Entropy and temporal specifications

Eugene Asarin¹, Michel Bockelet², Aldric Degorre ¹, <u>Cătălin Dima</u>² and Chunyan Mu^3

> ¹LIAFA – Université de Paris-Diderot ²LACL – Université de Paris-Est Créteil ³University of Birmingham

EQINOCS final workshop, May 9th, 2016

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

1 Entropy and quantitative model-checking

- Quantitative model-checking in very few slides
- Entropy used as a measure
- Some experiments

Entropy and asymptotics

- Parametric linear temporal logic (PLTL)
- Convergence problems for PLTL formulas

Main result and techniques

- Discrete timed automata with parameters (GTBAC)
- Producing entropy in GTBAC
- Translating from PLTL to GTBAC

Computing limit entropies

- "Positive" case
- "Negative" case

Conclusions

(日) (同) (日) (日)

On qualitative and quantitative model-checking

Qualiltative model-checking

Given a system S and a property ϕ decide if $S \models \phi$ (answer: YES/NO).

- S: language of (ω -) words, automaton, Kripke structure, etc.
- φ : language of (ω -) words, automaton, formula in some logic (LTL, μ -calculus), etc.
- ⊨: language inclusion, model satisfaction, etc.

< ロ > < 同 > < 三 > < 三

On qualitative and quantitative model-checking

Qualiltative model-checking

Given a system S and a property ϕ decide if $S \models \phi$ (answer: YES/NO).

- S: language of (ω -) words, automaton, Kripke structure, etc.
- φ : language of (ω -) words, automaton, formula in some logic (LTL, μ -calculus), etc.
- ⊨: language inclusion, model satisfaction, etc.

Quantitative model-checking

Given a system S and a property ϕ , measure how much $S \vDash \phi$ (answer: a real number).

Approaches:

- probability (PRISM/UppAal people, etc.)
- "reward/penalty" models (quantitative languages, simulation distances, etc.).

(a)

On qualitative and quantitative model-checking

Qualiltative model-checking

Given a system S and a property ϕ decide if $S \models \phi$ (answer: YES/NO).

- S: language of (ω -) words, automaton, Kripke structure, etc.
- φ : language of (ω -) words, automaton, formula in some logic (LTL, μ -calculus), etc.
- ⊨: language inclusion, model satisfaction, etc.

Quantitative model-checking

Given a system S and a property ϕ , measure how much $S \vDash \phi$ (answer: a real number).

Approaches:

- probability (PRISM/UppAal people, etc.)
- "reward/penalty" models (quantitative languages, simulation distances, etc.).
- source of this work: entropy.

(a)

Example

System *S* (state-labeled, note $\Sigma = 2^{\{p,q\}}$):

Specifications:

$$\mathbf{0} \ \phi_1 = \mathsf{always} \ p.$$

• ϕ_2 = never 100 times in a row p.

In Linear Temporal Logic (LTL), $\phi_1 = \Box p$, $\phi_2 = \Box \diamondsuit_{<100} p$.

Example

System S (state-labeled, note $\Sigma = 2^{\{p,q\}}$):

Specifications:

$$\mathbf{D} \ \phi_1 = \mathsf{always} \ p$$
.

• ϕ_2 = never 100 times in a row p.

In Linear Temporal Logic (LTL), $\phi_1 = \Box p$, $\phi_2 = \Box \diamondsuit_{<100} p$.

Naive analysis

- Certain effort required to satisfy ϕ_1 (never go below)
- A different (smaller?) effort required to satisfy ϕ_2 (go above at least every 100 units)

Example

System S (state-labeled, note $\Sigma = 2^{\{p,q\}}$):

Specifications:

$$\mathbf{D} \ \phi_1 = \mathsf{always} \ p$$
.

• ϕ_2 = never 100 times in a row p.

In Linear Temporal Logic (LTL), $\phi_1 = \Box p$, $\phi_2 = \Box \diamondsuit_{<100} p$.

Naive analysis

- Certain effort required to satisfy ϕ_1 (never go below)
- A different (smaller?) effort required to satisfy φ₂ (go above at least every 100 units)

Probabilistic analysis

 $\mathbb{P}(\boldsymbol{S} \vDash \phi_1) = 0 \text{ and } \mathbb{P}(\boldsymbol{S} \vDash \phi_2) = 0$.

<ロト </p>

Example

System S (state-labeled, note $\Sigma = 2^{\{p,q\}}$):

Specifications:

$$\mathbf{D} \ \phi_1 = \mathsf{always} \ p$$
.

• ϕ_2 = never 100 times in a row p.

In Linear Temporal Logic (LTL), $\phi_1 = \Box p$, $\phi_2 = \Box \diamondsuit_{<100} p$.

Naive analysis

- Certain effort required to satisfy ϕ_1 (never go below)
- A different (smaller?) effort required to satisfy φ₂ (go above at least every 100 units)

Probabilistic analysis

 $\mathbb{P}(S \vDash \phi_1) = 0 \text{ and } \mathbb{P}(S \vDash \phi_2) = 0$.

Mismatch between the two analyses

C. Dima (LIAFA, Univ. Paris-Direrot)

・ロト ・回ト ・ 回ト

Our approach — entropy

Example

System S:

Specifications:

- $\phi_1 = \text{always } p.$
- 2 ϕ_2 = never 100 times in a row p.

In Linear Temporal Logic (LTL), $\phi_1 = \Box p$, $\phi_2 = \Box \diamondsuit_{<100} p$.

Entropy analysis

We associate a number (entropy) \mathcal{H} to everything,

- Entropy of the system: $\mathcal{H}(S) = 2$.
- Entropy of runs satisfying ϕ_1 is $\mathcal{H}(S \cap \phi_1) = 1 < 2$
- Entropy of runs satisfying ϕ_2 is $\mathcal{H}(S \cap \phi_2) > 1.99$ (close to 2).

Matches the intuition!

<ロ> (日) (日) (日) (日) (日)

Entropy used as a measure

What is entropy

Entropy of a finite word language (Chomsky, Miller)

For a language $L \subset \Sigma^*$, with $L_n = L \cap \Sigma^n$

$$\mathcal{H}(L) = \limsup_{n \to \infty} \frac{1}{n} \log \# L_n$$

Entropy of an
$$\omega$$
-language (Staiger)

$$\mathcal{H}(L) = \mathcal{H}(\texttt{pref}(L)) = \limsup_{n \to \infty} \frac{1}{n} \log \#\texttt{pref}(L, n)$$

What does it mean

- Growth rate of the language: $\#L_n \approx 2^{\mathcal{H}n}$
- "average log(number of choices for a symbol)" ۲
- Quantity of information (in bits/symbol) in words of L ۲
- Related to compression, Kolmogorov complexity, topological entropy, Hausdorff dimension ۲ etc.

<ロト < 回 > < 回 > < 回 > < 回 >

1

Entropy — examples

Example

$$a \stackrel{\frown}{\frown} 1 \stackrel{\frown}{\supset} b \qquad \qquad \mathcal{H}(\mathcal{L}(A)) = \log 2 =$$

Entropy — examples

Example

$$a \stackrel{\frown}{\frown} 1 \stackrel{\frown}{\triangleright} b \qquad \qquad \mathcal{H}(\mathcal{L}(A)) = \log 2 = 1$$

< □ > < □ > < □ > < □ > < □ > < □ >

Entropy — examples

Example

$$a \stackrel{\frown}{\frown} 1 \stackrel{\frown}{\triangleright} b \qquad \qquad \mathcal{H}(\mathcal{L}(A)) = \log 2 = 1$$

$$\begin{array}{c} a \\ 1 \\ \hline \\ a \end{array} \begin{array}{c} b \\ \hline \\ a \end{array} \begin{array}{c} \\ \mathcal{H}(\mathcal{L}(A)) = \log \frac{1 + \sqrt{5}}{2} \end{array}$$

• $\mathcal{H}(\Sigma^{\omega}) = \log |\Sigma|;$

• Infinitely many times p: $\mathcal{H}([[\Box \diamondsuit p]]) = \log |\Sigma|$ (no constraint most of the time);

• Eventually only p: $\mathcal{H}([[\Diamond \Box p]]) = \log |\Sigma|$ (for any prefix, it is always possible to append p).

The setting

- A system *S* automaton/Kripke structure
- A specification ϕLTL formula

The setting

- A system *S* automaton/Kripke structure
- A specification ϕLTL formula

The metrics

With ω -languages L_S and L_{ϕ} consider the numbers:

- Entropy of the system $\mathcal{H}_S = H(L_S)$.
- Entropy of its good runs $\mathcal{H}_G = \mathcal{H}(L_S \cap L_{\phi})$ and default $d = \mathcal{H}_S \mathcal{H}_G$.
- Maybe entropy of bad runs $\mathcal{H}_B = \mathcal{H}(L_S \setminus L_{\phi})$.

The setting

- A system *S* automaton/Kripke structure
- A specification ϕ LTL formula

The metrics

With ω -languages L_S and L_{ϕ} consider the numbers:

- Entropy of the system $\mathcal{H}_S = H(L_S)$.
- Entropy of its good runs $\mathcal{H}_G = \mathcal{H}(L_S \cap L_{\phi})$ and default $d = \mathcal{H}_S \mathcal{H}_G$.
- Maybe entropy of bad runs $\mathcal{H}_B = \mathcal{H}(L_S \setminus L_{\phi})$.

An interpretation(???)

• d : how difficult is it to steer S into ϕ

The setting

- A system S automaton/Kripke structure
- A specification ϕLTL formula

The metrics

With ω -languages L_S and L_{ϕ} consider the numbers:

- Entropy of the system $\mathcal{H}_S = H(L_S)$.
- Entropy of its good runs $\mathcal{H}_G = \mathcal{H}(L_S \cap L_{\phi})$ and default $d = \mathcal{H}_S \mathcal{H}_G$.
- Maybe entropy of bad runs $\mathcal{H}_B = \mathcal{H}(L_S \setminus L_{\phi})$.

An interpretation(???)

- d : how difficult is it to steer S into ϕ
- d = 0: entropy too rough, try probability

Computation bottleneck

Basic algorithm

- Build a Büchi automaton for the property ϕ .
- Build automata for $L_S \cap L_{\phi}$ and $L_S \setminus L_{\phi}$.
- Determinize.
- Compute the entropies.

Entropy used as a measure

Computation bottleneck

Basic algorithm

- Build a Büchi automaton for the property ϕ .
- Build automata for $L_S \cap L_{\phi}$ and $L_S \setminus L_{\phi}$.
- Determinize.
- Compute the entropies.

Enhancements

- Use advanced translation from LTL to (generalized, deterministic) Büchi.
- Decompose in strongly connected components.

Similarly to probabilistic model-checking, requires matrix algebra over large matrices (size potentially ~ Exp(number of variables)).

イロト 不得下 イヨト イヨト

Basic properties

- $0 \leq \mathcal{H}_{G}, \mathcal{H}_{B} \leq \mathcal{H}_{S} \leq \log |\Sigma|$
- $\mathbb{P}(\phi) > 0 \Rightarrow \mathcal{H}_G = \mathcal{H}_S$
- $\mathcal{H}(\phi_1 \lor \phi_2) = \max(\mathcal{H}(\phi_1), \mathcal{H}(\phi_2))$
- $\mathcal{H}(\Diamond \phi) = \log |\Sigma|$ (or 0 if empty).
- $H_G < H_S \Leftrightarrow L_{\phi}$ nowhere dense in L_S)

Some additionnal remarks

Reminder

Every ϕ can be represented as $\sigma \wedge \lambda$ (safety and liveness)

- Safety: avoid some bad states.
- Liveness: something good happens infinitely often.

For entropy, only safety matters

 $\mathcal{H}(L_S \cap L_{\phi}) = \mathcal{H}(L_S \cap L_{\sigma})$

Back to our initial example

Recall:

- ϕ_1 = always p.
- 2 ϕ_2 = never 100 times in a row p.

In Linear Temporal Logic (LTL), $\phi_1 = \Box p$, $\phi_2 = \Box \diamondsuit_{<100} p$.

Entropy analysis

- Entropy of runs satisfying ϕ_1 is $\mathcal{H}(S \cap \phi_1) = 1 < 2$
- Entropy of runs satisfying ϕ_2 is $\mathcal{H}(S \cap \phi_2) > 1.99$ (close to 2).

Other relevant examples?

A case study

Problem

n dining philosophers, simplified

- n philosophers sit around a round table.
- Single bowl of spaghetti in the middle.
- n chopsticks, each placed between two philosophers.
- To eat, each philosophers needs two chopsticks.
- Race conditions on chopsticks, deadlocks possible if anarchy.

A case study: *n* dining philosophers, simplified

Languages considered

- \mathcal{L}_S : all the runs.
- $\mathcal{L}_S \smallsetminus \mathcal{L}_D$: runs w/o deadlock
- $\mathcal{L}_S \cap \mathcal{L}_{NS}$: no philosopher ever starves.
- $\mathcal{L}_S \cap \mathcal{L}_{Et}$: philosopher 1 eats at least every *t* time units.

A case study: *n* dining philosophers, simplified

Languages considered

- \mathcal{L}_S : all the runs.
- $\mathcal{L}_S \setminus \mathcal{L}_D$: runs w/o deadlock
- $\mathcal{L}_S \cap \mathcal{L}_{NS}$: no philosopher ever starves.
- $\mathcal{L}_S \cap \mathcal{L}_{Et}$: philosopher 1 eats at least every *t* time units.

Entropy analysis

The first three entropies coincide, the fourth one depends on t and converges.

< 152 ▶

Dining philosophers lesson

- $\Box \diamondsuit e =$ no philosopher ever starves.
- $\Box \diamondsuit_{\leq t} e =$ philosopher 1 eats at least every *t* time units.

 $\mathcal{H}(\Box \diamondsuit_{\leq t} e) \rightarrow \mathcal{H}(\Box \diamondsuit e) \text{ as } t \rightarrow \infty.$

Problem

Asymptotics in LTL Let ϕ_t be an LTL formula with parameter (time bound) t, let ϕ_{∞} its unbounded version. Is it true that $\mathcal{H}(\phi_t) \rightarrow \mathcal{H}(\phi_{\infty})$ for $t \rightarrow \infty$?

(日) (同) (日) (日)

Dining philosophers lesson

- $\Box \diamondsuit e =$ no philosopher ever starves.
- $\Box \diamondsuit_{\leq t} e = \text{philosopher 1 eats at least every } t \text{ time units.}$

 $\mathcal{H}(\Box \diamondsuit_{\leq t} e) \to \mathcal{H}(\Box \diamondsuit e) \text{ as } t \to \infty.$

Problem

Asymptotics in LTL Let ϕ_t be an LTL formula with parameter (time bound) t, let ϕ_{∞} its unbounded version. Is it true that $\mathcal{H}(\phi_t) \rightarrow \mathcal{H}(\phi_{\infty})$ for $t \rightarrow \infty$?

The answer

Sometimes. More details next.

イロト 不得下 イヨト イヨト

LTL

Linear Temporal logic over boolean variables $p \in AP$:

$$\varphi \coloneqq p \mid \neg p \mid \bigcirc \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \mathcal{U}\varphi \mid \varphi \mathcal{R}\varphi$$

and standard "syntactic sugar":

$$\Diamond \varphi = \mathsf{T} \mathcal{U} \varphi \qquad \qquad \Box \varphi = \bot \mathcal{R} \varphi \text{ (or "} \neg \Diamond \neg \varphi")$$

Models: infinite words in $(2^{AP})^{\omega}$.

Example

р	0	1	1	0	0	(only 0s)
$\Diamond p$	1	1	1	0	0	

PLTL

[Alur, Etessami, LaTorre, Peled, ICALP'99]

(Parametric) Linear Temporal logic over boolean variables $p \in AP$ and parameters $t \in Param$:

$$\varphi ::= p \mid \neg p \mid \bigcirc \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \lor \varphi \mid \varphi \mathcal{U}\varphi \mid \varphi \mathcal{R}\varphi \mid \varphi \mathcal{U}_t\varphi \mid \varphi \mathcal{R}_t\varphi$$

- Distinct parameters for distinct subformulas.
- Standard "syntactic sugar":

$$\Diamond_t \varphi = \mathsf{T} \mathcal{U}_t \varphi \qquad \Box_t \varphi = \bot \mathcal{R}_t \varphi \text{ (or "}\neg \Diamond_t \neg \varphi")$$

イロト 不得下 イヨト イヨト

PLTL semantics in a nutshell

- $\varphi U_t \psi$: ψ must become true before t seconds and φ remain true until then;
- $\varphi \mathcal{R}_t \psi$: ψ must remain true until *t* seconds elapse or φ becomes true;

and hence, in particular,

- $\Diamond_t \varphi$: φ becomes true before *t* seconds;
- $\Box_t \varphi$: φ remains true for *t* seconds.

Example

р	0	1	1	1	0	0	0	0	1 (only 0s)
$\llbracket \diamondsuit_t p \rrbracket_{t \leftarrow 2}$	1	1	1	1	0	0	1	1	0
$\llbracket \square_t p \rrbracket_{t \leftarrow 2}$	0	1	0	0	0	0	0	0	0

Temporal formulas: unbounded vs. parametric

- Unbounded formula: $\varphi_{\infty} = \Box \diamondsuit p$, i.e. "infinitely often p".
- Its parametric variant: $\varphi_t = \Box \diamondsuit_t p$, i.e. less than t seconds between two ps.
- In theory we like unbounded formulas.
- Concrete applications often "prefer" parametric specifications.
- Is φ_t close to φ_{∞} for t sufficiently big?

(a)

Temporal formulas: unbounded vs. parametric

- Unbounded formula: $\varphi_{\infty} = \Box \diamondsuit p$, i.e. "infinitely often p".
- Its parametric variant: $\varphi_t = \Box \diamondsuit_t p$, i.e. less than t seconds between two ps.
- In theory we like unbounded formulas.
- Concrete applications often "prefer" parametric specifications.
- Is φ_t close to φ_{∞} for t sufficiently big?

Problem

Give an interpretation to $\lim_t \Box \diamondsuit_t p = \Box \diamondsuit p$.

(a)

Notations

• $w \in (2^{AP})^{\omega}, \mathbf{v} \in \mathbb{N}^{Param}$ then $w, \mathbf{v} \models \varphi$ whenever $w \models \varphi[t \leftarrow \mathbf{v}]$

•
$$\llbracket \varphi \rrbracket_{\mathbf{v}} = \{ \mathbf{w} \in (2^{\mathsf{AP}})^{\omega} \mid \mathbf{w}, \mathbf{v} \models \varphi \}.$$

• φ_{∞} = the formula in which all bounded operators are replaced with their unbounded analogs.

$$(\diamondsuit \Box_t p)_{\infty} = \diamondsuit \Box p$$

Our problem, reformulated

How "close" is φ_t to φ_∞ for big t's?

3

<ロ> (日) (日) (日) (日) (日)

Interpreting $\lim_t \Box \diamondsuit_t p = \Box \diamondsuit p$ Set-theoretic interpretation?

- $\llbracket \Box \diamondsuit_t p \rrbracket_{\mathbf{v}}$ is monotonic (increasing wrt $\mathbf{v} \in \mathbb{N}$).
- Its limit exists and is

 $\bigcup_{\mathbf{v}\in\mathbb{N}}\llbracket\Box\diamondsuit_t p\rrbracket_{\mathbf{v}}$

Interpreting $\lim_t \Box \diamondsuit_t p = \Box \diamondsuit p$ Set-theoretic interpretation?

- $\llbracket \Box \diamondsuit_t p \rrbracket_{\mathbf{v}}$ is monotonic (increasing wrt $\mathbf{v} \in \mathbb{N}$).
- Its limit exists and is

$$\bigcup_{\mathbf{v}\in\mathbb{N}}\llbracket\Box\diamondsuit_t p\rrbracket_{\mathbf{v}}$$

• ... but it is not an ω -regular language:

$$\bigcup_{\mathbf{v}\in\mathbb{N}} \llbracket \Box \diamondsuit_t p \rrbracket_{\mathbf{v}} =$$
 "words having (uniformly) upper-
bounded subsequences of $\neg p$ "

• So $\bigcup_{\mathbf{v}\in\mathbb{N}} \llbracket \Box \diamondsuit_t p \rrbracket_{\mathbf{v}} \neq \llbracket \Box \diamondsuit p \rrbracket.$

Interpreting $\lim_t \Box \diamondsuit_t p = \Box \diamondsuit p$ Topological interpretation?

• Work with (topological) closures:

$$cl\Big(\bigcup_{t\in\mathbb{N}} \llbracket\Box \diamondsuit_t p\rrbracket\Big) = cl(\llbracket\Box \diamondsuit p\rrbracket) = \llbracket\texttt{true}\rrbracket$$

But also:

$${\it cl}\Big(\bigcap_{t\in\mathbb{N}}\llbracket\diamondsuit\square_t p\rrbracket\Big)={\it cl}(\llbracket\diamondsuit\square p\rrbracket)=\llbracket\verb"true"]?$$

 Also not clear how to generalize to formulas with nested bounded operators (even if the operators have the same "polarity").

イロト 不得下 イヨト イヨト

Interpreting $\lim_t \Box \diamondsuit_t p = \Box \diamondsuit p$ Probabilistic interpretations?

Incompatibility with "convergence" of formulas

Take any Markov chain \mathcal{M} with positive probabilities and p true in some state and false in some other.

- Then $Pr(\mathcal{M}, \mathbf{v} \vDash \Box \diamondsuit_t p) = 0$ for all $\mathbf{v} \in \mathbb{N}$;
- but meanwhile $Pr(\mathcal{M} \vDash \Box \diamondsuit p) = 1$.

Too coarse metric

Many interesting probabilities are actually either 0 or 1.

(日) (同) (日) (日)

Interpreting $\lim_t \Box \diamondsuit_t p = \Box \diamondsuit p$ Probabilistic interpretations?

Our proposal for interpreting $\lim_t \Box \diamondsuit_t p = \Box \diamondsuit p$ Interpretation as entropy

Convergence in entropy

$$\lim_{\mathbf{v}\to\infty} \mathcal{H}(\llbracket\Box \diamondsuit_t p\rrbracket_{\mathbf{v}}) = \lim_{\mathbf{v}\to\infty} (|AP| - 2^{-\mathbf{v}}) = |AP| = \mathcal{H}(\llbracket\Box \diamondsuit p\rrbracket)$$
$$\lim_{\mathbf{v}\to\infty} \mathcal{H}(\llbracket\diamondsuit \Box_t p\rrbracket_{\mathbf{v}}) = \lim_{\mathbf{v}\to\infty} |AP| = |AP| = \mathcal{H}(\llbracket\diamondsuit \Box p\rrbracket)$$

Our proposal for interpreting $\lim_t \Box \diamondsuit_t p = \Box \diamondsuit p$ Interpretation as entropy

Convergence in entropy

$$\lim_{\mathbf{v}\to\infty} \mathcal{H}(\llbracket\Box \diamondsuit_t p\rrbracket_{\mathbf{v}}) = \lim_{\mathbf{v}\to\infty} \left(|AP| - 2^{-\mathbf{v}}\right) = |AP| = \mathcal{H}(\llbracket\Box \diamondsuit p\rrbracket)$$
$$\lim_{\mathbf{v}\to\infty} \mathcal{H}(\llbracket\diamondsuit \Box_t p\rrbracket_{\mathbf{v}}) = \lim_{\mathbf{v}\to\infty} |AP| = |AP| = \mathcal{H}(\llbracket\diamondsuit \Box p\rrbracket)$$

But also for all **v**,

$$\mathcal{H}(\llbracket \diamondsuit_t \Box p \rrbracket_{\mathbf{v}}) = 1 \neq 2 = \mathcal{H}(\llbracket \diamondsuit \Box p \rrbracket)$$

Goal

We want to decide whether $\lim_{\mathbf{v}} \mathcal{H}(\llbracket \phi_t \rrbracket_{\mathbf{v}}) = \mathcal{H}(\llbracket \phi_{\infty} \rrbracket)$.

Restricting to fragments of PLTL

First, some bad news

For instance: $\Box_t p \land \diamondsuit_s \neg p$ admits no entropy limit.

So we restrict our problem to:

Fragments of PLTL [Alur et al, ICALP'99]

• PLTL_{\diamond}: PLTL without \mathcal{R}_t , "positive fragment".

 $\varphi ::= p \mid \neg p \mid \bigcirc \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \mathcal{U}\varphi \mid \varphi \mathcal{R}\varphi \mid \varphi \mathcal{U}_t\varphi$

• PLTL_D: PLTL without U_t , "negative fragment".

 $\varphi \coloneqq p \mid \neg p \mid \bigcirc \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \lor \varphi \mid \varphi \mathcal{U}\varphi \mid \varphi \mathcal{R}\varphi \mid \varphi \mathcal{R}_{t}\varphi$

(a)

Our actual result

Theorem (Main)

Given a formula φ in $PLTL_{\Diamond}$ or $PLTL_{\Box}$,

- lim H ([[φ]]_ν) always exists and is computable as the logarithm of an algebraic real number;
- consequently, it is decidable whether lim H ([[φ]]_ν) = H ([[φ_∞]]).

Our actual result

Theorem (Main)

Given a formula φ in $PLTL_{\Diamond}$ or $PLTL_{\Box}$,

- lim H ([[φ]]_ν) always exists and is computable as the logarithm of an algebraic real number;
- consequently, it is decidable whether lim H ([[φ]]_ν) = H ([[φ_∞]]).

Method for computing $\lim_{v} \mathcal{H}$

- **Q** Build a parameterized Büchi automaton for φ .
- **2** Find its useful part (details depend on $PLTL_{\bigcirc}$ or $PLTL_{\square}$).
- Oeterminize the "limit" automaton, compute its spectral radius, conclude.

Generalized Büchi automata with parameters and counters (BüAPC)

BüAPC²² discrete timed automaton with parameters

- p, q, r ∈ AP
- c is a counter (a discrete clock either incremented or reset at each transition)
- *t* is a parameter
- all transition colors (here: only green) must be visited infinitely often
- for a BüAPC \mathcal{B} , $\mathcal{L}(\mathcal{B}, \mathbf{v})$ is its language for $t \coloneqq \mathbf{v}$

・ロト ・回ト ・ヨト

We need to compute

$$\lim_{\mathbf{v}\to\infty} \mathcal{H}(\mathcal{L}(\mathcal{B},\mathbf{v})) = \lim_{\mathbf{v}\to\infty} \limsup_{n\to\infty} \frac{1}{n} \log \#\mathcal{L}_n(\mathcal{B},\mathbf{v})$$

3

We need to compute

$$\lim_{\mathbf{v}\to\infty}\mathcal{H}\big(\mathcal{L}(\mathcal{B},\mathbf{v})\big)=\lim_{\mathbf{v}\to\infty}\limsup_{n\to\infty}\frac{1}{n}\log\#\mathcal{L}_n(\mathcal{B},\mathbf{v})$$

One single transition with a lower guard, no resets:

Only the right-hand side component produces entropy for any t.

・ロン ・回 と ・ ヨン・

We need to compute

$$\lim_{\mathbf{v}\to\infty} \mathcal{H}(\mathcal{L}(\mathcal{B},\mathbf{v})) = \lim_{\mathbf{v}\to\infty} \limsup_{n\to\infty} \frac{1}{n} \log \#\mathcal{L}_n(\mathcal{B},\mathbf{v})$$

One single transition with a lower guard, some resets:

The left-hand side component produces the entropy: any run can be modified by looping through the blue reset and then taking the red transition.

A D > A B > A B > A

We need to compute

$$\lim_{\mathbf{v}\to\infty} \mathcal{H}(\mathcal{L}(\mathcal{B},\mathbf{v})) = \lim_{\mathbf{v}\to\infty} \limsup_{n\to\infty} \frac{1}{n} \log \#\mathcal{L}_n(\mathcal{B},\mathbf{v})$$

One single transition with an upper guard, some resets:

The left-hand side component produces entropy since any run can be modified by looping sufficiently (at most t times) in state 2.

A D > A B > A B > A

Construction sketch

(construction inspired by [Couvreur], extended with counters for \mathcal{R}_t and \mathcal{U}_t)

- states: consistent sets of subformulas;
- "colours": obligations to satisfy an \mathcal{U} (1 for each occurrence).
- counters: for satisfying \mathcal{R}_t and \mathcal{U}_t (1 for each occurrence):
 - counters always reset except when relevant (i.e. within corresponding *R_t*'s or *U_t*'s scope)
 - upper-bounded guards allow "staying" in the scope of a \mathcal{U}_t ;
 - lower-bounded guards allow "escaping" the scope of a \mathcal{R}_t .

(日) (同) (三) (三)

Example of construction Automaton built for $p \lor \bigcirc (q\mathcal{U}_t r)$

No color because there is no \mathcal{U} . All infinite runs are accepting.

C. Dima (LIAFA, Univ. Paris-Direrot)

A D > A B > A B > A

PLTL to BüAPC

Two subclasses of BüAPC

- <u>BüAPC+</u>: all guards are upper bounds $\bigwedge_i x_i \leq t_i$
- BüAPC- : all guards are lower bounds $\bigwedge_i x_i \ge t_i$

PLTL to BüAPC

Two subclasses of BüAPC

- <u>BüAPC+</u>: all guards are upper bounds $\bigwedge_i x_i \leq t_i$
- <u>BüAPC-</u>: all guards are lower bounds $\bigwedge_i x_i \ge t_i$

Theorem

For a PLTL formula φ , we can construct a BüAPC \mathcal{A} such that

- for any $\mathbf{v} \in \mathbb{N}^{Param}$, $\llbracket \varphi \rrbracket_{\mathbf{v}} = \mathcal{L}(\mathcal{A}, \mathbf{v})$;
- if φ is in PLTL \diamond then A is a BüAPC+;
- and if φ is in $PLTL_{\Box}$ then \mathcal{A} is a $B\"{u}APC-$.

Key result

Theorem

For any BüAPC+ or BüAPC-, \mathcal{B} , the limit entropy $\lim_{\mathbf{v}} \mathcal{H}(\mathcal{L}(\mathcal{B}, \mathbf{v}))$ exists and can be computed.

... and thus the main theorem (stated before) directly follows: limit entropy of $PLTL_{\Diamond}$ and $PLTL_{\Box}$ formulas can be computed.

BüAPC+: asymptotic analysis, a single strongly connected component

- \mathcal{B} : BüAPC+ (guards: x < t), $\mathbf{v} \rightarrow \infty$
 - If \mathcal{B} does not reset all counters, $\mathcal{L}(\mathcal{B}, \mathbf{v}) = \emptyset$.
 - Otherwise (B resets all counters)
 - $\mathcal{B}_{\infty} \coloneqq \mathcal{B}$ without constraints and parameters.
 - Clearly $\mathcal{H}(\mathcal{B}, \mathbf{v}) \leq \mathcal{H}(\mathcal{B}_{\infty})$, since $\mathcal{L}(\mathcal{B}, \mathbf{v}) \subseteq \mathcal{L}(\mathcal{B}_{\infty})$.
 - Other direction: $\frac{|\mathbf{v}|+c}{|\mathbf{v}|} \mathcal{H}(\mathcal{B}, \mathbf{v}) > \mathcal{H}(\mathcal{B}_{\infty})$ (see below the proof method).
 - Thus $\lim_{\mathbf{v}} \mathcal{H}(\mathcal{B}, \mathbf{v}) = \mathcal{H}(\mathcal{B}_{\infty}).$

Proof method

Construct an injection $(\mathcal{L}(\mathcal{B}_{\infty}) \rightarrow \mathcal{L}(\mathcal{B}, \mathbf{v}))$ that inserts resetting cycles every ~ $|\mathbf{v}|$ transitions

- \Rightarrow constraints of \mathcal{B}_v satisfied
- \Rightarrow small increase of length.

(日) (同) (三) (三)

BüAPC+: computing the limit entropy

General case: Only consider (reachable, co-reachable, ...) SCCs of ${\cal B}$ that reset all counters.

Idea of the algorithm

- Find the part of \mathcal{B} that resets all counters and is usable in accepting runs (for all **v**).
- Compute its entropy.

A D > A P > A B > A

BüAPC+: computing the limit entropy

Algorithm

Proposition

For a BüAPC+ \mathcal{B} , the algorithm above computes $\mathcal{H} = \lim_{\mathbf{v}} \mathcal{H}(\mathcal{B}, \mathbf{v})$.

BüAPC-: asymptotic analysis \mathcal{B} : BüAPC- (guards: x > t), $\mathbf{v} \to \infty$

Essential object to build

Symbolic automaton \mathcal{E} , mimicking \mathcal{B} for big \mathbf{v} .

Construction idea

 \mathcal{E} remembers which counters are big. Thus we know what transitions can be fired. \mathcal{E} also has "pumping" transitions everywhere \mathcal{B} had non-resetting cycles.

BüAPC-: computing limit entropy

Idea of the algorithm

- Build symbolic automaton ${\cal E}$
- Compute the entropy of its useful part.

Algorithm

Data: a BüAPC- \mathcal{B} **Result:** $\lim_{\mathbf{v}} \mathcal{H}(\mathcal{L}(\mathcal{B}, \mathbf{v}))$ as log of an algebraic number $\mathcal{E} \leftarrow \text{symbolic}(\mathcal{B});$ $\mathcal{E}_1 \leftarrow \text{trim}(\mathcal{E}, Q_0 \times \emptyset, \text{Acc});$ $\mathcal{E}_2 \leftarrow \text{restrict}(\mathcal{E}_1, \text{ non-pumping transitions});$ **return** $\mathcal{H}(\mathcal{L}(\mathcal{E}_2));$

Proposition

For a BüAPC- \mathcal{B} , the algorithm above computes $\lim_{\mathbf{u}} \mathcal{H}(\mathcal{B}, \mathbf{v})$.

Problems

- How to formalize asymptotic convergence for PLTL?
- How to decide it?

æ

Problems

- How to formalize asymptotic convergence for PLTL?
- How to decide it?

Results

- Comparing convergence in entropy to other convergences.
- Criteria of convergence in entropy for $PLTL_{\Diamond}$ and $PLTL_{\Box}$.
- Computing limits of entropies for BüAPC+ and BüAPC-.

<ロト < 回 > < 回 > < 回 > < 回 >

Problems

- How to formalize asymptotic convergence for PLTL?
- How to decide it?

Results

- Comparing convergence in entropy to other convergences.
- Criteria of convergence in entropy for $PLTL_{\Diamond}$ and $PLTL_{\Box}$.
- Computing limits of entropies for BüAPC+ and BüAPC-.

Open questions and further work

- Entropy and topology?
- Relevance in verification?
- Extensions to branching temporal logics?

Problems

- How to formalize asymptotic convergence for PLTL?
- How to decide it?

Results

- Comparing convergence in entropy to other convergences.
- Criteria of convergence in entropy for $PLTL_{\Diamond}$ and $PLTL_{\Box}$.
- Computing limits of entropies for BüAPC+ and BüAPC-.

Open questions and further work

- Entropy and topology?
- Relevance in verification?
- Extensions to branching temporal logics?

Thank you!