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Overview

Background : Shifts of finite type. Sofic shifts
Zeta functions of shifts

Dyck shifts and visibly-pushdown shifts
Entropy



Shifts of sequences

-[a]bfafa|blla]bJafafafbfaa]a}-

A is a finite alphabet
F is a set of finite words over A (forbidden patterns or factors)
Xr: the subset of A% of sequences of letters avoiding F.
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Shifts of sequences
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A is a finite alphabet
F is a set of finite words over A (forbidden patterns or factors)
Xr: the subset of A% of sequences of letters avoiding F.



Shifts of finite type

A forbidden sequence:

- abaababababaabbaaabababa - - -
Characterized by a finite set of forbidden blocks F = {bb}.

d——0



Sofic shifts

A forbidden sequence:
- abbaabbabbabbaaababbbaaaabbabbaaa - - -

Characterized by a regular set of forbidden patterns: an odd number of
b between two a is forbidden.

d——0



Conjugacy between shifts

A one-to-one and onto sliding block code ® : X C AZ Yy C BZ,
The inverse is also a sliding block code.
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A one-to-one and onto sliding block code ® : X C AZ Yy C BZ,
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Conjugacy between shifts

A one-to-one and onto sliding block code ® : X C AZ Yy C BZ,
The inverse is also a sliding block code.
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Conjugate shifts: example

11
A= 2] B = L 1]
It is not known

if it is decidable whether two shifts of finite type are conjugate.



Zeta function: counting periodic sequences

(X, 0) is a shift with o : (Xi)ieZ — (X;+1),'ez
Pn is the number of sequences x € X such that 0”(x) = x

The zeta function of X is defined as

(x(z) = expz p—:z" = H (1— -1,

n>1 7 periodic orbit

Periodic pattern abaaba

.- -abaaba abaaba abaaba abaaba - --

Note that % log (x(2) = > ,>1 PnZ"



A simple example

X = {a, b}7.

(x(z)

n>1




Zeta function of shifts of finite type

Bowen and Lanford 1970

Theorem (Bowen and Lanford 1970)
If X is a shift of finite type,

1

x(2) = det(l — AZ)




Zeta function of sofic shifts

Manning 1971, Bowen 1978

A=(QE) Q={p1 <p2<--- < pn}.

Agk = (Qgk, Egk), where Qgiis the set of all ordered k-uples of states
of @, and the edge are

pi = gi in A

(plv"wpk)i)(qi?"'aq;() iff ’ ’
(q17 ceey qk) = Weven(qb ceey qk)

pi = qgiin A

(P pk) —> (g5, ..., q)) iff ) )
(q17 .. "qk) = 7Todd(CI17 .. "qk)

Theorem (Bowen 1978)
If X is a sofic shift,

|Q
Cx(2) = [] det(l — Age(2) "

/=1




Zeta function of sofic shifts

Manning 1971, Bowen 1978

a -b
% @
b
_det(/ — Ag2z) 1+z

(x(2) = =(1+2)(z +2°)

det(/ — Az) 1—z-—22



Multivariate zeta functions

Berstel and Reutenauer 1990
P(X) is the (non commutative) formal series of periodic patterns of X.
The multivariate zeta function of X is the commutative series in Z[A]

P(X)],
200 = " (n)] |

n>1

where each [P(X)], is the homogeneous part of P(X) of degree n.

where 0(a) = z for any letter a € A.



N-rationality of zeta functions of sofic shifts

Reutenauer 1997
Theorem (Reutenauer 1997)

Let X be a sofic shift. There is a finite rational factorization (C;);c; of

A* such that
zx)= [ ¢
jeJcl

If (Ci)ics is a factorization then each set C; is a circular code and each
conjugacy class of nonempty words meets exactly one C;

Z(X) = b (a(bb)')" = C5Ci (= T2



Beyond sofic constraints: the Dyck shift

Krieger 1974

A= (Ac, Ay) call alphabet {(, [} return alphabet {),]}

Dyck(A) language generated by the grammar X — cXrX|e

The Dyck shift is Xg where F =" ("Dyck(A)"]" U"["Dyck(A)")"
Allowed factors are factors of well-parenthesized words

An allowed sequence: ---)) )] (())]I]11(---



Zeta function of the Dyck shift

Keller 1991

A set of words C such that each bi-infinite sequence has at most one
decomposition into words of C is a circular code.

Let A= (Q, E) be a directed labeled graph over A

(A,C) is a circular Markov code if each bi-infinite label of a path of A
has at most one decomposition into words of C.

Cpqg = Apg NC.

Xc is the o-invariant set of orbits of the bi-infinite sequences (e;) with
& € CPiPi+1'

Theorem (Keller 1991)

Let (A,C) be a circular Markov code.

1
xc(2) = det(/ — C(2))




Zeta function of the Dyck shift

Encoding of periodic patterns of the Dyck shift X.

Dyck(X): the set of well-parenthesized blocks of X: ¢, (), []. ([]) ().
C = Prime(X) = Dyck(X) — (Dyck(X))?

the set of prime Dyck words of X

A= (Ac, Ay) call alphabet {(, [} return alphabet {),]}
C, C(A)*, (A)*C, Ac, A, are circular codes

Theorem (Keller 1991)

Let X be the Dyck shift over 2N symbols

Kaoyc(2)Xeanys (2)SXa, (2)Kac (2)
(Xc(2)

(x(2) =




Zeta function of the Dyck shift

Encoding of periodic patterns of the Dyck shift X.
Dyck(X): the set of well-parenthesized blocks of X: ¢, (), [], ([]) (),

C = Prime(X) = Dyck(X) — (Dyck(X))?
the set of prime Dyck words of X

A = (Ac, Ar) call alphabet {(, [} return alphabet {),]}
C, C(A)*, (A)*C, Ac, A, are circular codes

Theorem (Keller 1991)
Let X be the Dyck shift over 2N symbols

det(/ — C)

(x(z) = det(/ — A:C)det(/ — CA%)det(l — A,) det(/ — Ac)
2(1+ V1—4Nz?)

(1 —2Nz + V1 — 4Nz2)2




Zeta function of the Dyck shift

Encoding of periodic sequences. Case balance(w) > 0
w = aabaababaaba




Zeta function of the Dyck shift

Encoding of periodic sequences. Case balance(w) > 0
u = abaababaabaa

A




Zeta function of the Dyck shift

Encoding of periodic sequences. Case balance(w) > 0
u = abaababaabaa € (CA.*)*

A



Zeta function of Markov-Dyck shift

Krieger and Matsumoto 2011
= (Q, E) be a directed multigraph
“=(Q,E7), E- acopyof E
Gt = (Q, E™) reversed graph
Graph inverse semigroup S: the semigroup generated by QU E~ U E™
with a zero quotiented by
pq=0if p#qand p> =p
e ft=0iff#e
e"et =i(e)
i(e)e” = e t(e), t(e)e™ = eTs(e)
The shift X(G) is the set of bi-infinite paths of G~ U G with no
factor zero in S



Zeta function of Markov-Dyck shifts

Krieger and Matsumoto 2011

An allowed sequence: ---e f ftetggtgtg™ --.

(Cpq)p,qe@: Cpp is the set of prime paths from p to p of value s(p) in S

Theorem (Krieger Matsumoto 2011)
Let X be a Markov-Dyck shift.

Xom_yec(2)Keqm, 1 (2) X, (2)$Xmr_(2)

S = Xe(2)




Zeta function of Markov-Dyck shifts

Krieger and Matsumoto 2011

An allowed sequence: ---e f ftetggtgtg™ --.

(Cpq)p,qe@: Cpp is the set of prime paths from p to p of value s(p) in S

Theorem (Krieger Matsumoto 2011)
Let X be the Dyck shift over 2N symbols

det(/ — C)
et(I — M* C)det(I — CM*) det(I — My ) det(/ — M_)

x(2) = 5




Sofic-Dyck (or visibly pushdown shifts)

A= (Ac, Ar, A;) call, return and internal (or neutral) alphabet.
Dyck(A): words where each call symbol is matched with a return one
Dyck automaton A = (G, M)

G = (Q, E) is a directed labeled multigraph

M is a set of pairs of matched edges.

A finite path 7 is admissible if for any factor of =
c /—T/FIH ) r /
p—q—:-—p —dq
where label(71) € Dyck(A), then p = g and p’ =+ ¢ are matched.

An infinite path is admissible if all its finite factors are admissible.
X 4 is the set of labels of bi-infinite admissible paths of A.



Sofic-Dyck shifts

An allowed sequence: «--((ii))[ii]((---.

Theorem (Béal, Blockelet, Dima 2014)

Sofic-Dyck shifts over A are the exactly the shifts Xg where F is a
visibly pushdown language over A.




Visibly pushdown languages

Mehlhorn 1980 Input-driven languages
Alur and Madhusudan 2004
M= (Q,I,l,A,F)
Q is the finite state of states
A= (A, Ay, Aj) is the partitioned alphabet
I" is the stack alphabet
QxAcx Q@x (M'\{L})
ACTQxA x(T\{L})xQ
QxA xQ

(p.l,q) €A p,
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Mehlhorn 1980 Input-driven languages
Alur and Madhusudan 2004
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Q is the finite state of states
A= (A, Ay, Aj) is the partitioned alphabet
I" is the stack alphabet
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(% (%
(p>€7 q) € A P, L q,
p B
L L
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Visibly pushdown languages

Mehlhorn 1980 Input-driven languages
Alur and Madhusudan 2004
M= (Q,I,l,A,F)
Q is the finite state of states
A= (A, Ay, Aj) is the partitioned alphabet
I" is the stack alphabet
QxAcx Q@x (M'\{L})
ACTQxA x(T\{L})xQ
QxA xQ

(p,b,a,q) € A p,




Visibly pushdown languages

Mehlhorn 1980 Input-driven languages
Alur and Madhusudan 2004
M= (Q,I,l,A,F)
Q is the finite state of states
A= (A, Ay, Aj) is the partitioned alphabet
I" is the stack alphabet
QX Acx Q@x(F\{L})
AC{QxA x(T\{L})xQ

QxA xQ
«
. b .
(P, b,Oé, q) € A p,| —q,| :
B p
1 1




Zeta function of sofic-Dyck shifts

Béal, Blockelet, Dima 2014 with a Keller-like encoding of periodic
patterns
Béal, Dima, Heller 2015 with a new encoding of periodic patterns

A= (Aca AI’7 AI)

Dyck automata A = (G, M) left-reduced (resp. A’ right-reduced)
C = (Cpq), where Cpq is the set of prime Dyck words labeling an
admissible path from p to g

Mc = (Mc pq), (resp. M,) where Mc pq is the sum of call (resp. return)
letters labeling an edge from p to g

Proposition (A new encoding of periodic patterns)
Let X be a sofic-Dyck shift, P(X) the set of periodic patterns of X

P(X) = P(XC*MC) L 'P(XM,_|_C)




Zeta function of sofic-Dyck shifts

Béal, Blockelet, Dima 2014 with a Keller-like encoding of periodic
patterns
Béal, Dima, Heller 2015 with a new encoding of periodic patterns

A — (A67Ar)Ai)
Dyck automata A = (G, M) left-reduced (resp. A’ right-reduced)

C = (Cpq), where Cpq is the set of prime Dyck words labeling an
admissible path from p to g

Mc = (Mc pq), (resp. M,) where Mc pq is the sum of call (resp. return)
letters labeling an edge from p to g

Proposition
Let X be a the sofic-Dyck shift.

Z(X) = Z(Xc*m)Z(Xm,+-c)




Zeta function of sofic-Dyck shifts

Béal, Blockelet, Dima 2014 with a Keller-like encoding of periodic
patterns
Béal, Dima, Heller 2015 with a new encoding of periodic patterns

A= (A, ALA)

Dyck automata A = (G, M) left-reduced (resp. A’ right-reduced)

C = (Cpq), where Cpq is the set of prime Dyck words labeling an
admissible path from p to g

Mc = (Mc pq), (resp. M,) where Mc pq is the sum of call (resp. return)
letters labeling an edge from p to g

Let X be a the sofic-Dyck shift.

|Q Q']
Hdet (1 — (C*Me)ge) "V Hdet (€' + Mp)e) V',




Example

Ci1 = aDi1b+ Db
D11 = aD11bDy1 + @' D116/ Dy + iiD1g +

2(X) = (1+1)

(1—-(C1+i?)(a+a)(1—-(Ci+i2+b+P))



Example

(1 + Z)(]_ _ 2 _ 1—22—\/12—1022+z4)

(x(2) =
(1 _ 072 17227\/1271022+z4 )2

1
h(X) = log = = log ~ log 3.3027.
P

2
V13 -3



N-algebraicity of the zeta function of sofic-Dyck shifts

Using Reutenauer’s result

Theorem (Béal, Dima, Heller 2015)

Let X be sofic-Dyck shift. There is a finite number of visibly pushdown
circular codes (Cj)jey such that

zx)=11¢g

jed

Z(X) is the (commutative image of) the generating series of a visibly
pushdown language

Z(X) = (Ci1 + i?)*(a+ a)*i*(Cu1 + b+ b)(i%)*)*



Zeta function: summary

Shifts of finite type Sofic shifts
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Zeta function: summary

Shifts of finite type
Bowen and Lanford 1970

Sofic shifts
Manning 1971, Bowen 1978

Dyck shift, Keller 1991
Motzkin shifts, Inoue 2006
Markov-Dyck shifts
Krieger and Matsumoto 2011




Zeta function: summary

Shifts of finite type Sofic shifts
Bowen and Lanford 1970 Manning 1971, Bowen 1978

Finite-type Dyck shifts Sofic-Dyck shifts




Zeta function: summary

Shifts of finite type Sofic shifts
N-rational N-rational, Reutenauer 1997
Finite-type Dyck shifts Sofic-Dyck shifts

N-algebraic N-algebraic




Topological entropy of visibly pushdown shifts

The entropy of a shift X is h(B(X))
The topological entropy of a language L over A is

1
h(L) = limsup - log |L N An(X)|

n—oo

Classical methods: B(X) is defined by a visibly pushdown grammar
(hence deterministic). Well-defined N-algebraic systems of equations
allow to get p such that A = 1/p such that B,(X) ~ CA\"n“ and get
h(X) = log A.

(Chomsky-Schiitzenberger, Kuich, Bell, Drmota, Lalley, Wood,
Banderier)



Example: the Dyck shift with 2 types of parentheses

h(B(X)) = max(h((CAZ)*), h((CA7)*), h(AZ), h(AT))
C set of prime Dyck words

D = aD3D | bDbD | ¢

C = aD3|bDb
2(1 — 2z2)
CAN*(2) =
(A &) =, e

One gets p = 1/3 and thus h(X) = log 3.



Topological entropy of periodic patterns

The entropy of P(X) is Iog%
where p is the radius of convergence of (x(z)

for Markov-Dyck shifts
h(X) = h(P(X)) for Markov-Dyck shifts (Krieger and Matsumoto
2011)

for visibly pushdown systems?



Open problems and future work

It is decidable in polynomial time whether
a sofic shift is a shift of finite type

a regular language is strictly locally testable

A finite-type-Dyck shift is Xg where F is a union of
a finite set of words G
a finite union of sets ujc(Dyck(A) N uxA* N A*vy)rvs.
Is it decidable whether
a sofic-Dyck shift is a finite-type-Dyck?
a one-sided sofic-Dyck shift is a (one-sided) finite-type-Dyck shift?



