Zeta function and Entropy of Visibly Pushdown Systems

Marie-Pierre Béal, Michel Blockelet, Cătălin Dima, Pavel Heller

Université Paris-Est Laboratoire d'informatique Gaspard-Monge UMR 8049

ANR EQINOCS Paris, May 2016

イロン イボン イヨン イヨン 三日

Overview

Background : Shifts of finite type. Sofic shifts

イロン (四) イヨン (ヨン) ヨー のへの

- Zeta functions of shifts
- Dyck shifts and visibly-pushdown shifts
- Entropy

Shifts of sequences

A is a finite alphabet

F is a set of finite words over *A* (forbidden patterns or factors) X_F : the subset of $A^{\mathbb{Z}}$ of sequences of letters avoiding *F*.

Shifts of sequences

A is a finite alphabet

F is a set of finite words over *A* (forbidden patterns or factors) X_F : the subset of $A^{\mathbb{Z}}$ of sequences of letters avoiding *F*.

Shifts of sequences

A is a finite alphabet

F is a set of finite words over *A* (forbidden patterns or factors) X_F : the subset of $A^{\mathbb{Z}}$ of sequences of letters avoiding *F*.

Shifts of finite type

A forbidden sequence:

··· abaababababaabbaaabababa ···

Characterized by a finite set of forbidden blocks $F = \{bb\}$.

Sofic shifts

A forbidden sequence:

··· abbaabbabbabbaaab<mark>abbba</mark>aaabbabbaaa ···

Characterized by a regular set of forbidden patterns: an odd number of b between two a is forbidden.

A one-to-one and onto sliding block code $\Phi : X \subseteq A^{\mathbb{Z}} \to Y \subseteq B^{\mathbb{Z}}$. The inverse is also a sliding block code.

A one-to-one and onto sliding block code $\Phi : X \subseteq A^{\mathbb{Z}} \to Y \subseteq B^{\mathbb{Z}}$. The inverse is also a sliding block code.

A one-to-one and onto sliding block code $\Phi : X \subseteq A^{\mathbb{Z}} \to Y \subseteq B^{\mathbb{Z}}$. The inverse is also a sliding block code.

A one-to-one and onto sliding block code $\Phi : X \subseteq A^{\mathbb{Z}} \to Y \subseteq B^{\mathbb{Z}}$. The inverse is also a sliding block code.

A one-to-one and onto sliding block code $\Phi : X \subseteq A^{\mathbb{Z}} \to Y \subseteq B^{\mathbb{Z}}$. The inverse is also a sliding block code.

A one-to-one and onto sliding block code $\Phi : X \subseteq A^{\mathbb{Z}} \to Y \subseteq B^{\mathbb{Z}}$. The inverse is also a sliding block code.

Conjugate shifts: example

It is not known

• if it is decidable whether two shifts of finite type are conjugate.

Zeta function: counting periodic sequences

 (X, σ) is a shift with $\sigma : (x_i)_{i \in \mathbb{Z}} \to (x_{i+1})_{i \in \mathbb{Z}}$ p_n is the number of sequences $x \in X$ such that $\sigma^n(x) = x$

The zeta function of X is defined as

$$\zeta_X(z) = \exp \sum_{n \ge 1} \frac{p_n}{n} z^n = \prod_{\gamma \text{ periodic orbit}} (1 - z^{|\gamma|})^{-1}.$$

Periodic pattern abaaba

···abaaba abaaba <mark>abaaba</mark> abaaba ···

Note that $\frac{d}{dz} \log \zeta_X(z) = \sum_{n \ge 1} p_n z^n$

A simple example

 $X = \{a, b\}^{\mathbb{Z}}.$

$$\zeta_X(z) = \exp \sum_{n \ge 1} \frac{p_n}{n} z^n$$
$$= \exp \sum_{n \ge 1} \frac{2^n}{n} z^n$$
$$= \exp \sum_{n \ge 1} \frac{(2z)^n}{n}$$
$$= \exp \log \frac{1}{1 - 2z}$$
$$= \frac{1}{1 - 2z} = (2z)^*$$

Zeta function of shifts of finite type

Bowen and Lanford 1970

$$\mathcal{A} = (Q, E)$$
 $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ $\zeta_X(z) = \frac{1}{1 - z - z^2} = (z + z^2)^*$

Theorem (Bowen and Lanford 1970)

If X is a shift of finite type,

$$\zeta_X(z) = \frac{1}{\det(I - Az)}$$

Zeta function of sofic shifts

Manning 1971, Bowen 1978 $\mathcal{A} = (Q, E) \ Q = \{p_1 < p_2 < \dots < p_n\}.$ $\mathcal{A}_{\otimes k} = (Q_{\otimes k}, E_{\otimes k})$, where $Q_{\otimes k}$ is the set of all ordered *k*-uples of states of Q, and the edge are

$$(p_1, \dots, p_k) \xrightarrow{a} (q'_1, \dots, q'_k) \text{ iff } \begin{cases} p_i \xrightarrow{a} q_i \text{ in } \mathcal{A} \\ (q'_1, \dots, q'_k) = \pi_{even}(q_1, \dots, q_k) \end{cases}$$
$$(p_1, \dots, p_k) \xrightarrow{-a} (q'_1, \dots, q'_k) \text{ iff } \begin{cases} p_i \xrightarrow{a} q_i \text{ in } \mathcal{A} \\ (q'_1, \dots, q'_k) = \pi_{odd}(q_1, \dots, q_k) \end{cases}$$

Theorem (Bowen 1978)

If X is a sofic shift,

$$\zeta_X(z) = \prod_{\ell=1}^{|\mathcal{Q}|} \det(I - A_{\otimes \ell}(z))^{(-1)^\ell}$$

Zeta function of sofic shifts

Manning 1971, Bowen 1978

$$\zeta_X(z) = \frac{\det(I - A_{\otimes 2}z)}{\det(I - Az)} = \frac{1 + z}{1 - z - z^2} = (1 + z)(z + z^2)^*$$

Multivariate zeta functions

Berstel and Reutenauer 1990 P(X) is the (non commutative) formal series of periodic patterns of X. The *multivariate zeta function* of X is the commutative series in $\mathbb{Z}\llbracket A \rrbracket$

$$Z(X) = \exp \sum_{n \ge 1} \frac{[\underline{P}(X)]_n}{n},$$

where each $[P(X)]_n$ is the homogeneous part of P(X) of degree n.

$$\zeta_X(z)=\theta(Z(X)),$$

where $\theta(a) = z$ for any letter $a \in A$.

$\mathbb N\text{-}\mathsf{rationality}$ of zeta functions of sofic shifts

Reutenauer 1997

Theorem (Reutenauer 1997)

Let X be a sofic shift. There is a finite rational factorization $(C_i)_{i \in I}$ of A^* such that

$$Z(X) = \prod_{j \in J \subseteq I} \mathcal{C}_j^*$$

If $(C_i)_{i \in I}$ is a factorization then each set C_i is a circular code and each conjugacy class of nonempty words meets exactly one C_i^*

Beyond sofic constraints: the Dyck shift

Krieger 1974

 $A = (A_c, A_r) \text{ call alphabet } \{(, [\} \text{ return alphabet } \{),]\}$ Dyck(A) language generated by the grammar $X \to cXrX | \varepsilon$ The Dyck shift is X_F where $F = "("Dyck(A)"]" \cup "["Dyck(A)")"$ Allowed factors are factors of well-parenthesized words

An allowed sequence: \cdots)))](())][[(\cdots .

Keller 1991

A set of words C such that each bi-infinite sequence has at most one decomposition into words of C is a circular code.

Let $\mathcal{A} = (Q, E)$ be a directed labeled graph over \mathcal{A} $(\mathcal{A}, \mathcal{C})$ is a circular Markov code if each bi-infinite label of a path of \mathcal{A} has at most one decomposition into words of \mathcal{C} .

 $C_{pq} = A_{pq}^* \cap C.$ X_C is the σ -invariant set of orbits of the bi-infinite sequences (e_i) with $e_i \in C_{p_i p_{i+1}}.$

Theorem (Keller 1991)

Let $(\mathcal{A}, \mathcal{C})$ be a circular Markov code.

$$\zeta_{\mathsf{X}_{\mathcal{C}}}(z) = \frac{1}{\det(I - \mathcal{C}(z))}$$

Encoding of periodic patterns of the Dyck shift X.

Dyck(X): the set of well-parenthesized blocks of X: ε , (), [], ([])(), ...

 $C = Prime(X) = Dyck(X) - (Dyck(X))^2$ the set of prime Dyck words of X

 $A = (A_c, A_r) \text{ call alphabet } \{(, [] \text{ return alphabet } \{),]\}$ C, $C(A_r)^*$, $(A_c)^*C$, A_c , A_r are circular codes

Theorem (Keller 1991)

Let X be the Dyck shift over 2N symbols

$$\zeta_X(z) = \frac{\zeta_{X_{(A_c)^*C}(z)}\zeta_{X_{C(A_r)^*}(z)}\zeta_{X_{A_r}(z)}\zeta_{X_{A_c}(z)}}{\zeta_{X_C(z)}}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ◆豆 - 釣 < ⊙

Encoding of periodic patterns of the Dyck shift X.

Dyck(X): the set of well-parenthesized blocks of X: ε , (), [], ([]) (), ...

 $C = \text{Prime}(X) = \text{Dyck}(X) - (\text{Dyck}(X))^2$

the set of prime Dyck words of X

 $A = (A_c, A_r) \text{ call alphabet } \{(, [\} \text{ return alphabet } \{),]\}$ C, $C(A_r)^*$, $(A_c)^*C$, A_c , A_r are circular codes

Theorem (Keller 1991)

Let X be the Dyck shift over 2N symbols

$$\zeta_X(z) = \frac{\det(I - C)}{\det(I - A_c^*C)\det(I - CA_r^*)\det(I - A_r)\det(I - A_c)}$$
$$= \frac{2(1 + \sqrt{1 - 4Nz^2})}{(1 - 2Nz + \sqrt{1 - 4Nz^2})^2}$$

Encoding of periodic sequences. Case balance(w) > 0w = aabaababaaba

Encoding of periodic sequences. Case balance(w) > 0 u = abaababaabaa

Encoding of periodic sequences. Case balance(w) > 0 $u = abaabaabaa \in (CA_c^*)^*$

Zeta function of Markov-Dyck shift

Krieger and Matsumoto 2011

$$G = (Q, E)$$
 be a directed multigraph
 $G^- = (Q, E^-)$, E^- a copy of E
 $G^+ = (Q, E^+)$ reversed graph

Graph inverse semigroup S: the semigroup generated by $Q \cup E^- \cup E^+$ with a zero quotiented by

pq = 0 if
$$p \neq q$$
 and $p^2 = p$
 $e^-f^+ = 0$ if $f \neq e$
 $e^-e^+ = i(e)$
 $i(e)e^- = e^-t(e), t(e)e^+ = e^+s(e^-)$

The shift X(G) is the set of bi-infinite paths of $G^- \cup G^+$ with no factor zero in S

Zeta function of Markov-Dyck shifts

Krieger and Matsumoto 2011

An allowed sequence: $\cdots e^{-}f^{-}f^{+}e^{+}g^{-}g^{+}g^{+}g^{+}\cdots$.

 $(C_{pq})_{p,q\in Q}$: C_{pp} is the set of prime paths from p to p of value s(p) in S

Theorem (Krieger Matsumoto 2011)

Let X be a Markov-Dyck shift.

$$\zeta_X(z) = \frac{\zeta_{X_{(M_-)^*C}(z)} \zeta_{X_{C(M_+)^*}(z)} \zeta_{X_{M_+}(z)} \zeta_{X_{M_-}(z)}}{\zeta_{X_C(z)}}$$

Zeta function of Markov-Dyck shifts

Krieger and Matsumoto 2011

An allowed sequence: $\cdots e^{-}f^{-}f^{+}e^{+}g^{-}g^{+}g^{+}g^{+}\cdots$.

 $(C_{pq})_{p,q\in Q}$: C_{pp} is the set of prime paths from p to p of value s(p) in S

Theorem (Krieger Matsumoto 2011)

Let X be the Dyck shift over 2N symbols

$$\zeta_X(z) = \frac{\det(I-C)}{\det(I-M_-^*C)\det(I-CM_+^*)\det(I-M_+)\det(I-M_-)}$$

Sofic-Dyck (or visibly pushdown shifts)

 $A = (A_c, A_r, A_i)$ call, return and internal (or neutral) alphabet. Dyck(A): words where each call symbol is matched with a return one Dyck automaton $\mathcal{A} = (G, M)$ G = (Q, E) is a directed labeled multigraph M is a set of pairs of matched edges.

A finite path π is admissible if for any factor of π

$$p \xrightarrow{c} q \xrightarrow{\pi_1} p' \xrightarrow{r} q'$$

where $label(\pi_1) \in Dyck(A)$, then $p \xrightarrow{c} q$ and $p' \xrightarrow{r} q'$ are matched.

An infinite path is admissible if all its finite factors are admissible. X_A is the set of labels of bi-infinite admissible paths of A.

Sofic-Dyck shifts

An allowed sequence: \cdots ((*i i*))[*i i*]((\cdots .

Theorem (Béal, Blockelet, Dima 2014)

Sofic-Dyck shifts over A are the exactly the shifts X_F where F is a visibly pushdown language over A.

Mehlhorn 1980 Input-driven languages Alur and Madhusudan 2004 $M = (Q, I, \Gamma, \Delta, F)$

- Q is the finite state of states
- $A = (A_c, A_r, A_i)$ is the partitioned alphabet

Ø

Mehlhorn 1980 Input-driven languages Alur and Madhusudan 2004 $M = (Q, I, \Gamma, \Delta, F)$

- Q is the finite state of states
- $A = (A_c, A_r, A_i)$ is the partitioned alphabet

Mehlhorn 1980 Input-driven languages Alur and Madhusudan 2004 $M = (Q, I, \Gamma, \Delta, F)$

- Q is the finite state of states
- $A = (A_c, A_r, A_i)$ is the partitioned alphabet

$$(p, a, q, \alpha) \in \Delta$$
 $p, \begin{vmatrix} \alpha \\ \vdots \\ \beta \\ \vdots \\ \beta \end{pmatrix}$

Mehlhorn 1980 Input-driven languages Alur and Madhusudan 2004 $M = (Q, I, \Gamma, \Delta, F)$

- Q is the finite state of states
- $A = (A_c, A_r, A_i)$ is the partitioned alphabet
- Γ is the stack alphabet

$$(p, a, q, \alpha) \in \Delta \qquad p, \begin{vmatrix} \alpha \\ \vdots \\ \beta \\ \bot \end{vmatrix} \xrightarrow{a} q, \begin{vmatrix} \alpha \\ \alpha \\ \vdots \\ \beta \\ \bot \end{vmatrix}$$

Mehlhorn 1980 Input-driven languages Alur and Madhusudan 2004 $M = (Q, I, \Gamma, \Delta, F)$

- Q is the finite state of states
- $A = (A_c, A_r, A_i)$ is the partitioned alphabet

$$(p, \mathbf{b}, \alpha, q) \in \Delta$$
 $p, \begin{vmatrix} \alpha \\ \vdots \\ \beta \end{vmatrix}$

Mehlhorn 1980 Input-driven languages Alur and Madhusudan 2004 $M = (Q, I, \Gamma, \Delta, F)$

- Q is the finite state of states
- $A = (A_c, A_r, A_i)$ is the partitioned alphabet

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

$$(p, \mathbf{b}, \alpha, q) \in \Delta$$
 $p, \begin{vmatrix} \alpha \\ \vdots \\ \beta \end{vmatrix} \xrightarrow{\mathbf{b}} q, \begin{vmatrix} z \\ \vdots \\ \beta \end{vmatrix}$

Zeta function of sofic-Dyck shifts

Béal, Blockelet, Dima 2014 with a Keller-like encoding of periodic patterns

Béal, Dima, Heller 2015 with a new encoding of periodic patterns

 $A = (A_c, A_r, A_i)$ Dyck automata $\mathcal{A} = (G, M)$ left-reduced (resp. \mathcal{A}' right-reduced) $C = (C_{pq})$, where C_{pq} is the set of prime Dyck words labeling an admissible path from p to q $M_c = (M_{c,pq})$, (resp. M_r) where $M_{c,pq}$ is the sum of call (resp. return) letters labeling an edge from p to q

Proposition (A new encoding of periodic patterns)

Let X be a sofic-Dyck shift, $\mathcal{P}(X)$ the set of periodic patterns of X

$$\mathcal{P}(X) = \mathcal{P}(X_{C^*M_c}) \sqcup \mathcal{P}(X_{M_r+C})$$

Zeta function of sofic-Dyck shifts

Béal, Blockelet, Dima 2014 with a Keller-like encoding of periodic patterns

Béal, Dima, Heller 2015 with a new encoding of periodic patterns

 $A = (A_c, A_r, A_i)$ Dyck automata A = (G, M) left-reduced (resp. A' right-reduced)

 $C = (C_{pq})$, where C_{pq} is the set of prime Dyck words labeling an admissible path from p to q $M_c = (M_{c,pq})$, (resp. M_r) where $M_{c,pq}$ is the sum of call (resp. return) letters labeling an edge from p to q

Proposition

Let X be a the sofic-Dyck shift.

$$Z(X) = Z(X_{C^*M_c})Z(X_{M_r+C})$$

Zeta function of sofic-Dyck shifts

Béal, Blockelet, Dima 2014 with a Keller-like encoding of periodic patterns

Béal, Dima, Heller 2015 with a new encoding of periodic patterns

 $A = (A_c, A_r, A_i)$ Dyck automata $\mathcal{A} = (G, M)$ left-reduced (resp. \mathcal{A}' right-reduced) $C = (C_{pq})$, where C_{pq} is the set of prime Dyck words labeling an admissible path from p to q $M_c = (M_{c,pq})$, (resp. M_r) where $M_{c,pq}$ is the sum of call (resp. return) letters labeling an edge from p to q

Theorem

Let X be a the sofic-Dyck shift.

$$Z(X) = \prod_{\ell=1}^{|\mathcal{Q}|} \det(I - (C^*M_c)_{\otimes \ell})^{(-1)^{\ell}} \prod_{\ell=1}^{|\mathcal{Q}'|} \det(I - (C' + M'_r)_{\otimes \ell})^{(-1)^{\ell}}$$

Example

$$C_{11} = aD_{11}b + a'D_{11}b'$$

$$D_{11} = aD_{11}bD_{11} + a'D_{11}b'D_{11} + iiD_{11} + \varepsilon$$

$$Z(X) = \frac{(1+i)}{(1-(C_{11}+i^2)^*(a+a'))(1-(C_{11}+i^2+b+b'))}$$

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

Example

$$\zeta_X(z) = \frac{(1+z)(1-z^2-\frac{1-z^2-\sqrt{1-10z^2+z^4}}{2})}{(1-2z-z^2-\frac{1-z^2-\sqrt{1-10z^2+z^4}}{2})^2}$$

$$h(X) = \log \frac{1}{\rho} = \log \frac{2}{\sqrt{13} - 3} \sim \log 3.3027.$$

 $\mathbb N\text{-}algebraicity$ of the zeta function of sofic-Dyck shifts

Using Reutenauer's result

Theorem (Béal, Dima, Heller 2015)

Let X be sofic-Dyck shift. There is a finite number of visibly pushdown circular codes $(C_i)_{i \in J}$ such that

$$Z(X) = \prod_{j \in J} C_j^*$$

Z(X) is the (commutative image of) the generating series of a visibly pushdown language

$$Z(X) = (C_{11} + i^2)^* (a + a'))^* i^* (C_{11} + b + b') (i^2)^*)^*$$

Shifts of finite type

Sofic shifts

Shifts of finite type	Sofic shifts
Finite-type-Dyck shifts	Sofic-Dyck shifts

Shifts of finite type	Sofic shifts
Bowen and Lanford 1970	Manning 1971, Bowen 1978
Dyck shift, <i>Keller</i> 1991 Motzkin shifts, <i>Inoue</i> 2006 Markov-Dyck shifts <i>Krieger and Matsumoto</i> 2011	

Shifts of finite type	Sofic shifts
Bowen and Lanford 1970	Manning 1971, Bowen 1978
Finite-type Dyck shifts	Sofic-Dyck shifts

Shifts of finite type	Sofic shifts
ℕ-rational	ℕ-rational, <i>Reutenauer 1997</i>
Finite-type Dyck shifts	Sofic-Dyck shifts
ℕ-algebraic	ℕ-algebraic

Topological entropy of visibly pushdown shifts

The entropy of a shift X is $h(\mathcal{B}(X))$ The topological entropy of a language L over A is

$$h(L) = \limsup_{n \to \infty} \frac{1}{n} \log |L \cap A_n(X)|$$

Classical methods: $\mathcal{B}(X)$ is defined by a visibly pushdown grammar (hence deterministic). Well-defined \mathbb{N} -algebraic systems of equations allow to get ρ such that $\lambda = 1/\rho$ such that $\mathcal{B}_n(X) \sim C\lambda^n n^{\alpha}$ and get $h(X) = \log \lambda$.

(Chomsky-Schützenberger, Kuich, Bell, Drmota, Lalley, Wood, Banderier)

Example: the Dyck shift with 2 types of parentheses

 $h(\mathcal{B}(X)) = \max(h((CA_c^*)^*), h((CA_r^*)^*), h(A_c^*), h(A_r^*))$ C set of prime Dyck words

$$D = aD\bar{a}D | bD\bar{b}D | \varepsilon$$

$$C = aD\bar{a} | bD\bar{b}$$

$$(CA_c^*)^*(z) = \frac{2(1-2z)}{1-4z-\sqrt{1-8z^2}}$$
One gets $\rho = 1/3$ and thus $h(X) = \log 3$.

Topological entropy of periodic patterns

The entropy of $\mathcal{P}(X)$ is $\log \frac{1}{\rho}$ where ρ is the radius of convergence of $\zeta_X(z)$

for Markov-Dyck shifts $h(X) = h(\mathcal{P}(X))$ for Markov-Dyck shifts (Krieger and Matsumoto 2011)

for visibly pushdown systems?

Open problems and future work

It is decidable in polynomial time whether

- a sofic shift is a shift of finite type
- a regular language is strictly locally testable
- A finite-type-Dyck shift is X_F where F is a union of
 - a finite set of words G
 - a finite union of sets $u_1c(\text{Dyck}(A) \cap u_2A^* \cap A^*v_1)rv_2$.
- Is it decidable whether
 - a sofic-Dyck shift is a finite-type-Dyck?
 - a one-sided sofic-Dyck shift is a (one-sided) finite-type-Dyck shift?