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Shifts of sequences

· · · a b a a b a b a a a b a a a · · ·

A is a finite alphabet
F is a set of finite words over A (forbidden patterns or factors)
XF : the subset of AZ of sequences of letters avoiding F .
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Shifts of sequences

· · · a b a a b a b a a a b a a a · · ·

A is a finite alphabet
F is a set of finite words over A (forbidden patterns or factors)
XF : the subset of AZ of sequences of letters avoiding F .



Shifts of finite type

A forbidden sequence:

· · · abaababababaabbaaabababa · · ·
Characterized by a finite set of forbidden blocks F = {bb}.
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Sofic shifts

A forbidden sequence:

· · · abbaabbabbabbaaababbbaaaabbabbaaa · · ·
Characterized by a regular set of forbidden patterns: an odd number of
b between two a is forbidden.
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Conjugacy between shifts

A one-to-one and onto sliding block code Φ : X ⊆ AZ → Y ⊆ BZ.
The inverse is also a sliding block code.

· · · a b a a b a b a a a b a a a · · ·

· · · x y x x y x y x x x y x x x · · ·
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Conjugacy between shifts

A one-to-one and onto sliding block code Φ : X ⊆ AZ → Y ⊆ BZ.
The inverse is also a sliding block code.

· · · a b a a b a b a a a b a a a · · ·

· · · x y x x y x y x x x y x x x · · ·



Conjugate shifts: example
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A =
[
2
]

B =

[
1 1
1 1

]
It is not known

if it is decidable whether two shifts of finite type are conjugate.



Zeta function: counting periodic sequences

(X , σ) is a shift with σ : (xi )i∈Z → (xi+1)i∈Z
pn is the number of sequences x ∈ X such that σn(x) = x

The zeta function of X is defined as

ζX (z) = exp
∑
n≥1

pn
n
zn =

∏
γ periodic orbit

(1− z |γ|)−1.

Periodic pattern abaaba

· · · abaaba abaaba abaaba abaaba · · ·

Note that d
dz log ζX (z) =

∑
n≥1 pnz

n



A simple example

X = {a, b}Z.

ζX (z) = exp
∑
n≥1

pn
n
zn

= exp
∑
n≥1

2n

n
zn

= exp
∑
n≥1

(2z)n

n

= exp log
1

1− 2z

=
1

1− 2z
= (2z)∗



Zeta function of shifts of finite type

Bowen and Lanford 1970
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A = (Q,E ) A =

[
1 1
1 0

]
ζX (z) =

1

1− z − z2
= (z + z2)∗

Theorem (Bowen and Lanford 1970)

If X is a shift of finite type,

ζX (z) =
1

det(I − Az)



Zeta function of sofic shifts

Manning 1971, Bowen 1978
A = (Q,E ) Q = {p1 < p2 < · · · < pn}.
A⊗k = (Q⊗k ,E⊗k), where Q⊗k is the set of all ordered k-uples of states
of Q, and the edge are

(p1, . . . , pk)
a−→ (q′1, . . . , q

′
k) iff

{
pi

a−→ qi in A
(q′1, . . . , q

′
k) = πeven(q1, . . . , qk)

(p1, . . . , pk)
−a−−→ (q′1, . . . , q

′
k) iff

{
pi

a−→ qi in A
(q′1, . . . , q

′
k) = πodd(q1, . . . , qk)

Theorem (Bowen 1978)

If X is a sofic shift,

ζX (z) =

|Q|∏
`=1

det(I − A⊗`(z))(−1)`



Zeta function of sofic shifts

Manning 1971, Bowen 1978
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ζX (z) =
det(I − A⊗2z)

det(I − Az)
=

1 + z

1− z − z2
= (1 + z)(z + z2)∗



Multivariate zeta functions

Berstel and Reutenauer 1990
P(X ) is the (non commutative) formal series of periodic patterns of X .
The multivariate zeta function of X is the commutative series in Z[[A]]

Z (X ) = exp
∑
n≥1

[P(X )]n

n
,

where each [P(X )]n is the homogeneous part of P(X ) of degree n.

ζX (z) = θ(Z (X )),

where θ(a) = z for any letter a ∈ A.



N-rationality of zeta functions of sofic shifts

Reutenauer 1997

Theorem (Reutenauer 1997)

Let X be a sofic shift. There is a finite rational factorization (Ci )i∈I of
A∗ such that

Z (X ) =
∏

j∈J⊆I
C∗j

If (Ci )i∈I is a factorization then each set Ci is a circular code and each
conjugacy class of nonempty words meets exactly one C∗i
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Z (X ) = b∗(a(bb)∗)∗ = C∗2C∗1(=
1 + b

1− a− bb
)



Beyond sofic constraints: the Dyck shift

Krieger 1974

A = (Ac ,Ar ) call alphabet {(, [} return alphabet {), ]}
Dyck(A) language generated by the grammar X → cXrX | ε
The Dyck shift is XF where F = ”(”Dyck(A)”]” ∪ ”[”Dyck(A)”)”
Allowed factors are factors of well-parenthesized words

1

)
(

[
]

An allowed sequence: · · · ) ) ) ] ( ( ) ) ] [ ] [ (· · · .



Zeta function of the Dyck shift

Keller 1991
A set of words C such that each bi-infinite sequence has at most one
decomposition into words of C is a circular code.

Let A = (Q,E ) be a directed labeled graph over A
(A, C) is a circular Markov code if each bi-infinite label of a path of A
has at most one decomposition into words of C.

Cpq = A∗pq ∩ C.
XC is the σ-invariant set of orbits of the bi-infinite sequences (ei ) with
ei ∈ Cpipi+1 .

Theorem (Keller 1991)

Let (A, C) be a circular Markov code.

ζXC
(z) =

1

det(I − C (z))



Zeta function of the Dyck shift

Encoding of periodic patterns of the Dyck shift X .

Dyck(X ): the set of well-parenthesized blocks of X : ε, ( ), [ ], ( [ ] ) ( ),
...
C = Prime(X ) = Dyck(X )− (Dyck(X ))2

the set of prime Dyck words of X

A = (Ac ,Ar ) call alphabet {(, [} return alphabet {), ]}
C , C (Ar )∗, (Ac)∗C , Ac , Ar are circular codes

Theorem (Keller 1991)

Let X be the Dyck shift over 2N symbols

ζX (z) =
ζX(Ac )∗C (z)ζXC(Ar )∗ (z)ζXAr (z)ζXAc (z)

ζXC (z)



Zeta function of the Dyck shift

Encoding of periodic patterns of the Dyck shift X .

Dyck(X ): the set of well-parenthesized blocks of X : ε, ( ), [ ], ( [ ] ) ( ),
...
C = Prime(X ) = Dyck(X )− (Dyck(X ))2

the set of prime Dyck words of X

A = (Ac ,Ar ) call alphabet {(, [} return alphabet {), ]}
C , C (Ar )∗, (Ac)∗C , Ac , Ar are circular codes

Theorem (Keller 1991)

Let X be the Dyck shift over 2N symbols

ζX (z) =
det(I − C )

det(I − A∗cC ) det(I − CA∗r ) det(I − Ar ) det(I − Ac)

=
2(1 +

√
1− 4Nz2)

(1− 2Nz +
√

1− 4Nz2)2



Zeta function of the Dyck shift

Encoding of periodic sequences. Case balance(w) > 0
w = aabaababaaba



Zeta function of the Dyck shift

Encoding of periodic sequences. Case balance(w) > 0
u = abaababaabaa



Zeta function of the Dyck shift

Encoding of periodic sequences. Case balance(w) > 0
u = abaababaabaa ∈ (CAc

∗)∗



Zeta function of Markov-Dyck shift

Krieger and Matsumoto 2011

G = (Q,E ) be a directed multigraph
G− = (Q,E−), E− a copy of E
G+ = (Q,E+) reversed graph

Graph inverse semigroup S : the semigroup generated by Q ∪ E− ∪ E+

with a zero quotiented by

pq = 0 if p 6= q and p2 = p

e−f + = 0 if f 6= e

e−e+ = i(e)

i(e)e− = e−t(e), t(e)e+ = e+s(e)

The shift X (G ) is the set of bi-infinite paths of G− ∪ G+ with no
factor zero in S



Zeta function of Markov-Dyck shifts

Krieger and Matsumoto 2011
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An allowed sequence: · · · e−f −f +e+g−g+g+g+ · · · .

(Cpq)p,q∈Q : Cpp is the set of prime paths from p to p of value s(p) in S

Theorem (Krieger Matsumoto 2011)

Let X be a Markov-Dyck shift.

ζX (z) =
ζX(M−)∗C (z)ζXC(M+)∗ (z)ζXM+ (z)ζXM− (z)

ζXC (z)



Zeta function of Markov-Dyck shifts

Krieger and Matsumoto 2011
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An allowed sequence: · · · e−f −f +e+g−g+g+g+ · · · .

(Cpq)p,q∈Q : Cpp is the set of prime paths from p to p of value s(p) in S

Theorem (Krieger Matsumoto 2011)

Let X be the Dyck shift over 2N symbols

ζX (z) =
det(I − C )

det(I −M∗−C ) det(I − CM∗+) det(I −M+) det(I −M−)



Sofic-Dyck (or visibly pushdown shifts)

A = (Ac ,Ar ,Ai ) call, return and internal (or neutral) alphabet.
Dyck(A): words where each call symbol is matched with a return one
Dyck automaton A = (G ,M)
G = (Q,E ) is a directed labeled multigraph
M is a set of pairs of matched edges.

A finite path π is admissible if for any factor of π

p
c−→ q

π1︷ ︸︸ ︷
−→ · · · −→ p′

r−→ q′

where label(π1) ∈ Dyck(A), then p
c−→ q and p′

r−→ q′ are matched.

An infinite path is admissible if all its finite factors are admissible.
XA is the set of labels of bi-infinite admissible paths of A.



Sofic-Dyck shifts
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An allowed sequence: · · · ( ( i i ) ) [ i i ] ( ( · · · .

Theorem (Béal, Blockelet, Dima 2014)

Sofic-Dyck shifts over A are the exactly the shifts XF where F is a
visibly pushdown language over A.



Visibly pushdown languages

Mehlhorn 1980 Input-driven languages
Alur and Madhusudan 2004
M = (Q, I , Γ,∆,F )

Q is the finite state of states

A = (Ac ,Ar ,Ai ) is the partitioned alphabet

Γ is the stack alphabet

∆ ⊂


Q × Ac × Q × (Γ \ {⊥})
Q × Ar × (Γ \ {⊥})× Q

Q × Ai × Q

(p, `, q) ∈ ∆ p,

α
...
β
⊥
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Visibly pushdown languages

Mehlhorn 1980 Input-driven languages
Alur and Madhusudan 2004
M = (Q, I , Γ,∆,F )

Q is the finite state of states

A = (Ac ,Ar ,Ai ) is the partitioned alphabet

Γ is the stack alphabet

∆ ⊂


Q × Ac × Q × (Γ \ {⊥})
Q × Ar × (Γ \ {⊥})× Q

Q × Ai × Q

(p, a, q, α) ∈ ∆ p,

α
...
β
⊥

a−−−→ q,

α
α
...
β
⊥



Visibly pushdown languages

Mehlhorn 1980 Input-driven languages
Alur and Madhusudan 2004
M = (Q, I , Γ,∆,F )

Q is the finite state of states

A = (Ac ,Ar ,Ai ) is the partitioned alphabet

Γ is the stack alphabet

∆ ⊂


Q × Ac × Q × (Γ \ {⊥})
Q × Ar × (Γ \ {⊥})× Q

Q × Ai × Q

(p, b, α, q) ∈ ∆ p,

α
...
β
⊥



Visibly pushdown languages

Mehlhorn 1980 Input-driven languages
Alur and Madhusudan 2004
M = (Q, I , Γ,∆,F )

Q is the finite state of states

A = (Ac ,Ar ,Ai ) is the partitioned alphabet

Γ is the stack alphabet

∆ ⊂


Q × Ac × Q × (Γ \ {⊥})
Q × Ar × (Γ \ {⊥})× Q

Q × Ai × Q

(p, b, α, q) ∈ ∆ p,

α
...
β
⊥

b−−−→ q, ...
β
⊥



Zeta function of sofic-Dyck shifts

Béal, Blockelet, Dima 2014 with a Keller-like encoding of periodic
patterns
Béal, Dima, Heller 2015 with a new encoding of periodic patterns

A = (Ac ,Ar ,Ai )
Dyck automata A = (G ,M) left-reduced (resp. A′ right-reduced)

C = (Cpq), where Cpq is the set of prime Dyck words labeling an
admissible path from p to q
Mc = (Mc,pq), (resp. Mr ) where Mc,pq is the sum of call (resp. return)
letters labeling an edge from p to q

Proposition (A new encoding of periodic patterns)

Let X be a sofic-Dyck shift, P(X ) the set of periodic patterns of X

P(X ) = P(XC∗Mc ) t P(XMr+C )



Zeta function of sofic-Dyck shifts

Béal, Blockelet, Dima 2014 with a Keller-like encoding of periodic
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Béal, Dima, Heller 2015 with a new encoding of periodic patterns

A = (Ac ,Ar ,Ai )
Dyck automata A = (G ,M) left-reduced (resp. A′ right-reduced)

C = (Cpq), where Cpq is the set of prime Dyck words labeling an
admissible path from p to q
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Proposition

Let X be a the sofic-Dyck shift.

Z (X ) = Z (XC∗Mc )Z (XMr+C )



Zeta function of sofic-Dyck shifts

Béal, Blockelet, Dima 2014 with a Keller-like encoding of periodic
patterns
Béal, Dima, Heller 2015 with a new encoding of periodic patterns

A = (Ac ,Ar ,Ai )
Dyck automata A = (G ,M) left-reduced (resp. A′ right-reduced)

C = (Cpq), where Cpq is the set of prime Dyck words labeling an
admissible path from p to q
Mc = (Mc,pq), (resp. Mr ) where Mc,pq is the sum of call (resp. return)
letters labeling an edge from p to q

Theorem

Let X be a the sofic-Dyck shift.

Z (X ) =

|Q|∏
`=1

det(I − (C ∗Mc)⊗`)
(−1)`

|Q′|∏
`=1

det(I − (C ′ + M ′r )⊗`)
(−1)` .



Example

1 2 1,2

i

i
b

a

a’
b’

−i

C11 = aD11b + a′D11b
′

D11 = aD11bD11 + a′D11b
′D11 + iiD11 + ε

Z (X ) =
(1 + i)

(1− (C11 + i2)∗(a + a′))(1− (C11 + i2 + b + b′))



Example

1 2 1,2

i

i
b

a

a’
b’

−i

ζX (z) =
(1 + z)(1− z2 − 1−z2−

√
1−10z2+z4

2 )

(1− 2z − z2 − 1−z2−
√

1−10z2+z4

2 )2

h(X ) = log
1

ρ
= log

2√
13− 3

∼ log 3.3027.



N-algebraicity of the zeta function of sofic-Dyck shifts

Using Reutenauer’s result

Theorem (Béal, Dima, Heller 2015)

Let X be sofic-Dyck shift. There is a finite number of visibly pushdown
circular codes (Cj)j∈J such that

Z (X ) =
∏
j∈J

C ∗j

.

Z (X ) is the (commutative image of) the generating series of a visibly
pushdown language

Z (X ) = (C11 + i2)∗(a + a′))∗i∗(C11 + b + b′)(i2)∗)∗
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Zeta function: summary

Sofic shiftsShifts of finite type

Dyck shift, Keller 1991

Motzkin shifts, Inoue 2006

Markov-Dyck shifts

Krieger and Matsumoto 2011

Bowen and Lanford 1970 Manning 1971, Bowen 1978
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Zeta function: summary

Sofic shiftsShifts of finite type

N-rational N-rational, Reutenauer 1997

N-algebraicN-algebraic

Sofic-Dyck shiftsFinite-type Dyck shifts



Topological entropy of visibly pushdown shifts

The entropy of a shift X is h(B(X ))
The topological entropy of a language L over A is

h(L) = lim sup
n→∞

1

n
log |L ∩ An(X )|

Classical methods: B(X ) is defined by a visibly pushdown grammar
(hence deterministic). Well-defined N-algebraic systems of equations
allow to get ρ such that λ = 1/ρ such that Bn(X ) ∼ Cλnnα and get
h(X ) = log λ.

(Chomsky-Schützenberger, Kuich, Bell, Drmota, Lalley, Wood,
Banderier)



Example: the Dyck shift with 2 types of parentheses

1

ā
a

b
b̄

h(B(X )) = max(h((CA∗c)∗), h((CA∗r )∗), h(A∗c), h(A∗r ))
C set of prime Dyck words

D = aDāD | bDb̄D | ε
C = aDā |bDb̄

(CA∗c)∗(z) =
2(1− 2z)

1− 4z −
√

1− 8z2

One gets ρ = 1/3 and thus h(X ) = log 3.



Topological entropy of periodic patterns

The entropy of P(X ) is log 1
ρ

where ρ is the radius of convergence of ζX (z)

for Markov-Dyck shifts
h(X ) = h(P(X )) for Markov-Dyck shifts (Krieger and Matsumoto
2011)

for visibly pushdown systems?



Open problems and future work

It is decidable in polynomial time whether

a sofic shift is a shift of finite type

a regular language is strictly locally testable

A finite-type-Dyck shift is XF where F is a union of

a finite set of words G

a finite union of sets u1c(Dyck(A) ∩ u2A
∗ ∩ A∗v1)rv2.

Is it decidable whether

a sofic-Dyck shift is a finite-type-Dyck?

a one-sided sofic-Dyck shift is a (one-sided) finite-type-Dyck shift?


