- dimers:

L	R	T	T	T	T
T	T	B	B	B	B
B	B	L	R	L	R
L	R	T	A	R	T
L	R	B	T	T	B
	L	R	B	B	B

- (Fisher-Kastelyn-Temperley (1961)):
$h($ Dimers $)=\frac{1}{16 \pi^{2}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \log (4+2 \cos \theta+2 \cos \phi) d \theta d \phi$
- h(Monomers-Dimers $)=$???

Examples of \mathbb{Z}^{2} SFT's: dimers

- dimers:

$\mathcal{F}=\left\{\begin{array}{llllllll}L L, L T, L B, R R, T R, B R, & T & T & T & B & L & R \\ L & R & T, & B & B & B\end{array}\right\}$
- (Fisher-Kastelyn-Temperley (1961)):
$h($ Dimers $)=\frac{1}{16 \pi^{2}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \log (4+2 \cos \theta+2 \cos \phi) d \theta d \phi$
- h(Monomers-Dimers) = ???

Examples of \mathbb{Z}^{2} SFT's: dimers

- dimers:

- (Fisher-Kastelyn-Temperley (1961)):
$h($ Dimers $)=\frac{1}{16 \pi^{2}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \log (4+2 \cos \theta+2 \cos \phi) d \theta d \phi$

Examples of \mathbb{Z}^{2} SFT's: dimers

- dimers:

- (Fisher-Kastelyn-Temperley (1961)):
$h($ Dimers $)=\frac{1}{16 \pi^{2}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \log (4+2 \cos \theta+2 \cos \phi) d \theta d \phi$
- h (Monomers-Dimers) $=$???

Examples of \mathbb{Z}^{2} SFTs

Ledrappier 3-dot

$$
X=\left\{x \in\{0,1\}^{\mathbb{Z}^{2}}: x((i, j))+x((i+1, j))+x((i, j+1))=0 \bmod 2\right\}
$$

Examples of \mathbb{Z}^{2} SFTs

Ledrappier 3-dot

$$
X=\left\{x \in\{0,1\}^{\mathbb{Z}^{2}}: x((i, j))+x((i+1, j))+x((i, j+1))=0 \bmod 2\right\}
$$

0	0	1	0	1	0
1	1	1	0	0	1
1	0	1	0	0	0
0	1	1	0	0	0
1	1	0	1	1	1
0	1	0	0	1	0

$\mathcal{F}=\left\{\begin{array}{ll}a & \\ b & c\end{array}: a+b+c \neq 0 \bmod 2\right\}$

Examples of \mathbb{Z}^{2} SFTs

Ledrappier 3-dot

$$
X=\left\{x \in\{0,1\}^{\mathbb{Z}^{2}}: x((i, j))+x((i+1, j))+x((i, j+1))=0 \bmod 2\right\}
$$

0	0	1	0	1	0
1	1	1	0	0	1
1	0	1	0	0	0
0	1	1	0	0	0
1	1	0	1	1	1
0	1	0	0	1	0

$\mathcal{F}=\left\{\begin{array}{lll}a & & \\ b & c\end{array}: a+b+c \neq 0 \bmod 2\right\}$

Examples of \mathbb{Z}^{2} SFTs

Ledrappier 3-dot

$$
X=\left\{x \in\{0,1\}^{\mathbb{Z}^{2}}: x((i, j))+x((i+1, j))+x((i, j+1))=0 \bmod 2\right\}
$$

0	0	1	0	1	0
1	1	1	0	0	1
1	0	1	0	0	0
0	1	1	0	0	0
1	1	0	1	1	1
0	1	0	0	1	0

$\mathcal{F}=\left\{\begin{array}{lll}a & & \\ b & c\end{array}: a+b+c \neq 0 \bmod 2\right\}$
$h(X)=0$.

Examples of \mathbb{Z}^{2} SFTs: iceberg model

- $\mathcal{A}=\{-M, \ldots,-1,0,1, \ldots M\}$
- $\mathcal{F}=\left\{a b, \frac{a}{b}\right.$: a, b have opposite signs $\}$
- positives can sit next to positives and zeros, negatives can sit next to negatives and zeros, and zeros can sit next to anyone.
- Example: $M=2$

1	2	2	1	0	0	-1	-2	0	2
0	2	1	0	-1	0	-2	-1	0	2
1	1	0	-2	0	0	0	0	1	2
0	2	1	0	-1	0	-2	-1	0	2
0	1	2	0	-2	0	-2	-2	0	1
0	1	1	0	-1	0	-1	0	2	1

Examples of \mathbb{Z}^{2} SFTs: iceberg model

- $\mathcal{A}=\{-M, \ldots,-1,0,1, \ldots M\}$
- $\mathcal{F}=\left\{a b, \begin{array}{c}a \\ b\end{array}: a, b\right.$ have opposite signs $\}$
- positives can sit next to positives and zeros, negatives can sit next to negatives and zeros, and zeros can sit next to anyone.
- Example: $M=2$

1	2	2	1	0	0	-1	-2	0	2
0	2	1	0	-1	0	-2	-1	0	2
1	1	0	-2	0	0	0	0	1	2
0	2	1	0	-1	0	-2	-1	0	2
0	1	2	0	-2	0	-2	-2	0	1
0	1	1	0	-1	0	-1	0	2	1

Examples of \mathbb{Z}^{2} SFTs: iceberg model

- $\mathcal{A}=\{-M, \ldots,-1,0,1, \ldots M\}$
- $\mathcal{F}=\left\{a b, \begin{array}{c}a \\ b\end{array}: a, b\right.$ have opposite signs $\}$
- positives can sit next to positives and zeros, negatives can sit next to negatives and zeros, and zeros can sit next to anyone.
- Example: $M=2$

Examples of \mathbb{Z}^{2} SFTs: iceberg model

- $\mathcal{A}=\{-M, \ldots,-1,0,1, \ldots M\}$
- $\mathcal{F}=\left\{a b, \begin{array}{l}a \\ b\end{array}: a, b\right.$ have opposite signs $\}$
- positives can sit next to positives and zeros, negatives can sit next to negatives and zeros, and zeros can sit next to anyone.
- Example: $M=2$

1	2	2	1	0	0	-1	-2	0	2
0	2	1	0	-1	0	-2	-1	0	2
1	1	0	-2	0	0	0	0	1	2
0	2	1	0	-1	0	-2	-1	0	2
0	1	2	0	-2	0	-2	-2	0	1
0	1	1	0	-1	0	-1	0	2	1

Topological entropy, $d \geq 2$

- Exact formula known only in a few cases.
- Characterization of entropies for $d \geq 2$ (Hochman-Meyerovitch):
\{right recursively enumerable (RRE) numbers $h \geq 0\}$
i.e, there is an algorithm that produces a sequence $r_{n} \geq h$
s.t. $r_{n} \rightarrow h$.

Proof:

- Necessity: Let $r_{n}:=\frac{\log | | A_{n} \mid}{n^{d}}$ By Ruelle/Friedland Theorem, $r_{n} \rightarrow h$. By subaddilitivity of $\log \left|L A_{n}\right|$, each $r_{n} \geq h$
- Sufficiency (hard): Emulate Turing machine with an SFT.
- RRE's can be poorly computable, or even non-computable.

Topological entropy, $d \geq 2$

- Exact formula known only in a few cases.
- Characterization of entropies for $d \geq 2$ (Hochman-Meyerovitch):
$\{$ right recursively enumerable (RRE) numbers $h \geq 0\}$
i.e, there is an algorithm that produces a sequence $r_{n} \geq h$
s.t. $r_{n} \rightarrow h$.

Proof:

- Necessity: Let $r_{n}:=\frac{\log \left|L A_{n}\right|}{n^{d}}$.

By Ruelle/Friedland Theorem, $r_{n} \rightarrow h$.
By subaddilitivity of $\log \left|L A_{n}\right|$, each $r_{n} \geq h$.

- Sufficiency (hard): Emulate Turing machine with an SFT.
- RRE's can be poorly computable, or even non-computable.

Topological entropy, $d \geq 2$

- Exact formula known only in a few cases.
- Characterization of entropies for $d \geq 2$ (Hochman-Meyerovitch):
$\{$ right recursively enumerable (RRE) numbers $h \geq 0\}$
i.e, there is an algorithm that produces a sequence $r_{n} \geq h$ s.t. $r_{n} \rightarrow h$.

Proof

- Necessity: Let $r_{n}:=\frac{\log \left|L A_{n}\right|}{n^{d}}$.
By Ruelle/Friedland Theorem, $r_{n} \rightarrow h$.
By subadditivity of $\log \left|L A_{n}\right|$, each $r_{n} \geq h$.
- Sufficiency (hard): Emulate Turing machine with an SFT.
- RRE's can be poorly computable, or even non-computable.

Topological entropy, $d \geq 2$

- Exact formula known only in a few cases.
- Characterization of entropies for $d \geq 2$ (Hochman-Meyerovitch):
$\{$ right recursively enumerable (RRE) numbers $h \geq 0\}$
i.e, there is an algorithm that produces a sequence $r_{n} \geq h$ s.t. $r_{n} \rightarrow h$.

Proof:

- Necessity: Let $r_{n}:=\frac{\log \left|L A_{n}\right|}{n^{d}}$

By Ruelle/Friedland Theorem, $r_{n} \rightarrow h$.
By subadditivity of $\log \left|L A_{n}\right|$, each $r_{n} \geq h$.

- Sufficiency (hard): Emulate Turing machine with an SFT.
- RRE's can be poorly computable, or even non-computable

Topological entropy, $d \geq 2$

- Exact formula known only in a few cases.
- Characterization of entropies for $d \geq 2$ (Hochman-Meyerovitch):
$\{$ right recursively enumerable (RRE) numbers $h \geq 0\}$
i.e, there is an algorithm that produces a sequence $r_{n} \geq h$ s.t. $r_{n} \rightarrow h$.

Proof:

- Necessity: Let $r_{n}:=\frac{\log \left|L A_{n}\right|}{n^{d}}$.

By subadditivity of $\log \left|L A_{n}\right|$, each $r_{n} \geq h$.
Sufficiency (hard): Emulate Turing machine with an SFT.

- RRE's can be poorly computable, or even non-computable

Topological entropy, $d \geq 2$

- Exact formula known only in a few cases.
- Characterization of entropies for $d \geq 2$ (Hochman-Meyerovitch):
$\{$ right recursively enumerable (RRE) numbers $h \geq 0\}$
i.e, there is an algorithm that produces a sequence $r_{n} \geq h$ s.t. $r_{n} \rightarrow h$.

Proof:

- Necessity: Let $r_{n}:=\frac{\log \left|L A_{n}\right|}{n^{d}}$.

By Ruelle/Friedland Theorem, $r_{n} \rightarrow h$.

- Sufficiency (hard): Emulate Turing machine with an SFT.
- RRE's can be poorly computable, or even non-computable

Topological entropy, $d \geq 2$

- Exact formula known only in a few cases.
- Characterization of entropies for $d \geq 2$ (Hochman-Meyerovitch):
$\{$ right recursively enumerable (RRE) numbers $h \geq 0\}$
i.e, there is an algorithm that produces a sequence $r_{n} \geq h$ s.t. $r_{n} \rightarrow h$.

Proof:

- Necessity: Let $r_{n}:=\frac{\log \left|L A_{n}\right|}{n^{d}}$.

By Ruelle/Friedland Theorem, $r_{n} \rightarrow h$.
By subadditivity of $\log \left|L A_{n}\right|$, each $r_{n} \geq h$.

- RRE's can be poorly computable, or even non-computable

Topological entropy, $d \geq 2$

- Exact formula known only in a few cases.
- Characterization of entropies for $d \geq 2$ (Hochman-Meyerovitch):
$\{$ right recursively enumerable (RRE) numbers $h \geq 0\}$
i.e, there is an algorithm that produces a sequence $r_{n} \geq h$ s.t. $r_{n} \rightarrow h$.

Proof:

- Necessity: Let $r_{n}:=\frac{\log \left|L A_{n}\right|}{n^{d}}$.

By Ruelle/Friedland Theorem, $r_{n} \rightarrow h$.
By subadditivity of $\log \left|L A_{n}\right|$, each $r_{n} \geq h$.

- Sufficiency (hard): Emulate Turing machine with an SFT.
- RRE's can be poorly computable, or even non-computable

Topological entropy, $d \geq 2$

- Exact formula known only in a few cases.
- Characterization of entropies for $d \geq 2$ (Hochman-Meyerovitch):
$\{$ right recursively enumerable (RRE) numbers $h \geq 0\}$
i.e, there is an algorithm that produces a sequence $r_{n} \geq h$ s.t. $r_{n} \rightarrow h$.

Proof:

- Necessity: Let $r_{n}:=\frac{\log \left|L A_{n}\right|}{n^{d}}$.

By Ruelle/Friedland Theorem, $r_{n} \rightarrow h$.
By subadditivity of $\log \left|L A_{n}\right|$, each $r_{n} \geq h$.

- Sufficiency (hard): Emulate Turing machine with an SFT.
- RRE's can be poorly computable, or even non-computable.

polynomial time approximation

- A polynomial time approximation algorithm: on input n, produces a sequence r_{n} s.t. $\left|r_{n}-h\right|<1 / n$ and r_{n} can be computed in time poly (n).
- Theorem (Gamarnik-Katz, Pavlov): There is a polynomial
time approximation algorithm to compute
h (hard squares).

polynomial time approximation

- A polynomial time approximation algorithm: on input n, produces a sequence r_{n} s.t. $\left|r_{n}-h\right|<1 / n$ and r_{n} can be computed in time poly(n).
- Theorem (Gamarnik-Katz, Pavlov): There is a polynomial time approximation algorithm to compute $h($ hard squares $)$.

Measure-theoretic entropy

Given a shift-invariant Borel probability measure μ on $\mathcal{A}^{\mathbb{Z}^{d}}$,

- For finite $S \Subset \mathbb{Z}^{d}$,

- For finite disjoint S, T,

- Extend to finite S and infinite T :

$$
H_{\mu}(S \mid T):=\inf _{T^{\prime} \Subset T} H_{\mu}\left(S \mid T^{\prime}\right)
$$

Measure-theoretic entropy

Given a shift-invariant Borel probability measure μ on $\mathcal{A}^{\mathbb{Z}^{d}}$,

- For finite $S \in \mathbb{Z}^{d}$,

$$
H_{\mu}(S):=\sum_{x \in \mathcal{A}^{s}}-\mu(x) \log \mu(x)=\int-\log \mu(x) d \mu(x)
$$

- For finite disjoint S, T,

- Extend to finite S and infinite T :

$$
H_{\mu}(S \mid T):=\inf _{T^{\prime} \in T} H_{\mu}\left(S \mid T^{\prime}\right)
$$

Measure-theoretic entropy

Given a shift-invariant Borel probability measure μ on $\mathcal{A}^{\mathbb{Z}^{d}}$,

- For finite $S \in \mathbb{Z}^{d}$,

$$
H_{\mu}(S):=\sum_{x \in \mathcal{A}^{s}}-\mu(x) \log \mu(x)=\int-\log \mu(x) d \mu(x)
$$

- For finite disjoint S, T,

$$
H_{\mu}(S \mid T):=\sum_{x \in \mathcal{A}^{S}, y \in \mathcal{A}^{T}: \mu(y)>0}-\mu(x, y) \log \mu(x \mid y)
$$

- Extend to finite S and infinite T :

$$
H_{\mu}(S \mid T):=\inf _{T^{\prime} \in T} H_{\mu}\left(S \mid T^{\prime}\right)
$$

Measure-theoretic entropy

Given a shift-invariant Borel probability measure μ on $\mathcal{A}^{\mathbb{Z}^{d}}$,

- For finite $S \in \mathbb{Z}^{d}$,

$$
H_{\mu}(S):=\sum_{x \in \mathcal{A}^{s}}-\mu(x) \log \mu(x)=\int-\log \mu(x) d \mu(x)
$$

- For finite disjoint S, T,

$$
H_{\mu}(S \mid T):=\sum_{x \in \mathcal{A}^{S}, y \in \mathcal{A}^{T}: \mu(y)>0}-\mu(x, y) \log \mu(x \mid y)
$$

- Extend to finite S and infinite T :

$$
H_{\mu}(S \mid T):=\inf _{T^{\prime} \subseteq T} H_{\mu}\left(S \mid T^{\prime}\right)
$$

Entropy of μ

- $h(\mu):=\lim _{n \rightarrow \infty} \frac{H_{\mu}\left(B_{n}\right)}{n^{d}}$
- $d=1$: Theorem: $h(\mu)=H_{\mu}(0 \mid\{-1,-2,-3, \ldots\})$
- $d=2$: Let \prec denotes lexicographic order: $(i, j) \prec\left(i^{\prime}, j^{\prime}\right)$ iff either $j<j^{\prime}$ or ($j=j^{\prime}$ and $i<i^{\prime}$).

For $\bar{z} \in \mathbb{Z}^{2}$, let $\mathcal{P}^{-}(\bar{z}):=\left\{\bar{z}^{\prime} \in \mathbb{Z}^{2}: \bar{z}^{\prime} \prec \bar{z}\right\}$ the lexicographic past of \bar{z}, and $\mathcal{P}^{-}:=\mathcal{P}^{-}(0)$

Theorem: $h(\mu)=H_{\mu}\left(0 \mid \mathcal{P}^{-}\right)$.

Entropy of μ

- $h(\mu):=\lim _{n \rightarrow \infty} \frac{H_{\mu}\left(B_{n}\right)}{n^{d}}$
- $d=1$: Theorem: $h(\mu)=H_{\mu}(0 \mid\{-1,-2,-3, \ldots\})$
- $d=2$: Let \prec denotes lexicographic order: $(i, j) \prec\left(i^{\prime}, j^{\prime}\right)$ iff either $j<j^{\prime}$ or ($j=j^{\prime}$ and $i<i^{\prime}$).
For $\bar{z} \in \mathbb{Z}^{2}$, let $\mathcal{P}^{-}(\bar{z}):=\left\{\bar{z}^{\prime} \in \mathbb{Z}^{2}: \bar{z}^{\prime} \prec \bar{z}\right\}$ the lexicographic past of \bar{z}, and $\mathcal{P}^{-}:=\mathcal{P}^{-}(0)$

Theorem: $h(\mu)=H_{\mu}\left(0 \mid \mathcal{P}^{-}\right)$.

Entropy of μ

- $h(\mu):=\lim _{n \rightarrow \infty} \frac{H_{\mu}\left(B_{n}\right)}{n^{d}}$
- $d=1$: Theorem: $h(\mu)=H_{\mu}(0 \mid\{-1,-2,-3, \ldots\})$
- $d=2$: Let \prec denotes lexicographic order: $(i, j) \prec\left(i^{\prime}, j^{\prime}\right)$ iff either $j<j^{\prime}$ or $\left(j=j^{\prime}\right.$ and $\left.i<i^{\prime}\right)$.

past of \bar{z}, and $\mathcal{P}^{-}:=\mathcal{P}^{-}(0)$

Entropy of μ

- $h(\mu):=\lim _{n \rightarrow \infty} \frac{H_{\mu}\left(B_{n}\right)}{n^{d}}$
- $d=1$: Theorem: $h(\mu)=H_{\mu}(0 \mid\{-1,-2,-3, \ldots\})$
- $d=2$: Let \prec denotes lexicographic order: $(i, j) \prec\left(i^{\prime}, j^{\prime}\right)$ iff either $j<j^{\prime}$ or ($j=j^{\prime}$ and $i<i^{\prime}$).
For $\bar{z} \in \mathbb{Z}^{2}$, let $\mathcal{P}^{-}(\bar{z}):=\left\{\bar{z}^{\prime} \in \mathbb{Z}^{2}: \bar{z}^{\prime} \prec \bar{z}\right\}$ the lexicographic past of \bar{z}, and $\mathcal{P}^{-}:=\mathcal{P}^{-}(0)$

Theorem: $h(\mu)=H_{\mu}\left(0 \mid \mathcal{P}^{-}\right)$.

- $h(\mu):=\lim _{n \rightarrow \infty} \frac{H_{\mu}\left(B_{n}\right)}{n^{d}}$
- $d=1$: Theorem: $h(\mu)=H_{\mu}(0 \mid\{-1,-2,-3, \ldots\})$
- $d=2$: Let \prec denotes lexicographic order: $(i, j) \prec\left(i^{\prime}, j^{\prime}\right)$ iff either $j<j^{\prime}$ or ($j=j^{\prime}$ and $i<i^{\prime}$).
For $\bar{z} \in \mathbb{Z}^{2}$, let $\mathcal{P}^{-}(\bar{z}):=\left\{\bar{z}^{\prime} \in \mathbb{Z}^{2}: \bar{z}^{\prime} \prec \bar{z}\right\}$ the lexicographic past of \bar{z}, and $\mathcal{P}^{-}:=\mathcal{P}^{-}(0)$

Theorem: $h(\mu)=H_{\mu}\left(0 \mid \mathcal{P}^{-}\right)$.

- $h(\mu):=\lim _{n \rightarrow \infty} \frac{H_{\mu}\left(B_{n}\right)}{n^{d}}$
- $d=1$: Theorem: $h(\mu)=H_{\mu}(0 \mid\{-1,-2,-3, \ldots\})$
- $d=2$: Let \prec denotes lexicographic order: $(i, j) \prec\left(i^{\prime}, j^{\prime}\right)$ iff either $j<j^{\prime}$ or ($j=j^{\prime}$ and $i<i^{\prime}$).
For $\bar{z} \in \mathbb{Z}^{2}$, let $\mathcal{P}^{-}(\bar{z}):=\left\{\bar{z}^{\prime} \in \mathbb{Z}^{2}: \bar{z}^{\prime} \prec \bar{z}\right\}$ the lexicographic past of \bar{z}, and $\mathcal{P}^{-}:=\mathcal{P}^{-}(0)$

Theorem: $h(\mu)=H_{\mu}\left(0 \mid \mathcal{P}^{-}\right)$.

$$
\mathcal{P}^{-}:=\mathcal{P}^{-}(0)
$$

$$
\text { Theorem: } h(\mu)=H_{\mu}\left(0 \mid \mathcal{P}^{-}\right) .
$$

Defn: The information function of μ is defined as

$$
I_{\mu}(x):=-\log \mu\left(x(0) \mid x\left(\mathcal{P}^{-}\right)\right)(\mu-\text { a.e. })
$$

Corollary:

$$
h(\mu)=H_{\mu}\left(0 \mid \mathcal{P}^{-}\right)=\int I_{\mu}(x) d \mu(x)
$$

$\mathcal{P}^{-}:=\mathcal{P}^{-}(0)$

$$
\text { Theorem: } h(\mu)=H_{\mu}\left(0 \mid \mathcal{P}^{-}\right) .
$$

Defn: The information function of μ is defined as

$$
I_{\mu}(x):=-\log \mu\left(x(0) \mid x\left(\mathcal{P}^{-}\right)\right) \quad(\mu-\text { a.e. })
$$

Corollary:

$$
h(\mu)=H_{\mu}\left(0 \mid \mathcal{P}^{-}\right)=\int I_{\mu}(x) d \mu(x) .
$$

$\mathcal{P}^{-}:=\mathcal{P}^{-}(0)$

$$
\text { Theorem: } h(\mu)=H_{\mu}\left(0 \mid \mathcal{P}^{-}\right) .
$$

Defn: The information function of μ is defined as

$$
I_{\mu}(x):=-\log \mu\left(x(0) \mid x\left(\mathcal{P}^{-}\right)\right) \quad(\mu-\text { a.e. })
$$

Corollary:

$$
h(\mu)=H_{\mu}\left(0 \mid \mathcal{P}^{-}\right)=\int I_{\mu}(x) d \mu(x) .
$$

Variational Principle for Topological Entropy

- For a shift space X,

$$
h(X)=\sup h(\mu)
$$

where the sup is taken over all shift-invariant Borel
probability measures μ s.t. support $(\mu) \subseteq X$.

- Fact: The sup is always achieved. A measure which
achieves the sup is called a measure of maximal entropy (MME).
- So for an MME $\mu, h(X)=h(\mu)=\int I_{\mu}(x) d \mu(x)$
- Under certain conditions, $h(X)=h(\mu)=\int I_{\mu} d \nu$ for some other invariant measure ν and, under stronger conditions, for all invariant measures ν.
- If this works for $\nu=$ the δ-measure on a fixed point $x^{*}=a^{\mathbb{Z}^{d}}$, then
$h(X)=h(\mu)=I_{\mu}\left(x^{*}\right)=-\log \mu\left(x^{*}(0) \mid x^{*}\left(\mathcal{P}^{-}\right)\right)$

Variational Principle for Topological Entropy

- For a shift space X,

$$
h(X)=\sup _{\mu} h(\mu)
$$

where the sup is taken over all shift-invariant Borel probability measures μ s.t. support $(\mu) \subseteq X$.

- Fact: The sup is always achieved. A measure which
achieves the sup is called a measure of maximal entropy (MME)
- So for an MME $\mu, h(X)=h(\mu)=\int I_{\mu}(x) d \mu(x)$
- Under certain conditions, $h(X)=h(\mu)=\int I_{\mu} d \nu$ for some other invariant measure ν and, under stronger conditions, for all invariant measures ν
- If this works for $\nu=$ the δ-measure on a fixed point $x^{*}=a^{\mathbb{Z}^{d}}$, then

Variational Principle for Topological Entropy

- For a shift space X,

$$
h(X)=\sup _{\mu} h(\mu)
$$

where the sup is taken over all shift-invariant Borel probability measures μ s.t. $\operatorname{support}(\mu) \subseteq X$.

- Fact: The sup is always achieved. A measure which achieves the sup is called a measure of maximal entropy (MME).
- So for an MME $\mu, h(X)=h(\mu)=\int I_{\mu}(x) d \mu(x)$
- Under certain conditions, $h(X)=h(\mu)=\int l_{\mu} d \nu$ for some other invariant measure ν and, under stronger conditions, for all invariant measures ν.
- If this works for $\nu=$ the δ-measure on a fixed point
\square

Variational Principle for Topological Entropy

- For a shift space X,

$$
h(X)=\sup _{\mu} h(\mu)
$$

where the sup is taken over all shift-invariant Borel probability measures μ s.t. $\operatorname{support}(\mu) \subseteq X$.

- Fact: The sup is always achieved. A measure which achieves the sup is called a measure of maximal entropy (MME).
- So for an MME $\mu, h(X)=h(\mu)=\int I_{\mu}(x) d \mu(x)$
other invariant measure ν and, under stronger conditions, for all invariant measures ν
- If this works for $\nu=$ the δ-measure on a fixed point $x^{*}=a^{\mathbb{Z}^{d}}$, then

Variational Principle for Topological Entropy

- For a shift space X,

$$
h(X)=\sup _{\mu} h(\mu)
$$

where the sup is taken over all shift-invariant Borel probability measures μ s.t. $\operatorname{support}(\mu) \subseteq X$.

- Fact: The sup is always achieved. A measure which achieves the sup is called a measure of maximal entropy (MME).
- So for an MME $\mu, h(X)=h(\mu)=\int I_{\mu}(x) d \mu(x)$
- Under certain conditions, $h(X)=h(\mu)=\int l_{\mu} d \nu$ for some other invariant measure ν and, under stronger conditions, for all invariant measures ν.
- If this works for $\nu=$ the δ-measure on a fixed point

Variational Principle for Topological Entropy

- For a shift space X,

$$
h(X)=\sup _{\mu} h(\mu)
$$

where the sup is taken over all shift-invariant Borel probability measures μ s.t. support $(\mu) \subseteq X$.

- Fact: The sup is always achieved. A measure which achieves the sup is called a measure of maximal entropy (MME).
- So for an MME $\mu, h(X)=h(\mu)=\int I_{\mu}(x) d \mu(x)$
- Under certain conditions, $h(X)=h(\mu)=\int I_{\mu} d \nu$ for some other invariant measure ν and, under stronger conditions, for all invariant measures ν.
- If this works for $\nu=$ the δ-measure on a fixed point $x^{*}=a^{\mathbb{Z}^{d}}$, then

$$
h(X)=h(\mu)=I_{\mu}\left(x^{*}\right)=-\log \mu\left(x^{*}(0) \mid x^{*}\left(\mathcal{P}^{-}\right)\right)
$$

Maximal entropy is characterized by as much:

- Site-to-site independence -and-
- Uniformity of distribution
as possible.

Maximal entropy is characterized by as much:

- Site-to-site independence -and-
- Uniformity of distribution
as possible.

Maximal entropy is characterized by as much:

- Site-to-site independence -and-
- Uniformity of distribution
as possible.

Maximal entropy is characterized by as much:

- Site-to-site independence -and-
- Uniformity of distribution as possible.

Markov random fields

A Markov random field (MRF) is a shift-invariant Borel probability measure μ on $\mathcal{A}^{\mathbb{Z}^{d}}$ such that for any choice of:

- $T \Subset \mathbb{Z}^{d}$ s.t. $\partial S \subseteq T \subseteq \mathbb{Z}^{d} \backslash S$
- confiquration x on S
- configuration y on T s.t. $\mu(y)>0$,
we have:

$$
\mu(x \mid y)=\mu(x \mid y(\partial S))
$$

Markov random fields

A Markov random field (MRF) is a shift-invariant Borel probability measure μ on $\mathcal{A}^{\mathbb{Z}^{d}}$ such that for any choice of:

- $S \Subset \mathbb{Z}^{d}$,
- configuration x on S
- configuration y on T s.t. $\mu(y)>0$, we have:

$$
\mu(x \mid y)=\mu(x \mid y(\partial S))
$$

Markov random fields

A Markov random field (MRF) is a shift-invariant Borel probability measure μ on $\mathcal{A}^{\mathbb{Z}^{d}}$ such that for any choice of:

- $S \Subset \mathbb{Z}^{d}$,
- $T \Subset \mathbb{Z}^{d}$ s.t. $\partial S \subseteq T \subseteq \mathbb{Z}^{d} \backslash S$
- configuration y on T s.t. $\mu(y)>0$, we have:

$$
\mu(x \mid y)=\mu(x \mid y(\partial S))
$$

Markov random fields

A Markov random field (MRF) is a shift-invariant Borel probability measure μ on $\mathcal{A}^{\mathbb{Z}^{d}}$ such that for any choice of:

- $S \Subset \mathbb{Z}^{d}$,
- $T \subseteq \mathbb{Z}^{d}$ s.t. $\partial S \subseteq T \subseteq \mathbb{Z}^{d} \backslash S$
- configuration x on S

we have:

Markov random fields

A Markov random field (MRF) is a shift-invariant Borel probability measure μ on $\mathcal{A}^{\mathbb{Z}^{d}}$ such that for any choice of:

- $S \Subset \mathbb{Z}^{d}$,
- $T \subseteq \mathbb{Z}^{d}$ s.t. $\partial S \subseteq T \subseteq \mathbb{Z}^{d} \backslash S$
- configuration x on S
- configuration y on T s.t. $\mu(y)>0$, we have:

Markov random fields

A Markov random field (MRF) is a shift-invariant Borel probability measure μ on $\mathcal{A}^{\mathbb{Z}^{d}}$ such that for any choice of:

- $S \Subset \mathbb{Z}^{d}$,
- $T \subseteq \mathbb{Z}^{d}$ s.t. $\partial S \subseteq T \subseteq \mathbb{Z}^{d} \backslash S$
- configuration x on S
- configuration y on T s.t. $\mu(y)>0$, we have:

$$
\mu(x \mid y)=\mu(x \mid y(\partial S))
$$

Markov random fields

A Markov random field (MRF) is a shift-invariant Borel probability measure μ on $\mathcal{A}^{\mathbb{Z}^{d}}$ such that for any choice of:

- $S \Subset \mathbb{Z}^{d}$,
- $T \subseteq \mathbb{Z}^{d}$ s.t. $\partial S \subseteq T \subseteq \mathbb{Z}^{d} \backslash S$
- configuration x on S
- configuration y on T s.t. $\mu(y)>0$, we have:

$$
\mu(x \mid y)=\mu(x \mid y(\partial S))
$$

Uniform MRF

Let X be a n.n. SFT. For $S \Subset \mathbb{Z}^{d}$ and $y \in \mathcal{A}^{\partial S}$, let

$$
G A_{S}^{y}(X):=\left\{x \in \mathcal{A}^{S}: x y \text { is globally admissible }\right\}
$$

An MRF on X is uniform if whenever $\mu(y)>0$, then for $x \in G A_{S}^{y}(X)$

Theorem (Lanford/Ruelle, Burton/Steif): Every MME on a n.n. SFT is a uniform MRF.

Uniform MRF

Let X be a n.n. SFT. For $S \Subset \mathbb{Z}^{d}$ and $y \in \mathcal{A}^{\partial S}$, let

$$
G A_{S}^{y}(X):=\left\{x \in \mathcal{A}^{S}: x y \text { is globally admissible }\right\}
$$

An MRF on X is uniform if whenever $\mu(y)>0$, then for $x \in G A_{S}^{y}(X)$

Theorem (Lanford/Ruelle, Burton/Steif): Every MME on a n.n. SFT is a uniform MRF.

Uniform MRF

Let X be a n.n. SFT. For $S \Subset \mathbb{Z}^{d}$ and $y \in \mathcal{A}^{\partial S}$, let

$$
G A_{S}^{y}(X):=\left\{x \in \mathcal{A}^{S}: x y \text { is globally admissible }\right\}
$$

An MRF on X is uniform if whenever $\mu(y)>0$, then for $x \in G A_{S}^{y}(X)$

Theorem (Lanford/Ruelle, Burton/Steif): Every MME on a n.n. SFT is a uniform MRF.

Uniform MRF

Let X be a n.n. SFT. For $S \Subset \mathbb{Z}^{d}$ and $y \in \mathcal{A}^{\partial S}$, let

$$
G A_{S}^{y}(X):=\left\{x \in \mathcal{A}^{S}: x y \text { is globally admissible }\right\}
$$

An MRF on X is uniform if whenever $\mu(y)>0$, then for $x \in G A_{S}^{y}(X)$

Theorem (Lanford/Ruelle, Burton/Steif): Every MME on a n.n. SFT is a uniform MRF.

Uniform MRF

Let X be a n.n. SFT. For $S \Subset \mathbb{Z}^{d}$ and $y \in \mathcal{A}^{\partial S}$, let

$$
G A_{S}^{y}(X):=\left\{x \in \mathcal{A}^{S}: x y \text { is globally admissible }\right\}
$$

An MRF on X is uniform if whenever $\mu(y)>0$, then for $x \in G A_{S}^{y}(X)$

$$
\mu(x \mid y)=\frac{1}{\left|G A_{S}^{y}(X)\right|}
$$

Theorem (Lanford/Ruelle, Burton/Steif): Every MME on a n.n. SFT is a uniform MRF.

Uniform MRF

Let X be a n.n. SFT. For $S \Subset \mathbb{Z}^{d}$ and $y \in \mathcal{A}^{\partial S}$, let

$$
G A_{S}^{y}(X):=\left\{x \in \mathcal{A}^{S}: x y \text { is globally admissible }\right\}
$$

An MRF on X is uniform if whenever $\mu(y)>0$, then for $x \in G A_{S}^{y}(X)$

$$
\mu(x \mid y)=\frac{1}{\left|G A_{S}^{y}(X)\right|}
$$

Theorem (Lanford/Ruelle, Burton/Steif): Every MME on a n.n. SFT is a uniform MRF.

Safe symbol

A n.n. SFT X has a safe symbol s if it is locally admissible with every configuration of nearest neighbours:

> Examples: Yes: Hard squares $(s=0)$, Iceberg model $(s=0)$ No: Checkerboard shifts, Dimers

Safe symbol

A n.n. SFT X has a safe symbol s if it is locally admissible with every configuration of nearest neighbours:

	\star	
\star	S	\star
	\star	

Examples: Yes: Hard squares $(s=0)$, Iceberg model $(s=0)$ No: Checkerboard shifts, Dimers

Safe symbol

A n.n. SFT X has a safe symbol s if it is locally admissible with every configuration of nearest neighbours:

	\star	
\star	S	\star
	\star	

Examples: Yes: Hard squares $(s=0)$, Iceberg model $(s=0)$

Safe symbol

A n.n. SFT X has a safe symbol s if it is locally admissible with every configuration of nearest neighbours:

	\star	
\star	S	\star
	\star	

Examples: Yes: Hard squares $(s=0)$, Iceberg model $(s=0)$ No: Checkerboard shifts, Dimers

Entropy Representation

Let $R_{a, b, c}:=[-a,-1] \times[1, c] \cup[0, b] \times[0, c]$
Example: $R_{3,4,3}$

Theorem (special case of Gamarnik-Katz): Let X be a n.n. \mathbb{Z}^{d} SFT and μ an MME on X. If
(1) X has a safe symbol s - and -
(2) $($ for $d=2)$

$$
\underline{I}:=\lim _{a, b, c \rightarrow \infty} \mu\left(s^{0} \mid s^{\partial R_{a, b, c}}\right) \text { exists }
$$

Then

$$
h(X)=-\log L
$$

Entropy Representation

Let $R_{a, b, c}:=[-a,-1] \times[1, c] \cup[0, b] \times[0, c]$
Example: $R_{3,4,3}$:

$$
\begin{array}{ccccccccc}
\mid & \cdot \\
c & \cdot \\
\mid & \cdot \\
& & & & \cdot & \cdot & \cdot & \cdot & \cdot \\
& - & a & - & & - & b & - &
\end{array}
$$

Theorem (special case of Gamarnik-Katz): Let X be a n.n. \mathbb{Z}^{d} SFT and μ an MME on X. If
(1) X has a safe symbol s - and -
(2) $($ for $d=2)$

$$
L:=\lim _{a, b, c \rightarrow \infty} \mu\left(s^{0} \mid s^{\partial R_{a, b, c}}\right) \text { exists }
$$

Then

$$
h(X)=-\log L
$$

Entropy Representation

Let $R_{a, b, c}:=[-a,-1] \times[1, c] \cup[0, b] \times[0, c]$
Example: $R_{3,4,3}$:

\mid	\cdot						
C	\cdot						
\mid	\cdot						
				\cdot	\cdot	\cdot	\cdot
	-	a	-		-	b	-

Theorem (special case of Gamarnik-Katz): Let X be a n.n. \mathbb{Z}^{d} SFT and μ an MME on X.
(1) X has a safe symbol $s-$ and -
(3) (for $d=2$)

Then

Entropy Representation

Let $R_{a, b, c}:=[-a,-1] \times[1, c] \cup[0, b] \times[0, c]$
Example: $R_{3,4,3}$:

\mid	\cdot						
C	\cdot						
\mid	\cdot						
				\cdot	\cdot	\cdot	\cdot
	-	a	-		-	b	-

Theorem (special case of Gamarnik-Katz): Let X be a n.n. \mathbb{Z}^{d} SFT and μ an MME on X. If
(1) X has a safe symbol s - and -
(2) (for $d=2$)

Then

Entropy Representation

Let $R_{a, b, c}:=[-a,-1] \times[1, c] \cup[0, b] \times[0, c]$
Example: $R_{3,4,3}$:

\mid	\cdot						
C	\cdot						
\mid	\cdot						
				\cdot	\cdot	\cdot	\cdot
	-	a	-		-	b	-

Theorem (special case of Gamarnik-Katz): Let X be a n.n. \mathbb{Z}^{d} SFT and μ an MME on X. If
(1) X has a safe symbol s - and -
(2) (for $d=2)$

$$
L:=\lim _{a, b, c \rightarrow \infty} \mu\left(s^{0} \mid s^{\partial R_{a, b, c}}\right) \text { exists }
$$

Then

Entropy Representation

Let $R_{a, b, c}:=[-a,-1] \times[1, c] \cup[0, b] \times[0, c]$
Example: $R_{3,4,3}$:

\mid	\cdot						
C	\cdot						
\mid	\cdot						
				\cdot	\cdot	\cdot	\cdot
	-	a	-		-	b	-

Theorem (special case of Gamarnik-Katz): Let X be a n.n. \mathbb{Z}^{d} SFT and μ an MME on X. If
(1) X has a safe symbol s - and -
(2) (for $d=2)$

$$
L:=\lim _{a, b, c \rightarrow \infty} \mu\left(s^{0} \mid s^{\partial R_{a, b, c}}\right) \text { exists }
$$

Then

$$
h(X)=-\log L
$$

- Since μ is an MME, μ must be a uniform MRF.
- Since s is a safe symbol,

(1) For all $T \Subset \mathbb{Z}^{d}$ containing 0 ,

Proof:

- Since μ is an MME, μ must be a uniform MRF.
- Since s is a safe symbol,

(- For all $T \in \mathbb{Z}^{d}$ containing 0 ,

- Since μ is an MME, μ must be a uniform MRF.
- Since s is a safe symbol,
(1) For all $T \in \mathbb{Z}^{d}$ containing 0 ,

$$
\mu\left(s^{0} \mid s^{\partial T}\right) \geq \frac{1}{|\mathcal{A}|} .
$$

- Since μ is an MME, μ must be a uniform MRF.
- Since s is a safe symbol,
(1) For all $T \in \mathbb{Z}^{d}$ containing 0 ,

$$
\mu\left(s^{0} \mid s^{\partial T}\right) \geq \frac{1}{|\mathcal{A}|} .
$$

(2)

$$
h(X)=\lim _{n \rightarrow \infty} \frac{-\log \mu\left(s^{B_{n}} \mid s^{\partial B_{n}}\right)}{n^{d}}
$$

Proof:

- Since μ is an MME, μ must be a uniform MRF.
- Since s is a safe symbol,
(1) For all $T \in \mathbb{Z}^{d}$ containing 0 ,

$$
\mu\left(s^{0} \mid s^{\partial T}\right) \geq \frac{1}{|\mathcal{A}|} .
$$

(2)

$$
h(X)=\lim _{n \rightarrow \infty} \frac{-\log \mu\left(s^{B_{n}} \mid s^{\partial B_{n}}\right)}{n^{d}}
$$

Proof:

$$
\mu\left(s^{B_{n}} \mid s^{\partial B_{n}}\right)=\frac{1}{\left|G A_{n}(X)\right|}
$$

Decomposition

$$
h(X)=\lim _{n \rightarrow \infty} \frac{-\log \mu\left(s^{B_{n}} \mid s^{\partial B_{n}}\right)}{n^{d}}
$$

Decomposition

$$
\begin{gathered}
h(X)=\lim _{n \rightarrow \infty} \frac{-\log \mu\left(s^{B_{n}} \mid s^{\partial B_{n}}\right)}{n^{d}} \\
\mu\left(s^{B_{n}} \mid s^{\partial B_{n}}\right)=\prod_{\bar{z} \in B_{n}} \mu\left(s^{\bar{z}} \mid s^{\mathcal{P}^{-}(\bar{z}) \cap B_{n}} s^{\partial B_{n}}\right) \\
\\
\bullet \cdot
\end{gathered} \cdot \quad \bullet \quad \bullet .
$$

Decomposition

$$
\begin{gathered}
h(X)=\lim _{n \rightarrow \infty} \frac{-\log \mu\left(s^{B_{n}} \mid s^{\partial B_{n}}\right)}{n^{d}} \\
\mu\left(s^{B_{n}} \mid s^{\partial B_{n}}\right)=\prod_{\bar{z} \in B_{n}} \mu\left(s^{\bar{z}} \mid s^{\mathcal{P}^{-}(\bar{z}) \cap B_{n}} s^{\partial B_{n}}\right)
\end{gathered}
$$

Decomposition

$$
\begin{aligned}
& h(X)=\lim _{n \rightarrow \infty} \frac{-\log \mu\left(s^{B_{n}} \mid s^{\partial B_{n}}\right)}{n^{d}} \\
& \mu\left(s^{B_{n}} \mid s^{\partial B_{n}}\right)=\prod_{\bar{z} \in B_{n}} \mu\left(s^{\bar{z}} \mid s^{\mathcal{P}^{-}(\bar{z}) \cap B_{n}} s^{\partial B_{n}}\right) \\
& \begin{array}{llllll}
& \bullet & \bullet & \bullet & \bullet & \\
\bullet & \cdot & \cdot & \cdot & \cdot & \bullet \\
\bullet & \cdot & \cdot & \cdot & \cdot & \bullet \\
\bullet & \cdot & \cdot & \cdot & \cdot & \bullet \\
\bullet & \bullet & \bullet & \bar{Z} & \cdot & \bullet \\
& \bullet & \bullet & \bullet & \bullet &
\end{array}
\end{aligned}
$$

Decomposition

$$
\begin{aligned}
& h(X)=\lim _{n \rightarrow \infty} \frac{-\log \mu\left(s^{B_{n}} \mid s^{\partial B_{n}}\right)}{n^{d}} \\
& \mu\left(s^{B_{n}} \mid s^{\partial B_{n}}\right)=\prod_{\bar{z} \in B_{n}} \mu\left(s^{\bar{z}} \mid s^{\mathcal{P}^{-}(\bar{z}) \cap B_{n}} s^{\partial B_{n}}\right) \\
& \begin{array}{llllll}
& \bullet & \bullet & \bullet & \bullet & \\
\bullet & \cdot & \cdot & \cdot & \cdot & \bullet \\
\bullet & \cdot & \cdot & \cdot & \cdot & \bullet \\
\bullet & \cdot & \cdot & \cdot & \cdot & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bar{Z} & \bullet \\
& \bullet & \bullet & \bullet & \bullet &
\end{array}
\end{aligned}
$$

Decomposition

$$
h(X)=\lim _{n \rightarrow \infty} \frac{-\log \mu\left(s^{B_{n}} \mid s^{\partial B_{n}}\right)}{n^{d}}
$$

$$
\mu\left(s^{B_{n}} \mid s^{\partial B_{n}}\right)=\prod_{\bar{z} \in B_{n}} \mu\left(s^{\bar{z}} \mid s^{\mathcal{P}^{-}(\bar{z}) \cap B_{n}} s^{\partial B_{n}}\right)
$$

Decomposition

$$
h(X)=\lim _{n \rightarrow \infty} \frac{-\log \mu\left(s^{B_{n}} \mid s^{\partial B_{n}}\right)}{n^{d}}
$$

$$
\mu\left(s^{B_{n}} \mid s^{\partial B_{n}}\right)=\prod_{\bar{z} \in B_{n}} \mu\left(s^{\bar{z}} \mid s^{\mathcal{P}^{-}(\bar{z}) \cap B_{n}} s^{\partial B_{n}}\right)
$$

Decomposition

$$
h(X)=\lim _{n \rightarrow \infty} \frac{-\log \mu\left(s^{B_{n}} \mid s^{\partial B_{n}}\right)}{n^{d}}
$$

$$
\mu\left(s^{B_{n}} \mid s^{\partial B_{n}}\right)=\prod_{\bar{z} \in B_{n}} \mu\left(s^{\bar{z}} \mid s^{\mathcal{P}^{-}(\bar{z}) \cap B_{n}} s^{\partial B_{n}}\right)
$$

Decomposition

$$
h(X)=\lim _{n \rightarrow \infty} \frac{-\log \mu\left(s^{B_{n}} \mid s^{\partial B_{n}}\right)}{n^{d}}
$$

$$
\mu\left(s^{B_{n}} \mid s^{\partial B_{n}}\right)=\prod_{\bar{z} \in B_{n}} \mu\left(s^{\bar{z}} \mid s^{\mathcal{P}^{-}(\bar{z}) \cap B_{n}} s^{\partial B_{n}}\right)=\prod_{\bar{z} \in B_{n}} \mu\left(s^{0} \mid s^{\left.\partial R_{a(\bar{z}), b(\bar{z}), c(\bar{z})}\right)}\right.
$$

Proof

- So,

$$
\log \mu\left(s^{B_{n}} \mid s^{\partial B_{n}}\right)=\sum_{\bar{z} \in B_{n}} \log \mu\left(s^{\bar{z}} \mid s^{\left.\partial R_{a(\bar{z}), b(\bar{z}), c(\bar{z})}\right)}\right.
$$

- By the convergence assumption, for "most" $\bar{z} \in B_{n}$

$$
\log \mu\left(s^{\bar{z}} \mid s^{\left.\partial R_{a(\bar{z}), b(\bar{z}), c(\bar{z})}\right) \approx \log 1}\right.
$$

- By safe symbol assumption, for the remaining $\bar{z} \in B_{n}$,

$$
0 \geq \log \mu\left(s^{\bar{z}} \mid s^{\partial R_{\partial(\bar{z})} b(\bar{\lambda}) c(\bar{z})}\right) \geq-\log |\mathcal{A}|
$$

- So,

$$
\log \mu\left(s^{B_{n}} \mid s^{\partial B_{n}}\right)=\sum_{\bar{z} \in B_{n}} \log \mu\left(s^{\bar{z}} \mid s^{\left.\partial R_{a(\bar{z}), b(\bar{z}), c(\bar{z})}\right)}\right.
$$

- By the convergence assumption, for "most" $\bar{z} \in B_{n}$

$$
\log \mu\left(s^{\bar{z}} \mid s^{\left.\partial R_{a(\bar{z}), b(\bar{z}), c(\bar{z})}\right)} \approx \log L\right.
$$

- By safe symbol assumption, for the remaining $\bar{z} \in B_{n}$,

$$
0 \geq \log \mu\left(s^{\bar{z}} \mid s^{\left.\partial R_{a(\bar{z}) \cdot b(\bar{z}) \cdot c(\bar{z})}\right) \geq-\log |\mathcal{A}|, \mid}\right.
$$

- So,

$$
\log \mu\left(s^{B_{n}} \mid s^{\partial B_{n}}\right)=\sum_{\bar{z} \in B_{n}} \log \mu\left(s^{\bar{z}} \mid s^{\left.\partial R_{a(\bar{z}), b(\bar{z}), c(\bar{z})}\right)}\right.
$$

- By the convergence assumption, for "most" $\bar{z} \in B_{n}$

$$
\log \mu\left(s^{\bar{z}} \mid s^{\partial R_{a(\bar{z}), b(\bar{z}), c(\bar{z})}}\right) \approx \log L
$$

- By safe symbol assumption, for the remaining $\bar{z} \in B_{n}$,

$$
0 \geq \log \mu\left(s^{\bar{z}} \mid s^{\left.\partial R_{a(\bar{z}), b(\bar{z}), c(\bar{z})}\right) \geq-\log |\mathcal{A}| . \mid}\right.
$$

- So,

$$
\log \mu\left(s^{B_{n}} \mid s^{\partial B_{n}}\right)=\sum_{\bar{z} \in B_{n}} \log \mu\left(s^{\bar{z}} \mid s^{\left.\partial R_{a(\bar{z}), b(\bar{z}), c(\bar{z})}\right)}\right.
$$

- By the convergence assumption, for "most" $\bar{z} \in B_{n}$

$$
\log \mu\left(s^{\bar{z}} \mid s^{\left.\partial R_{a(\bar{z}), b(\bar{z}), c(\bar{z})}\right)} \approx \log L\right.
$$

- By safe symbol assumption, for the remaining $\bar{z} \in B_{n}$,

$$
0 \geq \log \mu\left(s^{\bar{z}} \mid s^{\left.\partial R_{a(\bar{z}), b(\bar{z}), c(\bar{z})}\right) \geq-\log |\mathcal{A}| . \mid}\right.
$$

Thus, $h(X)=\lim _{n \rightarrow \infty} \frac{-\log \mu\left(s^{B_{n}} \mid s^{\partial B_{n}}\right)}{n^{d}}=-\log L . \square$

Algorithmic consequence

Theorem (special case of Gamarnik-Katz): Let X be a n.n. \mathbb{Z}^{2} SFT and μ an MME on X.

and convergence is exponential
Then there is a nolynomial time algorithm to compute $h(X)=-\log L$.
Proof: Approximate L by $\mu\left(s^{0} \mid s^{\partial R_{n, n, n}}\right)$.

- Accuracy is $e^{-\Omega(n)}$
- Claim: Computation time is $e^{O(n)}$
- Trade exponential accuracy in exponential time for linear accuracy $(1 / n)$ in polynomial time. \square

Algorithmic consequence

Theorem (special case of Gamarnik-Katz): Let X be a n.n. \mathbb{Z}^{2} SFT and μ an MME on X. If
(1) X has a safe symbol s - and -

and convergence is exponential
Then there is a nolynomial time algorithm to compute $h(X)=-\log L$.
Proof: Approximate L by $\mu\left(s^{0} \mid s^{\partial R_{n, n, n}}\right)$.

- Accuracy is $e^{-\Omega(n)}$
- Claim: Computation time is $e^{O(n)}$
- Trade exponential accuracy in exponential time for linear accuracy $(1 / n)$ in polynomial time. \square

Algorithmic consequence

Theorem (special case of Gamarnik-Katz): Let X be a n.n. \mathbb{Z}^{2} SFT and μ an MME on X. If
(1) X has a safe symbol s - and -
(2)

$$
L:=\lim _{a, b, c \rightarrow \infty} \mu\left(s^{0} \mid s^{\partial R_{a, b, c}}\right) \text { exists }
$$

and convergence is exponential
Then there is a polynomial time algorithm to compute $h(X)=-\log L$.
Proof: Approximate L by $\mu\left(s^{0} \mid s^{\left.0 P_{n, n}\right)}\right.$.

- Accuracy is $e^{-\Omega(n)}$
- Claim: Computation time is $e^{O(n)}$
- Trade exponential accuracy in exponential time for linear accuracy $(1 / n)$ in polynomial time. \square

Algorithmic consequence

Theorem (special case of Gamarnik-Katz): Let X be a n.n. \mathbb{Z}^{2} SFT and μ an MME on X. If
(1) X has a safe symbol s - and -
(2)

$$
L:=\lim _{a, b, c \rightarrow \infty} \mu\left(s^{0} \mid s^{\partial R_{a, b, c}}\right) \text { exists }
$$

and convergence is exponential
Then there is a polynomial time algorithm to compute $h(X)=-\log L$.
Proof: Approximate L by $\mu\left(s^{0} \mid S^{\left.0 P_{n, n}\right)}\right.$)

- Accuracy is $e^{-\Omega(n)}$
- Claim: Computation time is $e^{O(n)}$
- Trade exponential accuracy in exponential time for linear accuracy (1/n) in polynomial time. \square

Algorithmic consequence

Theorem (special case of Gamarnik-Katz): Let X be a n.n. \mathbb{Z}^{2} SFT and μ an MME on X. If
(1) X has a safe symbol s - and -
(2)

$$
L:=\lim _{a, b, c \rightarrow \infty} \mu\left(s^{0} \mid s^{\left.\partial R_{a, b, c}\right)}\right. \text { exists }
$$

and convergence is exponential
Then there is a polynomial time algorithm to compute $h(X)=-\log L$.
Proof: Approximate L by $\mu\left(s^{0} \mid s^{\partial R_{n, n, n}}\right)$.

- Accuracy is $e^{-\Omega(n)}$
- Traim: Computation time is $e^{O(n)}$
accuracy $(1 / n)$ in polynomial time. \square

Algorithmic consequence

Theorem (special case of Gamarnik-Katz): Let X be a n.n. \mathbb{Z}^{2} SFT and μ an MME on X. If
(1) X has a safe symbol s - and -
(2)

$$
L:=\lim _{a, b, c \rightarrow \infty} \mu\left(s^{0} \mid s^{\partial R_{a, b, c}}\right) \text { exists }
$$

and convergence is exponential
Then there is a polynomial time algorithm to compute $h(X)=-\log L$.
Proof: Approximate L by $\mu\left(s^{0} \mid s^{\partial R_{n, n, n}}\right)$.

- Accuracy is $e^{-\Omega(n)}$
- Claim: Computation time is $e^{O(n)}$
- Trade exponential accuracy in exponential time for linear accuracy $(1 / n)$ in polynomial time. \square

Algorithmic consequence

Theorem (special case of Gamarnik-Katz): Let X be a n.n. \mathbb{Z}^{2} SFT and μ an MME on X. If
(1) X has a safe symbol s - and -
(2)

$$
L:=\lim _{a, b, c \rightarrow \infty} \mu\left(s^{0} \mid s^{\partial R_{a, b, c}}\right) \text { exists }
$$

and convergence is exponential
Then there is a polynomial time algorithm to compute $h(X)=-\log L$.
Proof: Approximate L by $\mu\left(s^{0} \mid s^{\partial R_{n, n, n}}\right)$.

- Accuracy is $e^{-\Omega(n)}$
- Claim: Computation time is $e^{O(n)}$
- Trade exponential accuracy in exponential time for linear accuracy $(1 / n)$ in polynomial time. \square

Algorithmic consequence

Theorem (special case of Gamarnik-Katz): Let X be a n.n. \mathbb{Z}^{2} SFT and μ an MME on X. If
(1) X has a safe symbol s - and -
(2)

$$
L:=\lim _{a, b, c \rightarrow \infty} \mu\left(s^{0} \mid s^{\partial R_{a, b, c}}\right) \text { exists }
$$

and convergence is exponential
Then there is a polynomial time algorithm to compute $h(X)=-\log L$.
Proof: Approximate L by $\mu\left(s^{0} \mid s^{\partial R_{n, n, n}}\right)$.

- Accuracy is $e^{-\Omega(n)}$
- Claim: Computation time is $e^{O(n)}$
- Trade exponential accuracy in exponential time for linear accuracy $(1 / n)$ in polynomial time. \square

$$
\begin{aligned}
& S S S S S \\
& S \text { • • . . } S \\
& \text { \# S • • . . . } S \\
& S \quad S \quad S \quad S \quad \cdot \quad S \\
& \mu\left(s^{0} \mid S^{\partial R_{n, n, n}}\right)=\begin{array}{lllllll}
& & & S & S & S \\
& S & S & S & S & S & \\
S & \cdot & \cdot & \cdot & \cdot & \cdot & S
\end{array} \\
& \# \mathrm{~S} \cdot \mathrm{r} \cdot \mathrm{r} \cdot \mathrm{~S} \\
& \begin{array}{lllllll}
S & S & S & \cdot & \cdot & \cdot & S \\
& & S & S & S &
\end{array}
\end{aligned}
$$

M_{i} is transition matrix from column i to column $i+1$ compatible with $s^{\partial S_{n, n, n}}$ and
\hat{M}_{0} is matrix obtained from M_{0} by forcing s ą arigin.

$$
\begin{aligned}
& S S S S S \\
& S \text { • • . . } S \\
& \text { \# S } S \\
& S \quad S \quad S \quad S \quad \cdot \quad S \\
& \mu\left(s^{0} \mid s^{\partial R_{n, n, n}}\right)=\frac{}{} \quad S \quad S \quad S \\
& S \text {. } S \\
& \text { \# S • • . . . } S \\
& S \quad S \quad S \quad \cdot \quad \cdot \quad S \\
& S S S \\
& =\frac{\left(\prod_{i=-n}^{-1} M_{i}\right) \hat{M}_{0}\left(\prod_{i=1}^{n-1} M_{i}\right)}{\left(\prod_{i=-n}^{-1} M_{i}\right) M_{0}\left(\prod_{i=1}^{n-1} M_{i}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& S \quad S \quad S \quad S \\
& S \text {. } S \\
& \text { \# S } S \\
& S \quad S \quad S \quad S \quad \cdot \quad S \\
& \mu\left(s^{0} \mid s^{\partial R_{n, n, n}}\right)=\frac{}{} \quad S \quad S \quad S \\
& S \text {. } S \\
& \# \text { S • } S \\
& S \quad S \quad S \quad \cdot \quad \cdot \quad S \\
& S S S \\
& =\frac{\left(\prod_{i=-n}^{-1} M_{i}\right) \hat{M}_{0}\left(\prod_{i=1}^{n-1} M_{i}\right)}{\left(\prod_{i=-n}^{-1} M_{i}\right) M_{0}\left(\prod_{i=1}^{n-1} M_{i}\right)}
\end{aligned}
$$

M_{i} is transition matrix from column i to column $i+1$ compatible with $s^{\partial S_{n, n, n}}$ and

$$
\begin{aligned}
& S S S S S \\
& S \text {. } S \\
& \text { \# S • } S \\
& S \quad S \quad S \quad S \quad \cdot \quad S \\
& \mu\left(s^{0} \mid s^{\partial R_{n, n, n}}\right)=\frac{S}{} \quad \begin{array}{llll}
s & S & S & S \\
s
\end{array} \\
& S \text {. } S \\
& \# \text { S • } \cdot \text {. . } S \\
& S \quad S \quad S \quad \cdot \quad \cdot \quad S \\
& S S S \\
& =\frac{\left(\prod_{i=-n}^{-1} M_{i}\right) \hat{M}_{0}\left(\prod_{i=1}^{n-1} M_{i}\right)}{\left(\prod_{i=-n}^{-1} M_{i}\right) M_{0}\left(\prod_{i=1}^{n-1} M_{i}\right)}
\end{aligned}
$$

M_{i} is transition matrix from column i to column $i+1$ compatible with $s^{\partial S_{n, n, n}}$ and
\hat{M}_{0} is matrix obtained from M_{0} by forcing s at origin.

Topological Strong Spatial Mixing (TSSM)

- $A \mathbb{Z}^{d}$ SFT X satisfies topological strong spatial mixing (TSSM) with gap g if
for any disjoint $U, S, V \Subset Z^{d}$ s.t. $d(U, V) \geq g$, $u \in A^{U}, s \in A^{S}, v \in A^{V}$, s.t. $u s$ and $S V$ are globally admissible,
then so is usv.
- Safe symbol \Rightarrow TSSM

Topolqagical strons Spatial Mixing (TSSM)

for any disjoint $U, S, V \in Z^{d}$ s.t. $d(U, V) \geq g$,
$u \in A^{U}, s \in A^{S}, v \in A^{V}$, s.t. $u s$ and $s v$ are globally
admissible,
then so is usv.

- Safe symbol \Rightarrow TSSM

Topolqagical \$xrphs Spatial Mixing (TSSM)

for any disjoint $U, S, V \Subset Z^{d}$ s.t. $d(U, V) \geq g$,
$u \in A^{U}, s \in A^{S}, v \in A^{V}$, s.t. us and sv are globally admissible,
then so is usv.

- Safe symbol \Rightarrow TSSM

Topolqagical \$xrphs Spatial Mixing (TSSM)

for any disjoint $U, S, V \Subset Z^{d}$ s.t. $d(U, V) \geq g$,
$u \in A^{U}, s \in A^{S}, v \in A^{V}$, s.t. us and sv are globally admissible,
then so is usv.

- Safe symbol \Rightarrow TSSM

Topolqagical strons Spatial Mixing (TSSM)

for any disjoint $U, S, V \Subset Z^{d}$ s.t. $d(U, V) \geq g$,
$u \in A^{U}, s \in A^{S}, v \in A^{V}$, s.t. us and sv are globally admissible,
then so is usv.

- Safe symbol \Rightarrow TSSM

Topological Strong Spatial Mixing (TSSM)

- $A \mathbb{Z}^{d}$ SFT X satisfies topological strong spatial mixing (TSSM) with gap g if
for any disjoint $U, S, V \Subset Z^{d}$ s.t. $d(U, V) \geq g$,
$u \in A^{U}, s \in A^{S}, v \in A^{V}$, s.t. $u s$ and $s v$ are globally admissible,
then so is usv.
- Safe symbol \Rightarrow TSSM

Generalization

Theorem (Adams, Briceno, Marcus, Pavlov): Let X be a \mathbb{Z}^{d} n.n. SFT and μ an MME on X. If

- X satisfies TSSM
(2) For some periodic orbit O in X and all $\omega \in O$

Then

Moreover, if $d=2$ and convergence in hypothesis 2 is exponential, then there is a polynomial time algorithm to compute $h(X)$.

Generalization

Theorem (Adams, Briceno, Marcus, Pavlov): Let X be a \mathbb{Z}^{d} n.n. SFT and μ an MME on X. If
(1) X satisfies TSSM
(2) For some periodic orbit O in X and all $\omega \in O$

Then

Moreover, if $d=2$ and convergence in hypothesis 2 is exponential, then there is a polynomial time algorithm to compute $h(X)$.

Generalization

Theorem (Adams, Briceno, Marcus, Pavlov): Let X be a \mathbb{Z}^{d} n.n. SFT and μ an MME on X. If
(1) X satisfies TSSM
(2) For some periodic orbit O in X and all $\omega \in O$

$$
L(\omega):=\lim _{a, b, c \rightarrow \infty} \mu\left(\omega(0) \mid \omega\left(\partial R_{a, b, c}\right)\right) \text { exists }
$$

Then

Moreover, if $d=2$ and convergence in hypothesis 2 is exponential, then there is a polynomial time algorithm to compute $h(X)$.

Generalization

Theorem (Adams, Briceno, Marcus, Pavlov): Let X be a \mathbb{Z}^{d} n.n. SFT and μ an MME on X. If
(1) X satisfies TSSM
(2) For some periodic orbit O in X and all $\omega \in O$

$$
L(\omega):=\lim _{a, b, c \rightarrow \infty} \mu\left(\omega(0) \mid \omega\left(\partial R_{a, b, c}\right)\right) \text { exists }
$$

Then

Moreover, if $d=2$ and convergence in hypothesis 2 is exponential, then there is a polynomial time algorithm to compute $h(X)$.

Generalization

Theorem (Adams, Briceno, Marcus, Pavlov): Let X be a \mathbb{Z}^{d} n.n. SFT and μ an MME on X. If
(1) X satisfies TSSM
(2) For some periodic orbit O in X and all $\omega \in O$

$$
L(\omega):=\lim _{a, b, c \rightarrow \infty} \mu\left(\omega(0) \mid \omega\left(\partial R_{a, b, c}\right)\right) \text { exists }
$$

Then

$$
h(X)=-\frac{1}{|O|} \sum_{\omega \in O} \log L(\omega)
$$

Moreover, if $d=2$ and convergence in hypothesis 2 is
exponential, then there is a polynomial time algorithm to
compute $h(X)$.

Generalization

Theorem (Adams, Briceno, Marcus, Pavlov): Let X be a \mathbb{Z}^{d} n.n. SFT and μ an MME on X. If
(1) X satisfies TSSM
(2) For some periodic orbit O in X and all $\omega \in O$

$$
L(\omega):=\lim _{a, b, c \rightarrow \infty} \mu\left(\omega(0) \mid \omega\left(\partial R_{a, b, c}\right)\right) \text { exists }
$$

Then

$$
h(X)=-\frac{1}{|O|} \sum_{\omega \in O} \log L(\omega)
$$

Moreover, if $d=2$ and convergence in hypothesis 2 is exponential, then there is a polynomial time algorithm to compute $h(X)$.

Examples

Verification of exponential convergence condition: using coupling and Peierls arguments.

- hard squares
- a-checkerboard with $q \geq 6$
- iceberg with $M \geq 24$.

Examples

Verification of exponential convergence condition: using coupling and Peierls arguments.
Applies to:

- hard squares
- q-checkerboard with $q \geq 6$
- iceberg with $M \geq 24$.

Examples

Verification of exponential convergence condition: using coupling and Peierls arguments.
Applies to:

- hard squares
- q-checkerboard with $q \geq 6$
- iceberg with $M \geq 24$.

Examples

Verification of exponential convergence condition: using coupling and Peierls arguments.
Applies to:

- hard squares
- q-checkerboard with $q \geq 6$
- iceberg with $M \geq 24$.

Strong Spatial Mixing

- An MRF μ satisfies strong spatial mixing (SSM) at rate $f(n)$
if for all $V \Subset Z^{d}, U \subset V$
all $u \in A^{U}$, and $v, v^{\prime} \in A^{\partial V}$ satisfying $\mu(v), \mu\left(v^{\prime}\right)>0$,
we have $\left|\mu(u \mid v)-\mu\left(u \mid v^{\prime}\right)\right| \leq|U| f\left(d\left(U, \Sigma_{\partial v}\left(v, v^{\prime}\right)\right)\right)$. where $\Sigma_{\partial v}\left(v, v^{\prime}\right)=\left\{t \in \partial V: v(t) \neq v\left(t^{\prime}\right)\right\}$
- $\mathrm{SSM} \Rightarrow$ convergence condition in theorem.

Strong Spatial Mixing

- An MRF μ satisfies strong spatial mixing (SSM) at rate $f(n)$
if for all $V \Subset Z^{d}, U \subset V$
all $u \in A^{U}$, and $v, v^{\prime} \in A^{\partial V}$ satisfying $\mu(v), \mu\left(v^{\prime}\right)>0$,
we have $\left|\mu(u \mid v)-\mu\left(u \mid v^{\prime}\right)\right| \leq|U| f\left(d\left(U, \Sigma_{\partial v}\left(v, v^{\prime}\right)\right)\right)$.
where $\Sigma_{\partial v}\left(v, v^{\prime}\right)=\{t \in \partial V$

- $\mathrm{SSM} \Rightarrow$ convergence condition in theorem.

Strong Spatial Mixing

- An MRF μ satisfies strong spatial mixing (SSM) at rate $f(n)$
if for all $V \Subset Z^{d}, U \subset V$
all $u \in A^{U}$, and $v, v^{\prime} \in A^{\partial V}$ satisfying $\mu(v), \mu\left(v^{\prime}\right)>0$,
we have $\left|\mu(u \mid v)-\mu\left(u \mid v^{\prime}\right)\right| \leq|U| f\left(d\left(U, \Sigma_{\partial v}\left(v, v^{\prime}\right)\right)\right)$.
where $\Sigma_{\partial v}\left(v, v^{\prime}\right)=\left\{t \in \partial V: v(t) \neq v\left(t^{\prime}\right)\right\}$.
- $\mathrm{SSM} \Rightarrow$ convergence condition in theorem.

Strong Spatial Mixing

- An MRF μ satisfies strong spatial mixing (SSM) at rate $f(n)$
if for all $V \Subset Z^{d}, U \subset V$
all $u \in A^{U}$, and $v, v^{\prime} \in A^{\partial V}$ satisfying $\mu(v), \mu\left(v^{\prime}\right)>0$,
we have $\left|\mu(u \mid v)-\mu\left(u \mid v^{\prime}\right)\right| \leq|U| f\left(d\left(U, \Sigma_{\partial v}\left(v, v^{\prime}\right)\right)\right)$. where $\Sigma_{\partial v}\left(v, v^{\prime}\right)=\left\{t \in \partial V: v(t) \neq v\left(t^{\prime}\right)\right\}$.

Strong Spatial Mixing

- An MRF μ satisfies strong spatial mixing (SSM) at rate $f(n)$
if for all $V \Subset Z^{d}, U \subset V$
all $u \in A^{U}$, and $v, v^{\prime} \in A^{\partial V}$ satisfying $\mu(v), \mu\left(v^{\prime}\right)>0$,
we have $\left|\mu(u \mid v)-\mu\left(u \mid v^{\prime}\right)\right| \leq|U| f\left(d\left(U, \Sigma_{\partial v}\left(v, v^{\prime}\right)\right)\right)$.
where $\Sigma_{\partial v}\left(v, v^{\prime}\right)=\left\{t \in \partial V: v(t) \neq v\left(t^{\prime}\right)\right\}$.
- $\mathrm{SSM} \Rightarrow$ convergence condition in theorem.

Strong Spatial Mixing

- An MRF μ satisfies strong spatial mixing (SSM) at rate $f(n)$
if for all $V \Subset Z^{d}, U \subset V$
all $u \in A^{U}$, and $v, v^{\prime} \in A^{\partial V}$ satisfying $\mu(v), \mu\left(v^{\prime}\right)>0$,
we have $\left|\mu(u \mid v)-\mu\left(u \mid v^{\prime}\right)\right| \leq|U| f\left(d\left(U, \Sigma_{\partial v}\left(v, v^{\prime}\right)\right)\right)$.
where $\Sigma_{\partial v}\left(v, v^{\prime}\right)=\left\{t \in \partial V: v(t) \neq v\left(t^{\prime}\right)\right\}$.
- $\mathrm{SSM} \Rightarrow$ convergence condition in theorem.

Stronger conclusion

Theorem (Briceno): Let X be a \mathbb{Z}^{d} n.n. SFT and μ an MME on X. If
(1) X satisfies TSSM
(2) μ satisfies SSM

Then for all invariant measures ν s.t. support $(\nu) \subseteq X$,

Applies to:

- hard sauares
- q-checkerboard with $q \geq 6$
but not to iceberg.

Stronger conclusion

Theorem (Briceno): Let X be a \mathbb{Z}^{d} n.n. SFT and μ an MME on X. If
(1) X satisfies TSSM
© μ satisfies SSM
Then for all invariant measures ν s.t. support $(\nu) \subseteq X$,

$$
h(x)=\int I_{\mu}(x) d \nu(x)
$$

Applies to:

- hard squares
- q-checkerboard with $q \geq 6$
but not to iceberg.

Stronger conclusion

Theorem (Briceno): Let X be a \mathbb{Z}^{d} n.n. SFT and μ an MME on X. If
(1) X satisfies TSSM
(2) μ satisfies SSM

Then for all invariant measures ν s.t. support $(\nu) \subseteq X$,

$$
h(X)=\int I_{\mu}(x) d \nu(x)
$$

Applies to:

- hard squares
- q-checkerboard with $q \geq 6$
but not to iceberg.

Stronger conclusion

Theorem (Briceno): Let X be a \mathbb{Z}^{d} n.n. SFT and μ an MME on X. If
(1) X satisfies TSSM
(2) μ satisfies SSM

Then for all invariant measures ν s.t. support $(\nu) \subseteq X$,

$$
h(X)=\int I_{\mu}(x) d \nu(x)
$$

Applies to:

- hard squares
- q-checkerboard with $q \geq 6$
but not to iceberg.

Stronger conclusion

Theorem (Briceno): Let X be a \mathbb{Z}^{d} n.n. SFT and μ an MME on X. If
(1) X satisfies TSSM
(2) μ satisfies SSM

Then for all invariant measures ν s.t. support $(\nu) \subseteq X$,

$$
h(X)=\int I_{\mu}(x) d \nu(x)
$$

Applies to:

- hard squares
- q-checkerboard with $q \geq 6$
but not to iceberg.

Stronger conclusion

Theorem (Briceno): Let X be a \mathbb{Z}^{d} n.n. SFT and μ an MME on X. If
(1) X satisfies TSSM
(2) μ satisfies SSM

Then for all invariant measures ν s.t. support $(\nu) \subseteq X$,

$$
h(X)=\int I_{\mu}(x) d \nu(x)
$$

Applies to:

- hard squares
- q-checkerboard with $q \geq 6$
but not to iceberg.

Stronger conclusion

Theorem (Briceno): Let X be a \mathbb{Z}^{d} n.n. SFT and μ an MME on X. If
(1) X satisfies TSSM
(2) μ satisfies SSM

Then for all invariant measures ν s.t. support $(\nu) \subseteq X$,

$$
h(X)=\int I_{\mu}(x) d \nu(x)
$$

Applies to:

- hard squares
- q-checkerboard with $q \geq 6$
but not to iceberg.

Stronger conclusion

Theorem (Briceno): Let X be a \mathbb{Z}^{d} n.n. SFT and μ an MME on X. If
(1) X satisfies TSSM
(2) μ satisfies SSM

Then for all invariant measures ν s.t. support $(\nu) \subseteq X$,

$$
h(X)=\int I_{\mu}(x) d \nu(x)
$$

Applies to:

- hard squares
- q-checkerboard with $q \geq 6$
but not to iceberg.

Extension to Pressure

- Generalize results from entropy to pressure of nearest neighbour interactions
- Applies to large sets of parameters for classical models in statistical physics, including Hard squares, Ising, Potts, and Widom-Rowlinson.

Extension to Pressure

- Generalize results from entropy to pressure of nearest neighbour interactions
- Applies to large sets of parameters for classical models in statistical physics, including Hard squares, Ising, Potts, and Widom-Rowlinson.

Topological Pressure and Variational Principle

- Let X be a shift space and $f: X \rightarrow \mathbb{R}$ a continuous function.
- Topological Pressure (defined by Variational Principle):

where the sup is taken over all shift-invariant Borel probability measures μ such that support $(\mu) \subseteq X$.
- Fact: The sup is always achieved.
- A measure which achieves the sup is called an equilibrium state.
- Note: $P_{X}(0)=h(X)$.

Topological Pressure and Variational Principle

- Let X be a shift space and $f: X \rightarrow \mathbb{R}$ a continuous function.
- Topological Pressure (defined by Variational Principle):

$$
P_{X}(f):=\sup _{\mu} h(\mu)+\int f d \mu
$$

where the sup is taken over all shift-invariant Borel probability measures μ such that support $(\mu) \subseteq X$.

- Fact: The sup is always achieved.
- A measure which achieves the sup is called an equilibrium state.
- Note: $P_{X}(0)=h(X)$.

Topological Pressure and Variational Principle

- Let X be a shift space and $f: X \rightarrow \mathbb{R}$ a continuous function.
- Topological Pressure (defined by Variational Principle):

$$
P_{X}(f):=\sup _{\mu} h(\mu)+\int f d \mu
$$

where the sup is taken over all shift-invariant Borel probability measures μ such that support $(\mu) \subseteq X$.

- Fact: The sup is always achieved.
- A measure which achieves the sup is called an equilibrium state.
- Note: $P_{X}(0)=h(X)$.

Topological Pressure and Variational Principle

- Let X be a shift space and $f: X \rightarrow \mathbb{R}$ a continuous function.
- Topological Pressure (defined by Variational Principle):

$$
P_{X}(f):=\sup _{\mu} h(\mu)+\int f d \mu
$$

where the sup is taken over all shift-invariant Borel probability measures μ such that support $(\mu) \subseteq X$.

- Fact: The sup is always achieved.
- A measure which achieves the sup is called an equilibrium state.

Topological Pressure and Variational Principle

- Let X be a shift space and $f: X \rightarrow \mathbb{R}$ a continuous function.
- Topological Pressure (defined by Variational Principle):

$$
P_{X}(f):=\sup _{\mu} h(\mu)+\int f d \mu
$$

where the sup is taken over all shift-invariant Borel probability measures μ such that support $(\mu) \subseteq X$.

- Fact: The sup is always achieved.
- A measure which achieves the sup is called an equilibrium state.
- Note: $P_{X}(0)=h(X)$.

Topological Pressure and Variational Principle

- Let X be a shift space and $f: X \rightarrow \mathbb{R}$ a continuous function.
- Topological Pressure (defined by Variational Principle):

$$
P_{X}(f):=\sup _{\mu} h(\mu)+\int f d \mu
$$

where the sup is taken over all shift-invariant Borel probability measures μ such that support $(\mu) \subseteq X$.

- Fact: The sup is always achieved.
- A measure which achieves the sup is called an equilibrium state.
- Note: $P_{X}(0)=h(X)$.

Nearest-Neighbour interactions and Gibbs measures

- A nearest-neighbor interaction is a shift-invariant function Φ from a set of configurations on vertices and edges in \mathbb{Z}^{d} to $\mathbb{R} \cup \infty$
- For a nearest-neighbor interaction Φ, the underlying SFT:

where

Nearest-Neighbour interactions and Gibbs measures

- A nearest-neighbor interaction is a shift-invariant function Φ from a set of configurations on vertices and edges in \mathbb{Z}^{d} to $\mathbb{R} \cup \infty$
- For a nearest-neighbor interaction Φ, the underlying SFT:

$$
X=X_{\Phi}:=\left\{x \in \mathcal{A}^{\mathbb{Z}^{d}}: \Phi\left(x\left(\left\{v, v^{\prime}\right\}\right)\right) \neq \infty \text {, for all } v \sim v^{\prime}\right\} .
$$

- A nearest neighbour (n.n.) Gibbs measure μ corresponding to Φ is an MRF on X such that for $S \in \mathbb{Z}^{d}$

where

Nearest-Neighbour interactions and Gibbs measures

- A nearest-neighbor interaction is a shift-invariant function Φ from a set of configurations on vertices and edges in \mathbb{Z}^{d} to $\mathbb{R} \cup \infty$
- For a nearest-neighbor interaction Φ, the underlying SFT:

$$
X=X_{\Phi}:=\left\{x \in \mathcal{A}^{\mathbb{Z}^{d}}: \Phi\left(x\left(\left\{v, v^{\prime}\right\}\right)\right) \neq \infty, \text { for all } v \sim v^{\prime}\right\} .
$$

- A nearest neighbour (n.n.) Gibbs measure μ corresponding to Φ is an MRF on X such that for $S \in \mathbb{Z}^{d}$, $\delta \in \mathcal{A}^{\partial S}, \mu(\delta)>0, w \in \mathcal{A}^{S}:$

where

Nearest-Neighbour interactions and Gibbs measures

- A nearest-neighbor interaction is a shift-invariant function Φ from a set of configurations on vertices and edges in \mathbb{Z}^{d} to $\mathbb{R} \cup \infty$
- For a nearest-neighbor interaction Φ, the underlying SFT:

$$
X=X_{\Phi}:=\left\{x \in \mathcal{A}^{\mathbb{Z}^{d}}: \Phi\left(x\left(\left\{v, v^{\prime}\right\}\right)\right) \neq \infty, \text { for all } v \sim v^{\prime}\right\} .
$$

- A nearest neighbour (n.n.) Gibbs measure μ corresponding to ϕ is an MRF on X such that for $S \in \mathbb{Z}^{d}$, $\delta \in \mathcal{A}^{\partial S}, \mu(\delta)>0, w \in \mathcal{A}^{S}:$

$$
\mu(w \mid \delta)=\frac{e^{-U^{\Phi}(w \delta)}}{Z^{\Phi, \delta}(S)} .
$$

where

- $U^{\Phi}(w \delta)$ is the sum of all Φ-values of $w \delta$ for vertices, edges
- $Z^{\Phi, \delta}(S)$ is the normalization factor.

Nearest-Neighbour interactions and Gibbs measures

- A nearest-neighbor interaction is a shift-invariant function Φ from a set of configurations on vertices and edges in \mathbb{Z}^{d} to $\mathbb{R} \cup \infty$
- For a nearest-neighbor interaction Φ, the underlying SFT:

$$
X=X_{\Phi}:=\left\{x \in \mathcal{A}^{\mathbb{Z}^{d}}: \Phi\left(x\left(\left\{v, v^{\prime}\right\}\right)\right) \neq \infty, \text { for all } v \sim v^{\prime}\right\}
$$

- A nearest neighbour (n.n.) Gibbs measure μ corresponding to Φ is an MRF on X such that for $S \Subset \mathbb{Z}^{d}$, $\delta \in \mathcal{A}^{\partial S}, \mu(\delta)>0, w \in \mathcal{A}^{S}:$

$$
\mu(w \mid \delta)=\frac{e^{-U^{\Phi}(w \delta)}}{Z^{\Phi, \delta}(S)}
$$

where

- $U^{\Phi}(w \delta)$ is the sum of all Φ-values of $w \delta$ for vertices, edges in $S \cup \partial S$

Nearest-Neighbour interactions and Gibbs measures

- A nearest-neighbor interaction is a shift-invariant function Φ from a set of configurations on vertices and edges in \mathbb{Z}^{d} to $\mathbb{R} \cup \infty$
- For a nearest-neighbor interaction Φ, the underlying SFT:

$$
X=X_{\Phi}:=\left\{x \in \mathcal{A}^{\mathbb{Z}^{d}}: \Phi\left(x\left(\left\{v, v^{\prime}\right\}\right)\right) \neq \infty, \text { for all } v \sim v^{\prime}\right\}
$$

- A nearest neighbour (n.n.) Gibbs measure μ corresponding to Φ is an MRF on X such that for $S \Subset \mathbb{Z}^{d}$, $\delta \in \mathcal{A}^{\partial S}, \mu(\delta)>0, w \in \mathcal{A}^{S}:$

$$
\mu(w \mid \delta)=\frac{e^{-U^{\Phi}(w \delta)}}{Z^{\Phi, \delta}(S)}
$$

where

- $U^{\Phi}(w \delta)$ is the sum of all Φ-values of $w \delta$ for vertices, edges in $S \cup \partial S$
- $Z^{\Phi, \delta}(S)$ is the normalization factor.

Examples of n.n. Gibbs measures

- uniform MME on n.n. SFT
- hard square model with activities
- ferromagnetic Ising model with no external field.

Equilibrium states versus n.n. Gibbs measures

- Pressure of n.n. interaction Φ :

$$
P(\Phi):=\lim _{n \rightarrow \infty} \frac{\log Z^{\Phi}\left(B_{n}\right)}{n^{d}}
$$

where $Z^{\Phi}\left(B_{n}\right)$ is the "free boundary" normalization.

- Let $A_{\Phi}(x):=-\Phi(x(0))-\sum_{i=1}^{d} \Phi\left(x(0), x\left(e_{i}\right)\right)$.
- Fact: $P_{X_{\Phi}}\left(A_{\Phi}\right)=P(\Phi)$.
- Lanford-Ruelle Theorem: Every equilibrium state for A_{Φ} is a Gibbs measure for Φ.
- Dobrushin Theorem: If X_{∞} is strongly irreducible, then every Gibbs measure for Φ is an equilibrium state for A_{Φ}.
- These theorems hold in much greater generality.

Equilibrium states versus n.n. Gibbs measures

- Pressure of n.n. interaction Φ :

$$
P(\Phi):=\lim _{n \rightarrow \infty} \frac{\log Z^{\Phi}\left(B_{n}\right)}{n^{d}}
$$

where $Z^{\Phi}\left(B_{n}\right)$ is the "free boundary" normalization.

- Let $A_{\Phi}(x):=-\Phi(x(0))-\sum_{i=1}^{d} \Phi\left(x(0), x\left(e_{i}\right)\right)$.
- Fact: $P_{x_{\Phi}}\left(A_{\Phi}\right)=P(\Phi)$.
- Lanford-Ruelle Theorem: Every equilibrium state for A_{ϕ} is
a Gibbs measure for ϕ.
- Dobrushin Theorem: If X_{Φ} is strongly irreducible, then every Gibbs measure for Φ is an equilibrium state for A_{Φ}.
- These theorems hold in much greater generality.

Equilibrium states versus n.n. Gibbs measures

- Pressure of n.n. interaction Φ :

$$
P(\Phi):=\lim _{n \rightarrow \infty} \frac{\log Z^{\Phi}\left(B_{n}\right)}{n^{d}}
$$

where $Z^{\Phi}\left(B_{n}\right)$ is the "free boundary" normalization.

- Let $A_{\Phi}(x):=-\Phi(x(0))-\sum_{i=1}^{d} \Phi\left(x(0), x\left(e_{i}\right)\right)$.
- Fact: $P_{X_{\phi}}\left(A_{\phi}\right)=P(\Phi)$.
- Lanford-Ruelle Theorem: Every equilibrium state for A_{Φ} is
a Gibbs measure for ϕ.
- Dobrushin Theorem: If X_{Φ} is strongly irreducible, then every Gibbs measure for Φ is an equilibrium state for A_{Φ}.
- These theorems hold in much greater generality.

Equilibrium states versus n.n. Gibbs measures

- Pressure of n.n. interaction Φ :

$$
P(\Phi):=\lim _{n \rightarrow \infty} \frac{\log Z^{\Phi}\left(B_{n}\right)}{n^{d}}
$$

where $Z^{\Phi}\left(B_{n}\right)$ is the "free boundary" normalization.

- Let $A_{\Phi}(x):=-\Phi(x(0))-\sum_{i=1}^{d} \Phi\left(x(0), x\left(e_{i}\right)\right)$.
- Fact: $P_{X_{\phi}}\left(A_{\Phi}\right)=P(\Phi)$.
- Lanford-Ruelle Theorem: Every equilibrium state for A_{Φ} is
a Gibbs measure for Φ.
- Dobrushin Theorem: If X_{∞} is strongly irreducible, then
every Gibbs measure for Φ is an equilibrium state for A_{Φ}.
- These theorems hold in much greater generality.

Equilibrium states versus n.n. Gibbs measures

- Pressure of n.n. interaction Φ :

$$
P(\Phi):=\lim _{n \rightarrow \infty} \frac{\log Z^{\Phi}\left(B_{n}\right)}{n^{d}}
$$

where $Z^{\Phi}\left(B_{n}\right)$ is the "free boundary" normalization.

- Let $A_{\Phi}(x):=-\Phi(x(0))-\sum_{i=1}^{d} \Phi\left(x(0), x\left(e_{i}\right)\right)$.
- Fact: $P_{X_{\phi}}\left(A_{\Phi}\right)=P(\Phi)$.
- Lanford-Ruelle Theorem: Every equilibrium state for A_{Φ} is a Gibbs measure for Φ.
- Dobrushin Theorem: If X_{Φ} is strongly irreducible, then every Gibbs measure for Φ is an equilibrium state for A_{Φ}. - These theorems hold in much greater generality.

Equilibrium states versus n.n. Gibbs measures

- Pressure of n.n. interaction Φ :

$$
P(\Phi):=\lim _{n \rightarrow \infty} \frac{\log Z^{\Phi}\left(B_{n}\right)}{n^{d}}
$$

where $Z^{\Phi}\left(B_{n}\right)$ is the "free boundary" normalization.

- Let $A_{\Phi}(x):=-\Phi(x(0))-\sum_{i=1}^{d} \Phi\left(x(0), x\left(e_{i}\right)\right)$.
- Fact: $P_{X_{\phi}}\left(A_{\Phi}\right)=P(\Phi)$.
- Lanford-Ruelle Theorem: Every equilibrium state for A_{Φ} is a Gibbs measure for Φ.
- Dobrushin Theorem: If X_{Φ} is strongly irreducible, then every Gibbs measure for Φ is an equilibrium state for A_{Φ}.
- These theorems hold in much greater generality.

Equilibrium states versus n.n. Gibbs measures

- Pressure of n.n. interaction Φ :

$$
P(\Phi):=\lim _{n \rightarrow \infty} \frac{\log Z^{\Phi}\left(B_{n}\right)}{n^{d}}
$$

where $Z^{\Phi}\left(B_{n}\right)$ is the "free boundary" normalization.

- Let $A_{\Phi}(x):=-\Phi(x(0))-\sum_{i=1}^{d} \Phi\left(x(0), x\left(e_{i}\right)\right)$.
- Fact: $P_{X_{\phi}}\left(A_{\Phi}\right)=P(\Phi)$.
- Lanford-Ruelle Theorem: Every equilibrium state for A_{Φ} is a Gibbs measure for Φ.
- Dobrushin Theorem: If X_{Φ} is strongly irreducible, then every Gibbs measure for Φ is an equilibrium state for A_{Φ}.
- These theorems hold in much greater generality.

Pressure representation and approximation

Theorem (Adams, Briceno, Marcus, Pavlov): Let μ a Gibbs measure for a n.n. interaction Φ with underlying \mathbb{Z}^{d} n.n. SFT X. If

- X satisfies TSSM
(2) For some periodic orbit O in X and all $\omega \in O$

Then

Moreover, if $d=2$ and convergence in hypothesis 2 is
exponential, then there is a polynomial time algorithm to
compute $P(\Phi)$

Pressure representation and approximation

Theorem (Adams, Briceno, Marcus, Pavlov): Let μ a Gibbs measure for a n.n. interaction Φ with underlying \mathbb{Z}^{d} n.n. SFT X. If
(1) X satisfies TSSM
(2) For some periodic orbit O in X and all $\omega \in O$

Then

Moreover, if $d=2$ and convergence in hypothesis 2 is
exponential, then there is a polynomial time algorithm to
compute $P(\Phi)$

Pressure representation and approximation

Theorem (Adams, Briceno, Marcus, Pavlov): Let μ a Gibbs measure for a n.n. interaction Φ with underlying \mathbb{Z}^{d} n.n. SFT X. If
(1) X satisfies TSSM
(2) For some periodic orbit O in X and all $\omega \in O$

$$
L(\omega):=\lim _{a, b, c \rightarrow \infty} \mu\left(\omega(0) \mid \omega\left(\partial R_{a, b, c}\right)\right) \text { exists }
$$

Then

Moreover, if $d=2$ and convergence in hypothesis 2 is exponential, then there is a polynomial time algorithm to compute $P(\Phi)$

Pressure representation and approximation

Theorem (Adams, Briceno, Marcus, Pavlov): Let μ a Gibbs measure for a n.n. interaction Φ with underlying \mathbb{Z}^{d} n.n. SFT X. If
(1) X satisfies TSSM
(2) For some periodic orbit O in X and all $\omega \in O$

$$
L(\omega):=\lim _{a, b, c \rightarrow \infty} \mu\left(\omega(0) \mid \omega\left(\partial R_{a, b, c}\right)\right) \text { exists }
$$

Then

Moreover, if $d=2$ and convergence in hypothesis 2 is exponential, then there is a polynomial time algorithm to compute $P(\Phi)$

Pressure representation and approximation

Theorem (Adams, Briceno, Marcus, Pavlov): Let μ a Gibbs measure for a n.n. interaction Φ with underlying \mathbb{Z}^{d} n.n. SFT X. If
(1) X satisfies TSSM
(2) For some periodic orbit O in X and all $\omega \in O$

$$
L(\omega):=\lim _{a, b, c \rightarrow \infty} \mu\left(\omega(0) \mid \omega\left(\partial R_{a, b, c}\right)\right) \text { exists }
$$

Then

$$
P(\Phi)=\frac{1}{|O|} \sum_{\omega \in O}-\log L(\omega)+A_{\Phi}(\omega)
$$

Moreover, if $d=2$ and convergence in hypothesis 2 is exponential, then there is a polynomial time algorithm to compute $P(\Phi)$.

Pressure representation and approximation

Theorem (Adams, Briceno, Marcus, Pavlov): Let μ a Gibbs measure for a n.n. interaction Φ with underlying \mathbb{Z}^{d} n.n. SFT X. If
(1) X satisfies TSSM
(2) For some periodic orbit O in X and all $\omega \in O$

$$
L(\omega):=\lim _{a, b, c \rightarrow \infty} \mu\left(\omega(0) \mid \omega\left(\partial R_{a, b, c}\right)\right) \text { exists }
$$

Then

$$
P(\Phi)=\frac{1}{|O|} \sum_{\omega \in O}-\log L(\omega)+A_{\Phi}(\omega)
$$

Moreover, if $d=2$ and convergence in hypothesis 2 is exponential, then there is a polynomial time algorithm to compute $P(\Phi)$.

Stronger conclusion

Theorem (Briceno): Let μ a Gibbs measure for a n.n. interaction Φ with underlying \mathbb{Z}^{d} n.n. SFT X. If

- X satisfies TSSM
- μ satisfies SSM.

Then for all shift-invariant measures ν such that support $(\nu) \subseteq X$,

$$
P(\Phi)=\int\left(I_{\mu}(x)+A_{\Phi}(x)\right) d \nu
$$

Stronger conclusion

Theorem (Briceno): Let μ a Gibbs measure for a n.n. interaction Φ with underlying \mathbb{Z}^{d} n.n. SFT X. If

- X satisfies TSSM
- μ satisfies SSM.

Then for all shift-invariant measures ν such that support $(\nu) \subseteq X$,

$$
P(\Phi)=\int\left(I_{\mu}(x)+A_{\Phi}(x)\right) d \nu
$$

Stronger conclusion

Theorem (Briceno): Let μ a Gibbs measure for a n.n. interaction Φ with underlying \mathbb{Z}^{d} n.n. SFT X. If

- X satisfies TSSM
- μ satisfies SSM.

Then for all shift-invariant measures ν such that
support $(\nu) \subseteq X$,

$$
P(\Phi)=\int\left(I_{\mu}(x)+A_{\Phi}(x)\right) d \nu
$$

Stronger conclusion

Theorem (Briceno): Let μ a Gibbs measure for a n.n. interaction Φ with underlying \mathbb{Z}^{d} n.n. SFT X. If

- X satisfies TSSM
- μ satisfies SSM.

Then for all shift-invariant measures ν such that $\operatorname{support}(\nu) \subseteq X$,

$$
P(\Phi)=\int\left(I_{\mu}(x)+A_{\Phi}(x)\right) d \nu
$$

Theorem (Briceno): Let μ a Gibbs measure for a n.n. interaction Φ with underlying \mathbb{Z}^{d} n.n. SFT X. If

- X satisfies TSSM
- μ satisfies SSM.

Then for all shift-invariant measures ν such that support $(\nu) \subseteq X$,

$$
P(\Phi)=\int\left(I_{\mu}(x)+A_{\Phi}(x)\right) d \nu
$$

D-condition

An SFT X satisfies the \mathbf{D}-condition if

- there exist sequences of finite subsets $\left(\Lambda_{n}\right),\left(M_{n}\right)$ of \mathbb{Z}^{d} such that $\Lambda_{n} \nearrow \infty, \Lambda_{n} \subseteq M_{n}, \frac{\left|M_{n}\right|}{\left|\Lambda_{n}\right|} \rightarrow 1$, such that
- for any alobally admissible $v \in \mathcal{A}^{\wedge_{n}}$ and finite $S \subset M_{n}^{c}$ and globally admissible $w \in \mathcal{A}^{S}$, we have that $v w$ is globally admissible.
Safe symbol \Rightarrow TSSM \Rightarrow D-condition

D-condition

An SFT X satisfies the D-condition if

- there exist sequences of finite subsets $\left(\Lambda_{n}\right),\left(M_{n}\right)$ of \mathbb{Z}^{d} such that $\Lambda_{n} \nearrow \infty, \Lambda_{n} \subseteq M_{n}, \frac{\left|M_{n}\right|}{\left|\Lambda_{n}\right|} \rightarrow 1$, such that
- for any globally admissible $v \in \mathcal{A}^{\Lambda_{n}}$ and finite $S \subset M_{n}^{C}$ and globally admissible $w \in \mathcal{A}^{S}$, we have that $v w$ is globally admissible.

Safe symbol \Rightarrow TSSM \Rightarrow D-condition

An SFT X satisfies the D-condition if

- there exist sequences of finite subsets $\left(\Lambda_{n}\right),\left(M_{n}\right)$ of \mathbb{Z}^{d} such that $\Lambda_{n} \nearrow \infty, \Lambda_{n} \subseteq M_{n}, \frac{\left|M_{n}\right|}{\left|\Lambda_{n}\right|} \rightarrow 1$, such that
- for any globally admissible $v \in \mathcal{A}^{\Lambda_{n}}$ and finite $S \subset M_{n}^{c}$ and globally admissible $w \in \mathcal{A}^{S}$, we have that $v w$ is globally admissible.
Safe symbol \Rightarrow TSSM \Rightarrow D-condition

An SFT X satisfies the D-condition if

- there exist sequences of finite subsets $\left(\Lambda_{n}\right),\left(M_{n}\right)$ of \mathbb{Z}^{d} such that $\Lambda_{n} \nearrow \infty, \Lambda_{n} \subseteq M_{n}, \frac{\left|M_{n}\right|}{\left|\Lambda_{n}\right|} \rightarrow 1$, such that
- for any globally admissible $v \in \mathcal{A}^{\Lambda_{n}}$ and finite $S \subset M_{n}^{c}$ and globally admissible $w \in \mathcal{A}^{S}$, we have that $v w$ is globally admissible.
Safe symbol \Rightarrow TSSM \Rightarrow D-condition

Connection with Thermodynamic Formalism

Theorem: Let μ a Gibbs measure for a n.n. interaction Φ with underlying \mathbb{Z}^{d} n.n. SFT X. If

- X satisfies the D-condition
- $I_{\mu}=A_{\psi}$ for some absolutely summable interaction ψ s.t.

Then

$$
P(\Phi)=\int I_{\mu}(x)+A_{\Phi}(x) d \nu(x)
$$

for every shift-invariant measure ν with support $(\nu) \subseteq X$.

Connection with Thermodynamic Formalism

Theorem: Let μ a Gibbs measure for a n.n. interaction Φ with underlying \mathbb{Z}^{d} n.n. SFT X. If

- X satisfies the D-condition
- $I_{\mu}=A_{\psi}$ for some absolutely summable interaction Ψ s.t.

Then

$$
P(\Phi)=\int I_{\mu}(x)+A_{\Phi}(x) d \nu(x)
$$

for every shift-invariant measure ν with $\operatorname{support}(\nu) \subseteq X$.

Connection with Thermodynamic Formalism

Theorem: Let μ a Gibbs measure for a n.n. interaction Φ with underlying \mathbb{Z}^{d} n.n. SFT X. If

- X satisfies the D-condition
- $I_{\mu}=A_{\psi}$ for some absolutely summable interaction ψ s.t. $X_{\psi}=X$,
Then

$$
P(\Phi)=\int I_{\mu}(x)+A_{\Phi}(x) d \nu(x)
$$

for every shift-invariant measure ν with $\operatorname{support}(\nu) \subseteq X$.

Connection with Thermodynamic Formalism

Theorem: Let μ a Gibbs measure for a n.n. interaction Φ with underlying \mathbb{Z}^{d} n.n. SFT X. If

- X satisfies the D-condition
- $I_{\mu}=A_{\psi}$ for some absolutely summable interaction Ψ s.t. $X_{\psi}=X$,
Then

$$
P(\Phi)=\int I_{\mu}(x)+A_{\Phi}(x) d \nu(x)
$$

for every shift-invariant measure ν with $\operatorname{support}(\nu) \subseteq X$.

- Assuming adjacency matrix A is irreducible and aperiodic, there is a unique $\mathrm{MME} \mu_{\max }$,

where $\lambda=\lambda(A)$ and r is a right eigenvector for λ, and stationary vector $r_{i} \ell_{i}$ where ℓ is a left eigenvector for λ (suitably normalized)
- Thus, if $\mu\left(w_{1} w_{2} \ldots w_{n-1} w_{n}\right)>0$, then

- Thus, fixing w_{1}, w_{n},
$\mu\left(w_{2} \ldots w_{n-1} \mid w_{1}, w_{n}\right)$ is uniform
- Assuming adjacency matrix A is irreducible and aperiodic, there is a unique MME $\mu_{\max }$, which is a Markov chain given by transition matrix

$$
P_{i j}=\left\{\begin{array}{cc}
\frac{r_{j}}{\lambda r_{i}} & i j \notin \mathcal{F} \\
0 & i j \in \mathcal{F}
\end{array}\right\}
$$

where $\lambda=\lambda(A)$ and r is a right eigenvector for λ,
stationary vector $r_{i} \ell_{i}$ where ℓ is a left eigenvector for λ
(suitably normalized)

- Thus, if $\mu\left(w_{1} w_{2} \ldots w_{n-1} w_{n}\right)>0$, then
$\mu\left(W_{1} w_{2} \ldots w_{n-1}+w_{n}\right)=\frac{\ell_{w_{1}} l_{W_{n}}}{\lambda^{n}-1}$
- Thus, fixing w_{1}, w_{n},
$\mu\left(w_{2} \ldots w_{n-1} \mid w_{1}, w_{n}\right)$ is uniform
- Assuming adjacency matrix A is irreducible and aperiodic, there is a unique MME $\mu_{\max }$, which is a Markov chain given by transition matrix

$$
P_{i j}=\left\{\begin{array}{cc}
\frac{r_{j}}{\lambda r_{i}} & i j \notin \mathcal{F} \\
0 & i j \in \mathcal{F}
\end{array}\right\}
$$

where $\lambda=\lambda(A)$ and r is a right eigenvector for λ, and stationary vector $r_{i} \ell_{i}$ where ℓ is a left eigenvector for λ (suitably normalized)
Thus, $\mu_{1} \mu_{1} w_{1} w_{2}$ $\left.w_{n-1} w_{n}\right)>0$, then

- Thus, fixing w_{1}, w_{n},
- Assuming adjacency matrix A is irreducible and aperiodic, there is a unique MME $\mu_{\max }$, which is a Markov chain given by transition matrix

$$
P_{i j}=\left\{\begin{array}{cc}
\frac{r_{j}}{\lambda r_{i}} & i j \notin \mathcal{F} \\
0 & i j \in \mathcal{F}
\end{array}\right\}
$$

where $\lambda=\lambda(A)$ and r is a right eigenvector for λ, and stationary vector $r_{i} \ell_{i}$ where ℓ is a left eigenvector for λ (suitably normalized)

- Thus, if $\mu\left(w_{1} w_{2} \ldots w_{n-1} w_{n}\right)>0$, then

$$
\mu\left(w_{1} w_{2} \ldots w_{n-1} w_{n}\right)=\frac{\ell_{w_{1}} r_{w_{n}}}{\lambda^{n-1}}
$$

- Thus, fixing w_{1}, w_{n},

$$
\mu\left(w_{2} \ldots w_{n-1} \mid w_{1}, w_{n}\right) \text { is uniform }
$$

- Assuming adjacency matrix A is irreducible and aperiodic, there is a unique MME $\mu_{\max }$, which is a Markov chain given by transition matrix

$$
P_{i j}=\left\{\begin{array}{cc}
\frac{r_{j}}{\lambda r_{i}} & i j \notin \mathcal{F} \\
0 & i j \in \mathcal{F}
\end{array}\right\}
$$

where $\lambda=\lambda(A)$ and r is a right eigenvector for λ, and stationary vector $r_{i} \ell_{i}$ where ℓ is a left eigenvector for λ (suitably normalized)

- Thus, if $\mu\left(w_{1} w_{2} \ldots w_{n-1} w_{n}\right)>0$, then

$$
\mu\left(w_{1} w_{2} \ldots w_{n-1} w_{n}\right)=\frac{\ell_{w_{1}} r_{w_{n}}}{\lambda^{n-1}}
$$

- Thus, fixing w_{1}, w_{n},

$$
\mu\left(w_{2} \ldots w_{n-1} \mid w_{1}, w_{n}\right) \text { is uniform }
$$

Entropy representation for MME, $d=1$

$$
\begin{aligned}
I_{\mu}(x) & =-\log \mu\left(x(0) \mid x\left(\mathcal{P}^{-}\right)\right) \\
& =-\log P_{x_{0} x_{-1}} \\
& =\log \lambda+\log r_{x_{-1}}-\log r_{x_{0}}
\end{aligned}
$$

- So, for all invariant measures ν,

In particular, if the SFT has a fixed point $x^{*}:=a^{\mathbb{Z}}$ and ν is the delta measure on x^{*}, then on

$$
h(X)=\int I_{\mu}(x) d \nu(x)=I_{\mu}\left(x^{*}\right)=-\log \mu\left(x^{*}\right)
$$

and so $h(X)$ can be computed from the value of the
information function at only one point.

- In this case, $I_{\mu}(x)$ is defined everywhere.

Entropy representation for MME, $d=1$

$$
\begin{aligned}
I_{\mu}(x) & =-\log \mu\left(x(0) \mid x\left(\mathcal{P}^{-}\right)\right) \\
& =-\log P_{x_{0} x_{-1}} \\
& =\log \lambda+\log r_{x_{-1}}-\log r_{x_{0}}
\end{aligned}
$$

- So, for all invariant measures ν,

$$
\begin{aligned}
\int I_{\mu}(x) d \nu(x) & =\int\left(\log \lambda+\log r_{x_{-1}}-\log r_{x_{0}}\right) d \nu(x) \\
& =\log \lambda \\
& =h(X)
\end{aligned}
$$

In particular, if the SFT has a fixed point $x^{*}:=a^{\mathbb{Z}}$ and ν is
the delta measure on X^{*}, then on

$$
h(X)=\int I_{\mu}(x) d \nu(x)=I_{\mu}\left(x^{*}\right)=-\log \mu\left(x^{*}\right)
$$

and so $h(X)$ can be computed from the value of the
information function at only one point.

- In this case, $I_{\mu}(x)$ is defined everywhere.

Entropy representation for MME, $d=1$

$$
\begin{aligned}
I_{\mu}(x) & =-\log \mu\left(x(0) \mid x\left(\mathcal{P}^{-}\right)\right) \\
& =-\log P_{x_{0} x_{-1}} \\
& =\log \lambda+\log r_{x_{-1}}-\log r_{x_{0}}
\end{aligned}
$$

- So, for all invariant measures ν,

$$
\begin{aligned}
\int I_{\mu}(x) d \nu(x) & =\int\left(\log \lambda+\log r_{x_{-1}}-\log r_{x_{0}}\right) d \nu(x) \\
& =\log \lambda \\
& =h(X)
\end{aligned}
$$

In particular, if the SFT has a fixed point $x^{*}:=a^{\mathbb{Z}}$ and ν is the delta measure on x^{*}, then on

$$
h(X)=\int I_{\mu}(x) d \nu(x)=I_{\mu}\left(x^{*}\right)=-\log \mu\left(x^{*}\right)
$$

and so $h(X)$ can be computed from the value of the information function at only one point.

Entropy representation for MME, $d=1$

$$
\begin{aligned}
I_{\mu}(x) & =-\log \mu\left(x(0) \mid x\left(\mathcal{P}^{-}\right)\right) \\
& =-\log P_{x_{0} x_{-1}} \\
& =\log \lambda+\log r_{x_{-1}}-\log r_{x_{0}}
\end{aligned}
$$

- So, for all invariant measures ν,

$$
\begin{aligned}
\int I_{\mu}(x) d \nu(x) & =\int\left(\log \lambda+\log r_{x_{-1}}-\log r_{x_{0}}\right) d \nu(x) \\
& =\log \lambda \\
& =h(X)
\end{aligned}
$$

In particular, if the SFT has a fixed point $x^{*}:=a^{\mathbb{Z}}$ and ν is the delta measure on x^{*}, then on

$$
h(X)=\int I_{\mu}(x) d \nu(x)=I_{\mu}\left(x^{*}\right)=-\log \mu\left(x^{*}\right)
$$

and so $h(X)$ can be computed from the value of the information function at only one point.

- In this case, $I_{\mu}(x)$ is defined everywhere.

