Zeta function and Entropy of Visibly Pushdown Systems

Marie-Pierre Béal, Michel Blockelet, Cătălin Dima, Pavel Heller

Université Paris-Est

Laboratoire d'informatique Gaspard-Monge UMR 8049

ANR EQINOCS
Paris, May 2016

Overview

■ Background: Shifts of finite type. Sofic shifts

- Zeta functions of shifts

■ Dyck shifts and visibly-pushdown shifts

- Entropy

Shifts of sequences

A is a finite alphabet
F is a set of finite words over A (forbidden patterns or factors) X_{F} : the subset of $A^{\mathbb{Z}}$ of sequences of letters avoiding F.

Shifts of sequences

A is a finite alphabet
F is a set of finite words over A (forbidden patterns or factors) X_{F} : the subset of $A^{\mathbb{Z}}$ of sequences of letters avoiding F.

Shifts of sequences

$$
\cdots \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline a & b & a & a & b & a & b & a & a & a & b & a & a & a \\
\hline
\end{array}
$$

A is a finite alphabet
F is a set of finite words over A (forbidden patterns or factors) X_{F} : the subset of $A^{\mathbb{Z}}$ of sequences of letters avoiding F.

Shifts of finite type

A forbidden sequence:
... abaababababaabbaaabababa ...
Characterized by a finite set of forbidden blocks $F=\{b b\}$.

Sofic shifts

A forbidden sequence:
... abbaabbabbabbaaababbbaaaabbabbaaa ...
Characterized by a regular set of forbidden patterns: an odd number of b between two a is forbidden.

Conjugacy between shifts

A one-to-one and onto sliding block code $\Phi: X \subseteq A^{\mathbb{Z}} \rightarrow Y \subseteq B^{\mathbb{Z}}$. The inverse is also a sliding block code.

Conjugacy between shifts

A one-to-one and onto sliding block code $\Phi: X \subseteq A^{\mathbb{Z}} \rightarrow Y \subseteq B^{\mathbb{Z}}$. The inverse is also a sliding block code.

Conjugacy between shifts

A one-to-one and onto sliding block code $\Phi: X \subseteq A^{\mathbb{Z}} \rightarrow Y \subseteq B^{\mathbb{Z}}$. The inverse is also a sliding block code.

Conjugacy between shifts

A one-to-one and onto sliding block code $\Phi: X \subseteq A^{\mathbb{Z}} \rightarrow Y \subseteq B^{\mathbb{Z}}$. The inverse is also a sliding block code.

Conjugacy between shifts

A one-to-one and onto sliding block code $\Phi: X \subseteq A^{\mathbb{Z}} \rightarrow Y \subseteq B^{\mathbb{Z}}$. The inverse is also a sliding block code.

Conjugacy between shifts

A one-to-one and onto sliding block code $\Phi: X \subseteq A^{\mathbb{Z}} \rightarrow Y \subseteq B^{\mathbb{Z}}$. The inverse is also a sliding block code.

Conjugate shifts: example

$$
A=[2] \quad B=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

It is not known

- if it is decidable whether two shifts of finite type are conjugate.

Zeta function: counting periodic sequences

(X, σ) is a shift with $\sigma:\left(x_{i}\right)_{i \in \mathbb{Z}} \rightarrow\left(x_{i+1}\right)_{i \in \mathbb{Z}}$
p_{n} is the number of sequences $x \in X$ such that $\sigma^{n}(x)=x$
The zeta function of X is defined as

$$
\zeta_{X}(z)=\exp \sum_{n \geq 1} \frac{p_{n}}{n} z^{n}=\prod_{\gamma \text { periodic orbit }}\left(1-z^{|\gamma|}\right)^{-1}
$$

Periodic pattern abaaba
... abaaba abaaba abaaba abaaba ...

Note that $\frac{\mathrm{d}}{\mathrm{dz}} \log \zeta_{X}(z)=\sum_{n \geq 1} p_{n} z^{n}$

A simple example

$$
X=\{a, b\}^{\mathbb{Z}} .
$$

$$
\begin{aligned}
\zeta_{x}(z) & =\exp \sum_{n \geq 1} \frac{p_{n}}{n} z^{n} \\
& =\exp \sum_{n \geq 1} \frac{2^{n}}{n} z^{n} \\
& =\exp \sum_{n \geq 1} \frac{(2 z)^{n}}{n} \\
& =\exp \log \frac{1}{1-2 z} \\
& =\frac{1}{1-2 z}=(2 z)^{*}
\end{aligned}
$$

Zeta function of shifts of finite type

Bowen and Lanford 1970

$$
\mathcal{A}=(Q, E) \quad A=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \quad \zeta_{X}(z)=\frac{1}{1-z-z^{2}}=\left(z+z^{2}\right)^{*}
$$

Theorem (Bowen and Lanford 1970)
If X is a shift of finite type,

$$
\zeta_{X}(z)=\frac{1}{\operatorname{det}(I-A z)}
$$

Zeta function of sofic shifts

Manning 1971, Bowen 1978
$\mathcal{A}=(Q, E) Q=\left\{p_{1}<p_{2}<\cdots<p_{n}\right\}$.
$\mathcal{A}_{\otimes k}=\left(Q_{\otimes k}, E_{\otimes k}\right)$, where $Q_{\otimes k}$ is the set of all ordered k-uples of states of Q, and the edge are

$$
\begin{aligned}
& \left(p_{1}, \ldots, p_{k}\right) \xrightarrow{a}\left(q_{1}^{\prime}, \ldots, q_{k}^{\prime}\right) \text { iff }\left\{\begin{array}{l}
p_{i} \xrightarrow{a} q_{i} \text { in } \mathcal{A} \\
\left(q_{1}^{\prime}, \ldots, q_{k}^{\prime}\right)=\pi_{\text {even }}\left(q_{1}, \ldots, q_{k}\right)
\end{array}\right. \\
& \left(p_{1}, \ldots, p_{k}\right) \xrightarrow{-a}\left(q_{1}^{\prime}, \ldots, q_{k}^{\prime}\right) \text { iff }\left\{\begin{array}{l}
p_{i} \xrightarrow{a} q_{i} \text { in } \mathcal{A} \\
\left(q_{1}^{\prime}, \ldots, q_{k}^{\prime}\right)=\pi_{\text {odd }}\left(q_{1}, \ldots, q_{k}\right)
\end{array}\right.
\end{aligned}
$$

Theorem (Bowen 1978)

If X is a sofic shift,

$$
\zeta_{X}(z)=\prod_{\ell=1}^{|Q|} \operatorname{det}\left(I-A_{\otimes \ell}(z)\right)^{(-1)^{\ell}}
$$

Zeta function of sofic shifts

Manning 1971, Bowen 1978

$$
\zeta_{X}(z)=\frac{\operatorname{det}\left(I-A_{\otimes 2} z\right)}{\operatorname{det}(I-A z)}=\frac{1+z}{1-z-z^{2}}=(1+z)\left(z+z^{2}\right)^{*}
$$

Multivariate zeta functions

Berstel and Reutenauer 1990
$P(X)$ is the (non commutative) formal series of periodic patterns of X.
The multivariate zeta function of X is the commutative series in $\mathbb{Z} \llbracket A \rrbracket$

$$
Z(X)=\exp \sum_{n \geq 1} \frac{[P(X)]_{n}}{n}
$$

where each $[P(X)]_{n}$ is the homogeneous part of $P(X)$ of degree n.

$$
\zeta_{X}(z)=\theta(Z(X))
$$

where $\theta(a)=z$ for any letter $a \in A$.

\mathbb{N}-rationality of zeta functions of sofic shifts

Reutenauer 1997

Theorem (Reutenauer 1997)

Let X be a sofic shift. There is a finite rational factorization $\left(\mathcal{C}_{i}\right)_{i \in I}$ of A^{*} such that

$$
Z(X)=\prod_{j \in J \subseteq I} \mathcal{C}_{j}^{*}
$$

If $\left(\mathcal{C}_{i}\right)_{i \in I}$ is a factorization then each set \mathcal{C}_{i} is a circular code and each conjugacy class of nonempty words meets exactly one \mathcal{C}_{i}^{*}

$$
Z(X)=b^{*}\left(a(b b)^{*}\right)^{*}=\mathcal{C}_{2}^{*} \mathcal{C}_{1}^{*}\left(=\frac{1+b}{1-a-b b}\right)
$$

Beyond sofic constraints: the Dyck shift

Krieger 1974
$A=\left(A_{c}, A_{r}\right)$ call alphabet $\{(,[\}$ return alphabet $)]\}$,
$\operatorname{Dyck}(A)$ language generated by the grammar $X \rightarrow c X r X \mid \varepsilon$
The Dyck shift is X_{F} where $F=$ " $(" \operatorname{Dyck}(A) "]$ " \cup "["Dyck (A) " $)$ "
Allowed factors are factors of well-parenthesized words

An allowed sequence: $\cdots))$) $(())][][(\cdots$.

Zeta function of the Dyck shift

Keller 1991
A set of words \mathcal{C} such that each bi-infinite sequence has at most one decomposition into words of \mathcal{C} is a circular code.

Let $\mathcal{A}=(Q, E)$ be a directed labeled graph over A
$(\mathcal{A}, \mathcal{C})$ is a circular Markov code if each bi-infinite label of a path of \mathcal{A} has at most one decomposition into words of \mathcal{C}.
$C_{p q}=A_{p q}^{*} \cap \mathcal{C}$.
X_{C} is the σ-invariant set of orbits of the bi-infinite sequences $\left(e_{i}\right)$ with $e_{i} \in C_{p_{i} p_{i+1}}$.

Theorem (Keller 1991)

Let $(\mathcal{A}, \mathcal{C})$ be a circular Markov code.

$$
\zeta_{x_{c}}(z)=\frac{1}{\operatorname{det}(I-C(z))}
$$

Zeta function of the Dyck shift

Encoding of periodic patterns of the Dyck shift X.
$\operatorname{Dyck}(X)$: the set of well-parenthesized blocks of $X: \varepsilon,(),[],([])()$,
$C=\operatorname{Prime}(X)=\operatorname{Dyck}(X)-(\operatorname{Dyck}(X))^{2}$
the set of prime Dyck words of X
$A=\left(A_{c}, A_{r}\right)$ call alphabet $\{(,[\}$ return alphabet $)]\}$,
$C, C\left(A_{r}\right)^{*},\left(A_{c}\right)^{*} C, A_{c}, A_{r}$ are circular codes

Theorem (Keller 1991)

Let X be the Dyck shift over $2 N$ symbols

$$
\zeta_{X}(z)=\frac{\zeta_{X_{\left(A_{c}\right)^{*} C}(z)} \zeta_{X_{C\left(A_{r}\right)^{*}(z)}} \zeta_{X_{A_{r}}(z)} \zeta_{X_{A_{c}}(z)}}{\zeta_{X_{C}(z)}}
$$

Zeta function of the Dyck shift

Encoding of periodic patterns of the Dyck shift X.
$\operatorname{Dyck}(X)$: the set of well-parenthesized blocks of $X: \varepsilon,(),[],([])()$,
$C=\operatorname{Prime}(X)=\operatorname{Dyck}(X)-(\operatorname{Dyck}(X))^{2}$ the set of prime Dyck words of X
$A=\left(A_{c}, A_{r}\right)$ call alphabet $\{(,[\}$ return alphabet $)]\}$,
C, $C\left(A_{r}\right)^{*},\left(A_{c}\right)^{*} C, A_{c}, A_{r}$ are circular codes

Theorem (Keller 1991)

Let X be the Dyck shift over $2 N$ symbols

$$
\begin{aligned}
\zeta_{x}(z) & =\frac{\operatorname{det}(I-C)}{\operatorname{det}\left(I-A_{c}^{*} C\right) \operatorname{det}\left(I-C A_{r}^{*}\right) \operatorname{det}\left(I-A_{r}\right) \operatorname{det}\left(I-A_{c}\right)} \\
& =\frac{2\left(1+\sqrt{1-4 N z^{2}}\right)}{\left(1-2 N z+\sqrt{1-4 N z^{2}}\right)^{2}}
\end{aligned}
$$

Zeta function of the Dyck shift

Encoding of periodic sequences. Case balance $(w)>0$
$w=$ aabaababaaba

Zeta function of the Dyck shift

Encoding of periodic sequences. Case balance $(w)>0$
$u=a b a a b a b a a b a a$

Zeta function of the Dyck shift

Encoding of periodic sequences. Case balance $(w)>0$ $u=$ abaababaabaa $\in\left(C A_{c}{ }^{*}\right)^{*}$

Zeta function of Markov-Dyck shift

Krieger and Matsumoto 2011
$G=(Q, E)$ be a directed multigraph
$G^{-}=\left(Q, E^{-}\right), E^{-}$a copy of E
$G^{+}=\left(Q, E^{+}\right)$reversed graph
Graph inverse semigroup S : the semigroup generated by $Q \cup E^{-} \cup E^{+}$ with a zero quotiented by

- $p q=0$ if $p \neq q$ and $p^{2}=p$
- $e^{-} f^{+}=0$ if $f \neq e$
- $e^{-} e^{+}=i(e)$
$\square i(e) e^{-}=e^{-} t(e), t(e) e^{+}=e^{+} s(e)$
The shift $X(G)$ is the set of bi-infinite paths of $G^{-} \cup G^{+}$with no factor zero in S

Zeta function of Markov-Dyck shifts

Krieger and Matsumoto 2011

An allowed sequence: $\cdots e^{-} f^{-} f^{+} e^{+} g^{-} g^{+} g^{+} g^{+} \cdots$.
$\left(C_{p q}\right)_{p, q \in Q}: C_{p p}$ is the set of prime paths from p to p of value $s(p)$ in S

Theorem (Krieger Matsumoto 2011)

Let X be a Markov-Dyck shift.

$$
\zeta_{X}(z)=\frac{\zeta_{\mathrm{X}_{\left(M_{-}\right)^{*} C(z)}} \zeta_{\mathrm{x}_{C\left(M_{+}\right)^{*}(z)}} \zeta_{\mathrm{X}_{M_{+}(z)}} \zeta_{\mathrm{X}_{M_{-}}(z)}}{\mathrm{X}_{C(z)}}
$$

Zeta function of Markov-Dyck shifts

Krieger and Matsumoto 2011

An allowed sequence: $\cdots e^{-} f^{-} f^{+} e^{+} g^{-} g^{+} g^{+} g^{+} \cdots$.
$\left(C_{p q}\right)_{p, q \in Q}: C_{p p}$ is the set of prime paths from p to p of value $s(p)$ in S

Theorem (Krieger Matsumoto 2011)

Let X be the Dyck shift over $2 N$ symbols

$$
\zeta_{X}(z)=\frac{\operatorname{det}(I-C)}{\operatorname{det}\left(I-M_{-}^{*} C\right) \operatorname{det}\left(I-C M_{+}^{*}\right) \operatorname{det}\left(I-M_{+}\right) \operatorname{det}\left(I-M_{-}\right)}
$$

Sofic-Dyck (or visibly pushdown shifts)

$A=\left(A_{c}, A_{r}, A_{i}\right)$ call, return and internal (or neutral) alphabet.
$\operatorname{Dyck}(A)$: words where each call symbol is matched with a return one Dyck automaton $\mathcal{A}=(G, M)$
$G=(Q, E)$ is a directed labeled multigraph
M is a set of pairs of matched edges.
A finite path π is admissible if for any factor of π

$$
p \xrightarrow{c} q \overbrace{\rightarrow \cdots \rightarrow}^{\pi_{1}} p^{\prime} \xrightarrow{r} q^{\prime}
$$

where label $\left(\pi_{1}\right) \in \operatorname{Dyck}(A)$, then $p \xrightarrow{c} q$ and $p^{\prime} \xrightarrow{r} q^{\prime}$ are matched.
An infinite path is admissible if all its finite factors are admissible. $X_{\mathcal{A}}$ is the set of labels of bi-infinite admissible paths of \mathcal{A}.

Sofic-Dyck shifts

An allowed sequence: $\cdots((i))$ [$i i]((\cdots$.

Theorem (Béal, Blockelet, Dima 2014)

Sofic-Dyck shifts over A are the exactly the shifts X_{F} where F is a visibly pushdown language over A.

Visibly pushdown languages

Mehlhorn 1980 Input-driven languages
Alur and Madhusudan 2004
$M=(Q, I, \Gamma, \Delta, F)$
$\square Q$ is the finite state of states
■ $A=\left(A_{c}, A_{r}, A_{i}\right)$ is the partitioned alphabet
$\square \Gamma$ is the stack alphabet
$\Delta \Delta \subset\left\{\begin{array}{l}Q \times A_{c} \times Q \times(\Gamma \backslash\{\perp\}) \\ Q \times A_{r} \times(\Gamma \backslash\{\perp\}) \times Q \\ Q \times A_{i} \times Q\end{array}\right.$
$(p, \ell, q) \in \Delta \quad p,\left|\begin{array}{c} \\ \alpha \\ \vdots \\ \beta \\ \perp\end{array}\right|$

Visibly pushdown languages

Mehlhorn 1980 Input-driven languages
Alur and Madhusudan 2004
$M=(Q, I, \Gamma, \Delta, F)$
$\square Q$ is the finite state of states
■ $A=\left(A_{c}, A_{r}, A_{i}\right)$ is the partitioned alphabet
$\square \Gamma$ is the stack alphabet
$\Delta \subset\left\{\begin{array}{l}Q \times A_{c} \times Q \times(\Gamma \backslash\{\perp\}) \\ Q \times A_{r} \times(\Gamma \backslash\{\perp\}) \times Q \\ Q \times A_{i} \times Q\end{array}\right.$
$(p, \ell, q) \in \Delta \quad p,\left|\begin{array}{c}\alpha \\ \vdots \\ \beta \\ \perp\end{array}\right| \xrightarrow{\ell} q, \left\lvert\, \begin{gathered}\alpha \\ \vdots \\ \beta \\ \perp\end{gathered}\right.$

Visibly pushdown languages

Mehlhorn 1980 Input-driven languages
Alur and Madhusudan 2004
$M=(Q, I, \Gamma, \Delta, F)$
$\square Q$ is the finite state of states
■ $A=\left(A_{c}, A_{r}, A_{i}\right)$ is the partitioned alphabet
$\square \Gamma$ is the stack alphabet
$\Delta \Delta \subset\left\{\begin{array}{l}Q \times A_{c} \times Q \times(\Gamma \backslash\{\perp\}) \\ Q \times A_{r} \times(\Gamma \backslash\{\perp\}) \times Q \\ Q \times A_{i} \times Q\end{array}\right.$

Visibly pushdown languages

Mehlhorn 1980 Input-driven languages
Alur and Madhusudan 2004
$M=(Q, I, \Gamma, \Delta, F)$
$\square Q$ is the finite state of states
■ $A=\left(A_{c}, A_{r}, A_{i}\right)$ is the partitioned alphabet
$\square \Gamma$ is the stack alphabet
$-\Delta \subset\left\{\begin{array}{l}Q \times A_{c} \times Q \times(\Gamma \backslash\{\perp\}) \\ Q \times A_{r} \times(\Gamma \backslash\{\perp\}) \times Q \\ Q \times A_{i} \times Q\end{array}\right.$
$(p, a, q, \alpha) \in \Delta \quad p,\left|\begin{array}{c}\alpha \\ \vdots \\ \beta \\ \perp\end{array}\right| \xrightarrow{a} q,\left|\begin{array}{c}\alpha \\ \alpha \\ \vdots \\ \beta \\ \perp\end{array}\right|$

Visibly pushdown languages

Mehlhorn 1980 Input-driven languages
Alur and Madhusudan 2004
$M=(Q, I, \Gamma, \Delta, F)$
$\square Q$ is the finite state of states
■ $A=\left(A_{c}, A_{r}, A_{i}\right)$ is the partitioned alphabet
$\square \Gamma$ is the stack alphabet
$\Delta \subset\left\{\begin{array}{l}Q \times A_{c} \times Q \times(\Gamma \backslash\{\perp\}) \\ Q \times A_{r} \times(\Gamma \backslash\{\perp\}) \times Q \\ Q \times A_{i} \times Q\end{array}\right.$

Visibly pushdown languages

Mehlhorn 1980 Input-driven languages
Alur and Madhusudan 2004
$M=(Q, I, \Gamma, \Delta, F)$
$\square Q$ is the finite state of states
■ $A=\left(A_{c}, A_{r}, A_{i}\right)$ is the partitioned alphabet
$\square \Gamma$ is the stack alphabet

Zeta function of sofic-Dyck shifts

Béal, Blockelet, Dima 2014 with a Keller-like encoding of periodic patterns
Béal, Dima, Heller 2015 with a new encoding of periodic patterns $A=\left(A_{c}, A_{r}, A_{i}\right)$
Dyck automata $\mathcal{A}=(G, M)$ left-reduced (resp. \mathcal{A}^{\prime} right-reduced)
$C=\left(C_{p q}\right)$, where $C_{p q}$ is the set of prime Dyck words labeling an admissible path from p to q
$M_{c}=\left(M_{c, p q}\right)$, (resp. $\left.M_{r}\right)$ where $M_{c, p q}$ is the sum of call (resp. return) letters labeling an edge from p to q

Proposition (A new encoding of periodic patterns)

Let X be a sofic-Dyck shift, $\mathcal{P}(X)$ the set of periodic patterns of X

$$
\mathcal{P}(X)=\mathcal{P}\left(\mathrm{X}_{C^{*} M_{c}}\right) \sqcup \mathcal{P}\left(\mathrm{X}_{M_{r}+C}\right)
$$

Zeta function of sofic-Dyck shifts

Béal, Blockelet, Dima 2014 with a Keller-like encoding of periodic patterns
Béal, Dima, Heller 2015 with a new encoding of periodic patterns
$A=\left(A_{c}, A_{r}, A_{i}\right)$
Dyck automata $\mathcal{A}=(G, M)$ left-reduced (resp. \mathcal{A}^{\prime} right-reduced)
$C=\left(C_{p q}\right)$, where $C_{p q}$ is the set of prime Dyck words labeling an admissible path from p to q
$M_{c}=\left(M_{c, p q}\right)$, (resp. $\left.M_{r}\right)$ where $M_{c, p q}$ is the sum of call (resp. return) letters labeling an edge from p to q

Proposition

Let X be a the sofic-Dyck shift.

$$
Z(X)=Z\left(X_{C^{*} M_{c}}\right) Z\left(X_{M_{r}+C}\right)
$$

Zeta function of sofic-Dyck shifts

Béal, Blockelet, Dima 2014 with a Keller-like encoding of periodic patterns
Béal, Dima, Heller 2015 with a new encoding of periodic patterns $A=\left(A_{c}, A_{r}, A_{i}\right)$
Dyck automata $\mathcal{A}=(G, M)$ left-reduced (resp. \mathcal{A}^{\prime} right-reduced)
$C=\left(C_{p q}\right)$, where $C_{p q}$ is the set of prime Dyck words labeling an admissible path from p to q $M_{c}=\left(M_{c, p q}\right)$, (resp. $\left.M_{r}\right)$ where $M_{c, p q}$ is the sum of call (resp. return) letters labeling an edge from p to q

Theorem

Let X be a the sofic-Dyck shift.

$$
Z(X)=\prod_{\ell=1}^{|Q|} \operatorname{det}\left(I-\left(C^{*} M_{c}\right)_{\otimes \ell}\right)^{(-1)^{\ell}} \prod_{\ell=1}^{\left|Q^{\prime}\right|} \operatorname{det}\left(I-\left(C^{\prime}+M_{r}^{\prime}\right)_{\otimes \ell}\right)^{(-1)^{\ell}}
$$

Example

$$
\begin{aligned}
& C_{11}=a D_{11} b+a^{\prime} D_{11} b^{\prime} \\
& D_{11}=a D_{11} b D_{11}+a^{\prime} D_{11} b^{\prime} D_{11}+i i D_{11}+\varepsilon
\end{aligned}
$$

$$
Z(X)=\frac{(1+i)}{\left(1-\left(C_{11}+i^{2}\right)^{*}\left(a+a^{\prime}\right)\right)\left(1-\left(C_{11}+i^{2}+b+b^{\prime}\right)\right)}
$$

Example

$$
\begin{aligned}
\zeta_{X}(z) & =\frac{(1+z)\left(1-z^{2}-\frac{1-z^{2}-\sqrt{1-10 z^{2}+z^{4}}}{2}\right)}{\left(1-2 z-z^{2}-\frac{1-z^{2}-\sqrt{1-10 z^{2}+z^{4}}}{2}\right)^{2}} \\
h(X) & =\log \frac{1}{\rho}=\log \frac{2}{\sqrt{13}-3} \sim \log 3.3027 .
\end{aligned}
$$

\mathbb{N}-algebraicity of the zeta function of sofic-Dyck shifts

Using Reutenauer's result

Theorem (Béal, Dima, Heller 2015)

Let X be sofic-Dyck shift. There is a finite number of visibly pushdown circular codes $\left(C_{j}\right)_{j \in J}$ such that

$$
Z(X)=\prod_{j \in J} C_{j}^{*}
$$

$Z(X)$ is the (commutative image of) the generating series of a visibly pushdown language

$$
\left.\left.Z(X)=\left(C_{11}+i^{2}\right)^{*}\left(a+a^{\prime}\right)\right)^{*} i^{*}\left(C_{11}+b+b^{\prime}\right)\left(i^{2}\right)^{*}\right)^{*}
$$

Zeta function: summary

Zeta function: summary

Zeta function: summary

Zeta function: summary

Shifts of finite type Bowen and Lanford 1970	Sofic shifts Manning 1971, Bowen 1978
Dyck shift, Keller 1991 Motzkin shifts, Inoue 2006 Markov-Dyck shifts Krieger and Matsumoto 2011	

Zeta function: summary

Zeta function: summary

Topological entropy of visibly pushdown shifts

The entropy of a shift X is $h(\mathcal{B}(X))$
The topological entropy of a language L over A is

$$
h(L)=\underset{n \rightarrow \infty}{\limsup } \frac{1}{n} \log \left|L \cap A_{n}(X)\right|
$$

Classical methods: $\mathcal{B}(X)$ is defined by a visibly pushdown grammar (hence deterministic). Well-defined \mathbb{N}-algebraic systems of equations allow to get ρ such that $\lambda=1 / \rho$ such that $\mathcal{B}_{n}(X) \sim C \lambda^{n} n^{\alpha}$ and get $h(X)=\log \lambda$.
(Chomsky-Schützenberger, Kuich, Bell, Drmota, Lalley, Wood, Banderier)

Example: the Dyck shift with 2 types of parentheses

$h(\mathcal{B}(X))=\max \left(h\left(\left(C A_{c}^{*}\right)^{*}\right), h\left(\left(C A_{r}^{*}\right)^{*}\right), h\left(A_{c}^{*}\right), h\left(A_{r}^{*}\right)\right)$
C set of prime Dyck words

$$
\begin{aligned}
D & =a D \bar{a} D|b D \bar{b} D| \varepsilon \\
C & =a D \bar{a} \mid b D \bar{b} \\
\left(C A_{c}^{*}\right)^{*}(z) & =\frac{2(1-2 z)}{1-4 z-\sqrt{1-8 z^{2}}}
\end{aligned}
$$

One gets $\rho=1 / 3$ and thus $h(X)=\log 3$.

Topological entropy of periodic patterns

The entropy of $\mathcal{P}(X)$ is $\log \frac{1}{\rho}$
where ρ is the radius of convergence of $\zeta_{X}(z)$
for Markov-Dyck shifts
$h(X)=h(\mathcal{P}(X))$ for Markov-Dyck shifts (Krieger and Matsumoto 2011)
for visibly pushdown systems?

Open problems and future work

It is decidable in polynomial time whether

- a sofic shift is a shift of finite type
- a regular language is strictly locally testable

A finite-type-Dyck shift is X_{F} where F is a union of

- a finite set of words G
- a finite union of sets $u_{1} c\left(\operatorname{Dyck}(A) \cap u_{2} A^{*} \cap A^{*} v_{1}\right) r v_{2}$.

Is it decidable whether

- a sofic-Dyck shift is a finite-type-Dyck?
- a one-sided sofic-Dyck shift is a (one-sided) finite-type-Dyck shift?

