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Specification of Dynamical Behaviors in LTL(R)

QFLTL(R)

Φ*=F([A]≥x 
       ∧F([A]≤y))

Constraint solving

the formula is true for any 
x≤10 ∧ y≥2

Φ=F([A]≥7 
       ∧F([A]≤0))

Model-checking

the formula is false
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Model-Checking generalized to Contraint Solving
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Model-Checking generalized to Contraint Solving
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Validity domain Dφ∗(T ) of free variables in φ∗ [Fages Rizk TCS’08]
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Continuous Satisfaction Degree

QFLTL(R)

Φ*=F([A]≥x 
       ∧F([A]≤y))

Constraint solving

the formula is true for any 
x≤10 ∧ y≥2

Φ=F([A]≥7 
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Model-checking

the formula is false
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Validity domain Dφ∗(T ) of free variables in φ∗ [Fages Rizk TCS’08]

Violation degree vd(T , φ) = distance(val(φ),Dφ∗(T ))
Satisfaction degree sd(T , φ) = 1

1+vd(T ,φ) ∈ [0, 1]
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Satisfaction Landscape for Parameter Optimization

Example with :

yeast cell cycle model [Tyson PNAS 91]

oscillation of at least 0.3

φ∗: F( [A]≥x) ∧ F([A]≤y); amplitude x-y≥0.3
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FIG. 2. Qualitative behavior of the cdc2-cyclin model of cell-
cycle regulation. The control parameters are k4, the rate constant
describing the maximum rate of MPF activation, and k6, the rate
constant describing dissociation ofthe active MPF complex. Regions
A and C correspond to stable steady-state behavior of the model;
region B corresponds to spontaneous limit cycle oscillations. In the
stippled area the regulatory system is excitable. The boundaries
between regions A, B, and C were determined by integrating the
differential equations in Table 1, for the parameter values in Table 2.
Numerical integration was carried out by using Gear's algorithm for
solving stiffordinary differential equations (32). The "developmental
path" 1 ... 5 is described in the text.

so k6 abruptly increases 2-fold. Continued cell growth causes
k6(t) again to decrease, and the cycle repeats itself. The
interplay between the control system, cell growth, and DNA
replication generates periodic changes in k6(t) and periodic
bursts of MPF activity with a cycle time identical to the
mass-doubling time of the growing cell.

Figs. 2 and 3 demonstrate that, depending on the values of
k4 and k6, the cell cycle regulatory system exhibits three
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different modes of control. For small values of k6, the system
displays a stable steady state of high MPF activity, which I
associate with metaphase arrest of unfertilized eggs. For
moderate Values of k6, the system executes autonomous
oscillations reminiscent of rapid cell cycling in early em-
bryos. For large values of k6, the system is attracted to an
excitable steady state of low MPF activity, which corre-
sponds to interphase arrest of resting somatic cells or to
growth-controlled bursts of MPF activity in proliferating
somatic cells.

Midblastula Traiisiton

A possible developmental scenario is illustrated by the path
1 ... 5 in Fig. 2. Upon fertilization, the metaphase-arrested
egg (at point 1) is stimulated to rapid cell divisions (2) by an
increase in the activity of the enzyme catalyzing step 6 (28).
During the early embryonic cell cycles (2-+ 3), the regulatory
system is executing autonomous oscillations, and the control
parameters, k4 and k6, increase as the nuclear genes coding
for these enzymes are activated. At midblastula (3), auton-
omous oscillations cease, and the regulatory system enters
the excitable domain. Cell division now becomes growth
controlled. As cells grow, k6 decreases (inhibitor diluted)
and/or k4 increases (activator accumulates), which drives the
regulatory system back into domain B (4 -S 5). The subse-
quent burst of MPF activity triggers mitosis, causes k6 to
increase (inhibitor synthesis) and/or k4 to decrease (activator
degradation), and brings the regulatory system back into the
excitable domain (5 -* 4).
Although there is a clear and abrupt lengthening of inter-

division times at MBT, there is no visible increase in cell
volume immediately thereafter (6, 20), so how can we enter-
tain the idea that cell division becomes growth controlled
after MBT? In the paradigm ofgrowth control ofcell division,
cell "size" is never precisely specified, because no one
knows what molecules, structures, or properties are used by
cells to monitor their size. Thus, even though post-MBT cells
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FIG. 3. Dynamical behavior of the cdc2-cyclin model. The curves are total cyclin ([YT] = [Y] + [YP] + [pM] + [M]) and active MPF [Ml
relative to total cdc2 ([CT] = [C2] + [CP] + [pM] + [MI). The differential equations in Table 1, for the parameter values in Table 2, were solved
numerically by using a fourth-order Adams-Moulton integration routine (33) with time step = 0.001 min. (The adequacy of the numerical
integration was checked by decreasing the time step and also by comparison to solutions generated by Gear's algorithm.) (a) Limit cycle
oscillations for k4 = 180 min-', k6 = 1 min- (point x in Fig. 2). A "limit cycle" solution of a set of ordinary differential equations is a periodic
solution that is asymptotically stable with respect to small perturbations in any of the dynamical variables. (b) Excitable steady state for k4 =
180 min 1, k6 = 2 min' (point + in Fig. 2). Notice that the ordinate is a logarithmic scale. The steady state of low MPF activity ([M]/[CT]
= 0.0074, [YT]/[CT] = 0.566) is stable with respect to small perturbations of MPF activity (at 1 and 2) but a sufficiently large perturbation of
[Ml (at 3) triggers a transient activation of MPF and subsequent destruction of cyclin. The regulatory system then recovers to the stable steady
state. (c) Parameter values as in b except that k6 is now a function of time (oscillating near point + in Fig. 2). See text for an explanation of
the rules for k6(Q). Notice that the period between cell divisions (bursts in MPF activity) is identical to the mass-doubling time (Td = 116 min
in this simulation). Simulations with different values of Td (not shown) demonstrate that the period between MPF bursts is typically equal to
the mass-doubling time-i.e., the cell division cycle is growth controlled under these circumstances. Growth control can also be achieved
(simulations not shown), holding k6 constant, by assuming that k4 increases with time between divisions and decreases abruptly after an MPF
burst.

7330 Cell Biology: Tyson

Bifurcation diagram LTL satisfaction diagram
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Robustness Measure Definition

Robustness defined with respect to :

a biological system

a functionality property Da

a set P of perturbations

Computational measure of robustness w.r.t. LTL(R) spec:

Rφ,P =

∫
p∈P

sd(T (p), φ) prob(p) dp

where T (p) is the trace obtained by numerical integration of
the ODE for perturbation p
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Digital/Analog Computation with Reaction Rates
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Purely Analog Characterization of Ptime
[Pouly Bournez Graca 2015])

Shannon’s General Purpose Analog Circuit (GPAC)
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