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Joint Spectral Radius
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LetA = {A1, A2, . . . , Ar} be a set of (d × d)-matrices.

When the matrix products Ain · · · Ai2Ai1 converge/diverge ?

• “parallel” vs “sequential” computations (e.g., Gauss-Seidel vs
Jacobi method, distributed computations);

• “asynchronous” vs “synchronous” data exchange (control theory,
large-scale networks);

• smoothness of Daubechies wavelets (computational mathematics);
• one-dimensional discrete Schrödinger equations with
quasiperiodic potentials (theory of quasicrystals);

• affine iterated function systems (theory of fractals);
• Hopfield-Tank neural networks (biology, mathematics);
• “triangular arbitrage” (market economics);
• etc.
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Rota–Strang Formula

Let � · � be a sub-multilicative matrix norm, i.e. �AB� ≤ �A�·�B�
for any matrices A, B. Define a generalization of the quantity �An�
to the case of several matrices:

ρn(A) = max
Aij ∈A

�Ain · · · Ai1�, n ≥ 1.

Definition (Rota & Strang, 1960)

ρ(A) := lim sup
n→∞

ρn(A)1/n
(
= inf

n≥1
ρn(A)1/n

)
,

is called the joint spectral radius (JSR) ofA.

Remark
ρ(A) does not depend on the norm � · �.
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Daubechies–Lagarias Formula

Similarly define a generalization of the quantity ρ(An) = ρ(A)n to
the case of several matrices:

ρ̄n(A) = max
Aij ∈A

ρ(Ain · · · Ai1), n ≥ 1.

Definition (Daubechies & Lagarias, 1992)

ρ̄(A) := lim sup
n→∞

ρ̄n(A)1/n
(
= sup

n≥1
ρ̄n(A)1/n

)
,

is called the generalized spectral radius (GSR) ofA.
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Berger–Wang Formula

Theorem (Berger & Wang, 1992)

If the setA is bounded then GSR=JSR:

ρ̄(A) = ρ(A).

This theorem is of crucial importance in numerous constructions
of the theory of joint/generalized spectral radius.

Most computational methods of evaluating JSR/GSR are based on
the following

Corollary

ρ̄n(A)1/n ≤ ρ̄(A) = ρ(A) ≤ ρn(A)1/n, [n.
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Alternative Formulae for JSR/GSR

• Elsner, 1995; Shih, 1999 — via infimum of norms;
• Chen & Zhou, 2000 — via trace of matrix products;
• Parrilo & Jadbabaie, 2008 — via homogeneous polynomials
instead of norms;

• Blondel & Nesterov, 2005 — via Kronecker (tensor) products
of matrices;

• Barabanov, 1988; Protasov, 1996 — via special kind of norms
with additional properties;

• etc.
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Lower Spectral Radius

Let again � · � be a sub-multilicative matrix norm. Define

ρ̌n(A) = min
Aij ∈A

�Ain · · · Ai1�, n ≥ 1.

Definition (Gurvits, 1995)

ρ̌(A) := lim
n→∞

ρ̌n(A)1/n
(
= inf

n≥1
ρ̌n(A)1/n

)
,

is the lower spectral radius (LSR) ofA.

Difference between LSR and JSR:

• ρ(A) < 1 =⇒ stability ofA;
• ρ̌(A) < 1 =⇒ stabilizability ofA.
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Lower Spectral Radius (cont.)

• LSR possesses “less stable” continuity properties than JSR, see
Bousch & Mairesse, 2002;

• Until recently, “good” properties of the LSR, including numerical
algorithms of computation, were obtained only for matrix setsA
having an invariant cone, see Protasov, Jungers & Blondel, 2009/10;
Jungers, 2012; Guglielmi & Protasov, 2013;

• Bochi & Morris, 2015, started a systematic investigation of the
continuity properties of the LSR, giving in particular a sufficient
condition for Lipschitz continuity of the LSR.
Their investigation is based on the concepts of dominated splitting
and k-multicones from the theory of hyperbolic linear cocycles.
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Recent Trends

Number of publications since 1960 so far, directly related to the
JSR/GSR theory, totals about 360, see, e.g. Kozyakin, 2013.

More than 100 publications in the last five years

Most important (to my mind ! ) directions:

• Numerical algorithms for computation of the JSR;
• Investigation of the LSR;
• Measure theoretic and ergodic methods.
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Numerical Algorithms

• Maesumi, 1996; Gripenberg, 1996: branch-and-bound methods based on
the formula

ρ̄n(A)1/n ≤ ρ̄(A) = ρ(A) ≤ ρn(A)1/n;

• Blondel & Nesterov, 2005: algorithms based on the formula

ρ(A) = lim
k→∞

ρ1/k(A⊗k1 + · · · + A⊗km )

expressing the JSR of matrices with non-negative entries via Kronecker
powers of the matrices Ai ∈ A;

• Nesterov, 2000; Parrilo, 2000; Parrilo & Jadbabaie, 2007;
Legat, Jungers & Parrilo, 2016; etc.: approximation of the JSR using the sum
of squares (SoS) techniques;

• Guglielmi & Zennaro, 2005; Guglielmi & Protasov, 2013; Protasov, 2016:
approximation of the JSR by constructing polygon approximation of
extremal norms;

• Kozyakin, 2010; Kozyakin, 2011: relaxation algorithms for iterative building
of Barabanov norms and computation of the JSR.
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MATLABr toolboxes

JSR toolbox (combines 7 different algorithms):

Vankeerberghen, Hendrickx, Jungers, Chang & Blondel, 2011;

Chang & Blondel, 2013;

Vankeerberghen, Hendrickx & Jungers, 2014

Joint spectral radius computation toolbox:

Protasov & Jungers, 2012;

Cicone & Protasov, 2012;

Guglielmi & Protasov, 2013
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Measure Theoretic and Ergodic Methods

Ideas of the measure and ergodic theory underlie various facts of
the theory of JSR/GSR, see

Neumann & Schneider, 1999;

Bousch & Mairesse, 2002;

Morris, 2010; Morris, 2012; Morris, 2013;

Dai, Huang & Xiao, 2008; Dai, Huang & Xiao, 2011a;
Dai, Huang & Xiao, 2011b; Dai, Huang & Xiao, 2013;

Dai, 2011; Dai, 2012; Dai, 2014;

etc.
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What is in Between?

Arbitrary matrix
 sequences:

Theory of JSR/GSR

Ergodic matrix 
sequences:

Multiplicative 
Ergodic Theorem

What is in between?
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In the evening of the day. Sergei Ivanov, 2016
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An Illusive Bridge

Let Σ+
K be the space of infinite sequences σ : Î→ {1, 2, . . . , K}

endowed with the product topology, and let θ be the Markov (or
Bernoulli) shift on Σ+

K :

θ : {i1, i2, i3, . . .} 7→ {i2, i3, i4, . . .}.

A Borel measure µ on Σ+
K is called ergodic if it is θ-invariant and

µ
�
S4θ−1(S)

�
= 0 implies µ(S) = 0 or µ(S) = 1.

Theorem (Dai, Huang & Xiao, 2011b)

Given a finite set of matricesA ⊂ Ãd×d, there exists an ergodic
Borel probability measure µ∗ on Σ+

K such that

ρ(A) = lim
n→∞

�Ai1Ai2 · · · Ain�
1/n, Aij ∈ A,

for µ∗-a.e. sequences {i1, i2, . . . , in, . . .}.
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An Illusive Bridge (cont.)

Remark
One should keep in mind that the sequences which are realized
almost everywhere in some shift-invariant Borel measure may be
rather “lean” from the “common point of view”.
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Markovian Matrix Products
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Markovian Matrix Products

Given: a set of matricesA = {A1, A2, . . . , Ar} and
an (r × r)-matrixΩ = (ωij) : ωij ∈ {0, 1}.

Definition

The matrix product Ain · · · Ai1 is called Markovian if each pair of
indices {ik, ik+1} isΩ-admissible, i.e.

ωik+1ik ≡ 1, k = 1, 2, . . . , n − 1.

Remark
The question on existence of infiniteΩ-admissible sequences
{ik} is decidable algorithmically in a finite number of steps.
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Markovian Joint/Generalized Spectral Radii

In particular, if each column of the transition matrixΩ is
non-zero then the following quantities are defined for any n:

ρn(A,Ω) := max
�
�Ain · · · Ai1� : ωik+1ik = 1 for all k

	
,

ρ̄n(A,Ω) := max
�
ρ(Ain · · · Ai1) : ωik+1ik = 1 for all k

	
.

Definition

ρ(A,Ω) := lim sup
n→∞

ρn(A,Ω)1/n,

ρ̄(A,Ω) := lim sup
n→∞

ρ̄n(A,Ω)1/n

are called the Markovian joint/generalized spectral radii ofA.
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Dai Theorem

The Markovian spectral radius was first (?) introduced by Dai, 2012
under the name spectral radius with constraints.

Nowadays, in the case when the matrix sequences are generated
by finite automata, the term constrained spectral radius is
sometimes used, see Philippe, Essick, Dullerud & Jungers, 2015;
Philippe & Jungers, 2015; Legat, Jungers & Parrilo, 2016.

Theorem (Dai, 2012; Dai, 2014)

ρ̄(per)(A,Ω) = ρ̄(A,Ω) = ρ(A,Ω),

where ρ̄(per)(A,Ω) is obtained by restricting of ρ̄(A,Ω) to the
periodic Markovian products of matrices.
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Dai Theorem (cont.)

Remark
So far all known proofs of the Berger-Wang formula relied on the
arbitrariness of matrix products involved

⇓
Dai’s generalization of the Berger-Wang formula is nontrivial and
difficult.

The original proof of Dai’s theorem was based on a ponderous
machinery of ergodic theory.

Below, we describe a much simpler approach suggested
in Kozyakin, 2014a.
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Ω-lifting Techniques

Given a set of (d × d)-matricesA = {A1, A2, . . . , Ar} and a
transition matrixΩ = (ωij)

r
i,j=1, define matrices

Ωi = ω
T
i δ i, A(i) := Ωi ⊗ Ai, i = 1, 2, . . . , r,

whereωi = {ω1i, . . . ,ωri}, δ i = {δ1i, . . . , δri}, δij is the Kronecker
symbol, and ⊗ is the Kronecker product of matrices.

Definition

The set of matricesAΩ := {A(i)} is called theΩ-lift of the set of
matricesA.
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Example

Let

Ω = *.
,

1 0 0
0 0 1
1 1 0

+/
-
.

Then

Ω1 =
*.
,

1 0 0
0 0 0
1 0 0

+/
-
, Ω2 =

*.
,

0 0 0
0 0 0
0 1 0

+/
-
, Ω3 =

*.
,

0 0 0
0 0 1
0 0 0

+/
-
,

A(1) = *.
,

A1 0 0
0 0 0
A1 0 0

+/
-
, A(2) = *.

,

0 0 0
0 0 0
0 A2 0

+/
-
, A(3) = *.

,

0 0 0
0 0 A3
0 0 0

+/
-
.
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Crucial Observation

Let � · � be a sub-multiplicative norm on the space of
(d × d)-matrices.

Then, for a block (r × r)-matrix M = (mij) with the (d × d)-matrix
elements mij, define the norm

`̀`M`̀` := max
1≤i≤r

r∑
j=1

�mij�.

The norm `̀` · `̀` is also sub-multiplicative.
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Then

`̀`A(in) · · · A(i1) `̀` =



�Ain · · · Ai1� if ωik+1ik ≡ 1;
0 in the opposite case.

⇓

ρn(AΩ ) = ρn(A,Ω) [ n.

⇓

ρ(AΩ ) = ρ(A,Ω).

Victor Kozyakin (IITP RAS) Joint spectral radius: Constrained matrix products May 9–11, 2016 27 54



Crucial Observation (cont.)

Similarly

ρ(A(in) · · · A(i1)) =



ρ(Ain · · · Ai1) if ωik+1ik ≡ 1 and ωi1in = 1;
0 in the opposite case.

⇓

ρ̄n(AΩ ) = ρ̄
(per)
n (A,Ω) [ n.

⇓

ρ̄(AΩ ) = ρ̄(per)(A,Ω).
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Proof of Dai’s Theorem

By the Berger–Wang theorem

ρ̄(AΩ ) = ρ(AΩ ).

Then by the earlier made observations

ρ̄(per)(A,Ω) = ρ̄(AΩ ) = ρ(AΩ ) = ρ(A,Ω),

from which Dai’s theorem immediately follows:

ρ̄(per)(A,Ω) = ρ̄(A,Ω) = ρ(A,Ω).
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Pros and Cons of the Lifting Techniques

Pros:

• The lifting techniques is applicable to various alternative definitions of the
Markovian JSR;

• The lifting techniques allows to investigate products of matrices defined
by subshifts of finite type instead of Markov shifts;

• Potentially, the lifting techniques provides a possibility to apply the
method of Barabanov norms to investigate Markovian products of
matrices, however no works in this direction are known to me.

Cons:

• All the matrices fromAΩ are degenerate, and some of their products may
turn to zero. This makes doubtful the application of the lifting techniques
for studying the Markovian analogs of the LSR;

• It is unclear whether the lifting techniques may be applied to study infinite
sets of matricesA;
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Further Results

• Wang, Roohi, Dullerud & Viswanathan, 2014 — for matrix
sequences generated by a Muller automaton;

• Philippe, Essick, Dullerud & Jungers, 2015;
Philippe & Jungers, 2015; Legat, Jungers & Parrilo, 2016 — for
matrix sequences generated by general finite automata.
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Frequency Constrained Matrix Products
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Frequency. . .

Commonly used characteristics of the matrix products

Ain · · · Ai2Ai1, Aij ∈ A := {A1, A2, . . . , Ar},

are the frequencies of occurrences of the indices i ∈ 1, . . . , r in
the index sequence {in}. As a rule, given some i ∈ 1, . . . , r, the
frequency pi is defined as the limit

pi = lim
n→∞

pi,n

of the relative frequencies (proportions)

pi,n :=
#

�
ij ∈ {i1, i2, . . . , in} : ij = i

�

n
of occurrences of the symbol i among the first n members of a
sequence.
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Frequency. . . (cont.)

The relative frequency pi,n for symbol i behaves as follows:

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
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Deficiency of the Frequency Concept

• The definition of frequency is not enough informative since it
does not answer the question of how often different symbols
appear in intermediate, not tending to infinity, finite
segments of a sequence.

• The definition of frequency becomes all the less satisfactory
in situations when one should deal with not a single
sequence but with an infinite collection of such sequences.

• The definition of frequency given above does not withstand
transition to the limit with respect to different sequences
which results in substantial theoretical and conceptual
difficulties.
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Deficiency of the Frequency Concept

To give “good” properties to determination of frequency one
often needs:

• either to require some kind of uniformity of convergence of
the relative frequencies pi,n to pi

• or to treat appearance of the related symbols in a sequence
as a realization of events generated by some random or
deterministic ergodic system

• or something of this kind.
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As a result, under such an approach one has to impose rather
strong restrictions on the laws of forming the index sequences
{in} which are often difficult to verify of confirm in applications.

• The arising families of the index sequences and of the
related matrix products can be rather attractive from the
purely mathematical point of view but their description
becomes less and less constructive.

• In applications, it leads to emergence of an essential
conceptual gap or of some kind strained interpretation at
use of the related objects and constructions.
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What to do ?
Where to go ?

To be, or not to be ? †

Am I a trembling creature, or do I have the right ? ‡

. . .

†William Shakespeare. Hamlet
‡Fyodor Dostoyevsky. Crime and punishment
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Sequences with Constraints on the Sliding Block Frequencies

Let p = (pi, p2, . . . , pr) be a set of positive numbers satisfying

p1 + p2 + · · · + pr = 1,

and let

p− = (p−1 , p
−
2 , . . . , p

−
r ), p+ = (p+1 , p

+
2 , . . . , p

+
r ),

be sets of lower and upper bounds for p:

0 ≤ p−i < pi < p
+
i ≤ 1, i = 1, 2, . . . , r.
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Sequences with Constraints on the Sliding Block Frequencies

Definition

Given a natural number ` , denote by Ì (p±) the set of all infinite
sequences {in}∞n=0, ij ∈ I := {1, 2, . . . , r}, for which the relative
`-block frequencies of occurrences of different symbols

pi,n(`) :=
#

�
ij ∈ {in, in+1, . . . , in+`−1} : ij = i

�

`
,

for each i = 1, 2, . . . , r, satisfy

p−i ≤ pi,n(`) ≤ p
+
i , [n.

i0, i1, . . . , in, in+1, . . . , in+`−1︸                  ︷︷                  ︸
sliding `-block

, . . . , ik, ik+1, . . . .
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Example

Let r = 3, ` = 10 and

p = (0.23, 0.33, 0.44).

Define the sets of lower and upper bounds for p as follows:

p− = (0.13, 0.23, 0.34), p+ = (0.33, 0.43, 0.54).

Then the set Ì (p±) contains the following sequences:

i1 = {2, 1, 2, 3, 3, 3, 2, 3, 3, 1, 2, 1, 2, 3, 1, 3, 2, 3, 3, 3, 2, 1, 2, 2, 1, . . .},
i2 = {3, 2, 2, 1, 3, 3, 3, 3, 2, 1, 2, 1, 2, 3, 3, 2, 3, 3, 2, 1, 2, 1, 3, 1, 3, . . .},
i3 = {1, 1, 3, 3, 2, 2, 1, 2, 3, 3, 1, 3, 1, 3, 2, 2, 3, 2, 2, 3, 1, 3, 1, 3, 2, . . .}.
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Difference Between Two Approaches
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Main Properties

• The set Ì (p±) is non-empty and “reach enough” if the “gaps”
p+i − p

−
i are “not too small”, e.g., p

+
i − p

−
i >

2
` , see

(Kozyakin, 2014b) for details.
• In general, the frequencies of occurrences of the symbols
i = 1, 2, . . . , r in the sequences from Ì (p±) are not well
defined. The relative `-block frequencies of the symbols
i = 1, 2, . . . , r are “close” to the corresponding quantities pi
but, in general, they may have no limits at infinity.

• Given the sets p±, the sequences from Ì (p±) can be build
constructively.
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Theorem (Kozyakin, 2014b)

If Ì (p±) , ∅ then, for any sequence {in}∞n=0 ∈ Ì (p±), transition
between sequential sliding `-blocks

{in, in+1, . . . , in+`−1} =⇒ {in+1, in+2, . . . , in+`}

is a subshift of `-type or an `-step topological Markov chain.

Corollary

For the matrix products

Ain · · · Ai2Ai1, Aij ∈ A := {A1, A2, . . . , Ar},

constrained to the index sequences {in}∞n=0 ∈ Ì (p±) the JSR and
GSR are well defined, and for them the Berger–Wang formula
holds.
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