			1
		1 8	1

Digital/Analog Computation in the Cell Computational Systems Biology and Optimization

François Fages Lifeware group Inria Saclay

the formula is false

the formula is false

the formula is true for any $x \le 10 \land y \ge 2$

Validity domain $\mathcal{D}_{\phi^*}(\mathcal{T})$ of free variables in ϕ^* [Fages Rizk TCS'08]

3

イロン イヨン イヨン イヨン

Ptime Analog

Continuous Satisfaction Degree

Validity domain $\mathcal{D}_{\phi^*}(T)$ of free variables in ϕ^* [Fages Rizk TCS'08] Violation degree $vd(T, \phi) = \text{distance}(val(\phi), D_{\phi^*}(T))$ Satisfaction degree $sd(T, \phi) = \frac{1}{1+vd(T, \phi)} \in [0, 1]_{\text{CD}}$

Satisfaction Landscape for Parameter Optimization

Example with :

- yeast cell cycle model [Tyson PNAS 91]
- oscillation of at least 0.3

 $\phi^*:$ F([A] $\!\!\geq\!\! x)$ \wedge F([A] $\!\!\leq\!\! y);$ amplitude x-y $\!\geq\!\! 0.3$

Bifurcation diagram

LTL satisfaction diagram

FO-LTL(R)	Continuous Satisfaction Degree	Robustness	Compiler	Ptime Analog
Robustne	ess Measure Definition	on		

Robustness defined with respect to :

- a biological system
- a functionality property D_a
- a set P of perturbations
- Computational measure of robustness w.r.t. $LTL(\mathbb{R})$ spec:

$$\mathcal{R}_{\phi, \mathcal{P}} = \int_{oldsymbol{p} \in \mathcal{P}} \mathit{sd}(\mathit{T}(oldsymbol{p}), \phi) \; \mathit{prob}(oldsymbol{p}) \; \mathit{dp}$$

where T(p) is the trace obtained by numerical integration of the ODE for perturbation p

イロン イロン イヨン イヨン 三日

Digital/Analog Computation with Reaction Rates

Purely Analog Characterization of Ptime [Pouly Bournez Graca 2015])

Shannon's General Purpose Analog Circuit (GPAC)

Definition

f is **poly-computable** by a GPAC iff $\exists p, q$ polynomials s.t. $\forall x \in \mathbb{R}$, the solution $y = (y_1, \dots, y_d)$ of:

$$\begin{cases} y'(t) = p(y(t)) \\ y(t_0) = q(x) \end{cases}$$

y_b(x)

satisfies that:

•
$$\|f(x) - y_1(t)\| \leq e^{-\mu}$$
 when $t \geq \operatorname{poly}(\|x\|, \mu)$

$$||y(t)|| \leq \operatorname{poly}(||x||, t)$$

Theorem

f is poly-computable if and only if it is computable in polytime in the sense of Computable Analysis.