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Entropy and quantitative model-checking Quantitative model-checking in very few slides

On qualitative and quantitative model-checking

Qualiltative model-checking

Given a system S and a property φ decide if S ⊧ φ (answer: YES/NO).

S : language of (ω-) words, automaton, Kripke structure, etc.

ϕ: language of (ω-) words, automaton, formula in some logic (LTL, µ-calculus), etc.

⊧: language inclusion, model satisfaction, etc.
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On qualitative and quantitative model-checking

Qualiltative model-checking

Given a system S and a property φ decide if S ⊧ φ (answer: YES/NO).

S : language of (ω-) words, automaton, Kripke structure, etc.

ϕ: language of (ω-) words, automaton, formula in some logic (LTL, µ-calculus), etc.

⊧: language inclusion, model satisfaction, etc.

Quantitative model-checking

Given a system S and a property φ, measure how much S ⊧ φ (answer: a real number).

Approaches:

probability (PRISM/UppAal people, etc.)

“reward/penalty” models (quantitative languages, simulation distances, etc.).
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Entropy and quantitative model-checking Quantitative model-checking in very few slides

On qualitative and quantitative model-checking

Qualiltative model-checking

Given a system S and a property φ decide if S ⊧ φ (answer: YES/NO).

S : language of (ω-) words, automaton, Kripke structure, etc.

ϕ: language of (ω-) words, automaton, formula in some logic (LTL, µ-calculus), etc.

⊧: language inclusion, model satisfaction, etc.

Quantitative model-checking

Given a system S and a property φ, measure how much S ⊧ φ (answer: a real number).

Approaches:

probability (PRISM/UppAal people, etc.)

“reward/penalty” models (quantitative languages, simulation distances, etc.).

source of this work: entropy.
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Entropy and quantitative model-checking Quantitative model-checking in very few slides

Why we are not happy with probability

Example

System S (state-labeled, note Σ = 2{p,q}):
pq pq̄

p̄q p̄q̄

Specifications:

1 φ1 = always p.

2 φ2 = never 100 times in a row p.

In Linear Temporal Logic (LTL), φ1 = ◻p, φ2 = ◻◇<100 p.
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Why we are not happy with probability

Example

System S (state-labeled, note Σ = 2{p,q}):
pq pq̄

p̄q p̄q̄

Specifications:

1 φ1 = always p.

2 φ2 = never 100 times in a row p.

In Linear Temporal Logic (LTL), φ1 = ◻p, φ2 = ◻◇<100 p.

Naive analysis

Certain effort required to satisfy φ1 (never go below)

A different (smaller?) effort required to satisfy φ2 (go above at least every 100
units)
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Entropy and quantitative model-checking Quantitative model-checking in very few slides

Why we are not happy with probability

Example

System S (state-labeled, note Σ = 2{p,q}):
pq pq̄

p̄q p̄q̄

Specifications:

1 φ1 = always p.

2 φ2 = never 100 times in a row p.

In Linear Temporal Logic (LTL), φ1 = ◻p, φ2 = ◻◇<100 p.

Naive analysis

Certain effort required to satisfy φ1 (never go below)

A different (smaller?) effort required to satisfy φ2 (go above at least every 100
units)

Probabilistic analysis

P(S ⊧ φ1) = 0 and P(S ⊧ φ2) = 0 .
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Entropy and quantitative model-checking Quantitative model-checking in very few slides

Why we are not happy with probability

Example

System S (state-labeled, note Σ = 2{p,q}):
pq pq̄

p̄q p̄q̄

Specifications:

1 φ1 = always p.

2 φ2 = never 100 times in a row p.

In Linear Temporal Logic (LTL), φ1 = ◻p, φ2 = ◻◇<100 p.

Naive analysis

Certain effort required to satisfy φ1 (never go below)

A different (smaller?) effort required to satisfy φ2 (go above at least every 100
units)

Probabilistic analysis

P(S ⊧ φ1) = 0 and P(S ⊧ φ2) = 0 .

Mismatch between the two analyses
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Entropy and quantitative model-checking Quantitative model-checking in very few slides

Our approach — entropy

Example

System S :
pq pq̄

p̄q p̄q̄

Specifications:

1 φ1 = always p.

2 φ2 = never 100 times in a row p.

In Linear Temporal Logic (LTL), φ1 = ◻p, φ2 = ◻◇<100 p.

Entropy analysis

We associate a number (entropy) H to everything,

Entropy of the system: H(S) = 2.

Entropy of runs satisfying φ1 is H(S ∩ φ1) = 1 < 2

Entropy of runs satisfying φ2 is H(S ∩ φ2) > 1.99 (close to 2).

Matches the intuition!
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Entropy and quantitative model-checking Entropy used as a measure

What is entropy

Entropy of a finite word language (Chomsky, Miller)

For a language L ⊂ Σ∗, with Ln = L ∩Σn

H(L) = lim sup
n→∞

1

n
log#Ln

Entropy of an ω-language (Staiger)

H(L) = H(pref(L)) = lim sup
n→∞

1

n
log#pref(L,n)

What does it mean

Growth rate of the language: #Ln ≈ 2Hn

“average log(number of choices for a symbol)”

Quantity of information (in bits/symbol) in words of L

Related to compression, Kolmogorov complexity, topological entropy, Hausdorff dimension
etc.
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Entropy and quantitative model-checking Entropy used as a measure

Entropy — examples

Example

1a b H(L(A)) = log 2 = 1
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Entropy and quantitative model-checking Entropy used as a measure

Entropy — examples

Example

1a b H(L(A)) = log 2 = 1

1 2

a

b

a H(L(A)) = log 1 +
√
5

2
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Entropy and quantitative model-checking Entropy used as a measure

Entropy — examples

Example

1a b H(L(A)) = log 2 = 1

1 2

a

b

a H(L(A)) = log 1 +
√
5

2

H(Σω) = log ∣Σ∣;
Infinitely many times p:

H([[◻◇ p]]) = log ∣Σ∣ (no constraint most of the time);

Eventually only p:

H([[◇◻ p]]) = log ∣Σ∣ (for any prefix, it is always possible to append p).
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Entropy and quantitative model-checking Entropy used as a measure

Entropy model-checking

The setting

A system S — automaton/Kripke structure

A specification φ — LTL formula
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Entropy and quantitative model-checking Entropy used as a measure

Entropy model-checking

The setting

A system S — automaton/Kripke structure

A specification φ — LTL formula

The metrics
With ω-languages LS and Lφ consider the numbers:

Entropy of the system HS = H(LS).

Entropy of its good runs HG = H(LS ∩ Lφ) and default d = HS −HG .

Maybe entropy of bad runs HB = H(LS ∖ Lφ).
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Entropy model-checking

The setting

A system S — automaton/Kripke structure

A specification φ — LTL formula

The metrics
With ω-languages LS and Lφ consider the numbers:

Entropy of the system HS = H(LS).

Entropy of its good runs HG = H(LS ∩ Lφ) and default d = HS −HG .

Maybe entropy of bad runs HB = H(LS ∖ Lφ).

An interpretation(???)

d : how difficult is it to steer S into φ
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Entropy and quantitative model-checking Entropy used as a measure

Entropy model-checking

The setting

A system S — automaton/Kripke structure

A specification φ — LTL formula

The metrics
With ω-languages LS and Lφ consider the numbers:

Entropy of the system HS = H(LS).

Entropy of its good runs HG = H(LS ∩ Lφ) and default d = HS −HG .

Maybe entropy of bad runs HB = H(LS ∖ Lφ).

An interpretation(???)

d : how difficult is it to steer S into φ

d = 0: entropy too rough, try probability
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Entropy and quantitative model-checking Entropy used as a measure

Computation bottleneck

Basic algorithm

Build a Büchi automaton for the property φ.

Build automata for LS ∩ Lφ and LS ∖ Lφ.

Determinize.

Compute the entropies.
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Entropy and quantitative model-checking Entropy used as a measure

Computation bottleneck

Basic algorithm

Build a Büchi automaton for the property φ.

Build automata for LS ∩ Lφ and LS ∖ Lφ.

Determinize.

Compute the entropies.

Enhancements

Use advanced translation from LTL to (generalized, deterministic) Büchi.

Decompose in strongly connected components.

Similarly to probabilistic model-checking, requires matrix algebra over large matrices
(size potentially ∼ Exp(number of variables)).
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Entropy and quantitative model-checking Entropy used as a measure

Basic properties

0 ≤ HG ,HB ≤ HS ≤ log ∣Σ∣

P(φ) > 0⇒HG = HS

H(φ1 ∨ φ2) = max(H(φ1),H(φ2))

H(◇φ) = log ∣Σ∣ (or 0 if empty).

HG < HS ⇔ Lφ nowhere dense in LS)
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Entropy and quantitative model-checking Entropy used as a measure

Some additionnal remarks

Reminder
Every φ can be represented as σ ∧ λ (safety and liveness)

Safety: avoid some bad states.

Liveness: something good happens infinitely often.

For entropy, only safety matters

H(LS ∩ Lφ) = H(LS ∩ Lσ)
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Entropy and quantitative model-checking Some experiments

Back to our initial example

Recall:

1 φ1 = always p.

2 φ2 = never 100 times in a row p.

In Linear Temporal Logic (LTL), φ1 = ◻p, φ2 = ◻◇<100 p.

Entropy analysis

Entropy of runs satisfying φ1 is H(S ∩ φ1) = 1 < 2

Entropy of runs satisfying φ2 is H(S ∩ φ2) > 1.99 (close to 2).

Other relevant examples?
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Entropy and quantitative model-checking Some experiments

A case study

Problem
n dining philosophers, simplified

n philosophers sit around a round table.

Single bowl of spaghetti in the middle.

n chopsticks, each placed between two philosophers.

To eat, each philosophers needs two chopsticks.

Race conditions on chopsticks, deadlocks possible if anarchy.

Lao Tze

Aristoteles

Kant

Heidegger

Plato
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Entropy and quantitative model-checking Some experiments

A case study: n dining philosophers, simplified

Languages considered

LS : all the runs.

LS ∖ LD : runs w/o deadlock

LS ∩ LNS : no philosopher ever starves.

LS ∩ LEt : philosopher 1 eats at least every t time units.
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Entropy and quantitative model-checking Some experiments

A case study: n dining philosophers, simplified

Languages considered

LS : all the runs.

LS ∖ LD : runs w/o deadlock

LS ∩ LNS : no philosopher ever starves.

LS ∩ LEt : philosopher 1 eats at least every t time units.

Entropy analysis

The first three entropies coincide, the fourth one depends on t and converges.
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Entropy and asymptotics

Dining philosophers lesson

◻◇ e = no philosopher ever starves.

◻◇≤t e = philosopher 1 eats at least every t time units.

H(◻◇≤t e)→H(◻◇ e) as t →∞.

Problem
Asymptotics in LTL Let φt be an LTL formula with parameter (time bound) t, let φ∞ its
unbounded version. Is it true that H(φt)→H(φ∞) for t →∞?
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Entropy and asymptotics

Dining philosophers lesson

◻◇ e = no philosopher ever starves.

◻◇≤t e = philosopher 1 eats at least every t time units.

H(◻◇≤t e)→H(◻◇ e) as t →∞.

Problem
Asymptotics in LTL Let φt be an LTL formula with parameter (time bound) t, let φ∞ its
unbounded version. Is it true that H(φt)→H(φ∞) for t →∞?

The answer
Sometimes. More details next.
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Entropy and asymptotics Parametric linear temporal logic (PLTL)

LTL

Linear Temporal logic over boolean variables p ∈ AP:

ϕ ∶∶= p ∣ ¬p ∣◯ϕ ∣ ϕ ∧ϕ ∣ ϕ ∨ϕ ∣ ϕUϕ ∣ ϕRϕ

and standard “syntactic sugar”:

◇ϕ = ⊺Uϕ ◻ϕ = �Rϕ (or “¬◇¬ϕ”)

Models: infinite words in (2AP)
ω
.

Example

p 0 1 1 0 0 . . . (only 0s)

◇p 1 1 1 0 0 . . .
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Entropy and asymptotics Parametric linear temporal logic (PLTL)

PLTL
[Alur, Etessami, LaTorre, Peled, ICALP’99]

(Parametric) Linear Temporal logic over boolean variables p ∈ AP and parameters
t ∈ Param:

ϕ ∶∶= p ∣ ¬p ∣◯ϕ ∣ ϕ ∧ϕ ∣ ϕ ∨ϕ ∣ ϕUϕ ∣ ϕRϕ ∣ ϕUtϕ ∣ ϕRtϕ

Distinct parameters for distinct subformulas.

Standard “syntactic sugar”:

◇tϕ = ⊺Utϕ ◻tϕ = �Rtϕ (or “¬◇t ¬ϕ”)
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Entropy and asymptotics Parametric linear temporal logic (PLTL)

PLTL semantics in a nutshell

ϕUtψ: ψ must become true before t seconds and ϕ remain true until then;

ϕRtψ: ψ must remain true until t seconds elapse or ϕ becomes true;

and hence, in particular,

◇tϕ: ϕ becomes true before t seconds;

◻tϕ: ϕ remains true for t seconds.

Example

p 0 1 1 1 0 0 0 0 1 . . . (only 0s)

⟦◇tp⟧t←2 1 1 1 1 0 0 1 1 0 . . .

⟦◻tp⟧t←2 0 1 0 0 0 0 0 0 0 . . .
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Entropy and asymptotics Parametric linear temporal logic (PLTL)

Temporal formulas: unbounded vs. parametric

Unbounded formula: ϕ∞ = ◻◇ p, i.e. “infinitely often p”.

Its parametric variant: ϕt = ◻◇t p, i.e. less than t seconds between two ps.

In theory we like unbounded formulas.

Concrete applications often “prefer” parametric specifications.

Is ϕt close to ϕ∞ for t sufficiently big?
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Entropy and asymptotics Parametric linear temporal logic (PLTL)

Temporal formulas: unbounded vs. parametric

Unbounded formula: ϕ∞ = ◻◇ p, i.e. “infinitely often p”.

Its parametric variant: ϕt = ◻◇t p, i.e. less than t seconds between two ps.

In theory we like unbounded formulas.

Concrete applications often “prefer” parametric specifications.

Is ϕt close to ϕ∞ for t sufficiently big?

Problem
Give an interpretation to limt ◻◇t p = ◻◇ p.
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Entropy and asymptotics Parametric linear temporal logic (PLTL)

Notations

w ∈ (2AP)ω, v ∈ NParam then w , v ⊧ ϕ whenever w ⊧ ϕ[t ← v]
⟦ϕ⟧v = {w ∈ (2AP)ω ∣ w , v ⊧ ϕ}.
ϕ∞ = the formula in which all bounded operators are replaced with their unbounded
analogs.

(◇◻tp)∞ =◇◻ p

Our problem, reformulated

How “close” is ϕt to ϕ∞ for big t’s?
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Entropy and asymptotics Convergence problems for PLTL formulas

Interpreting limt ◻◇t p = ◻◇ p

Set-theoretic interpretation?

⟦◻◇t p⟧v is monotonic (increasing wrt v ∈ N) .

Its limit exists and is

⋃
v∈N

⟦◻◇t p⟧v
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Entropy and asymptotics Convergence problems for PLTL formulas

Interpreting limt ◻◇t p = ◻◇ p

Set-theoretic interpretation?

⟦◻◇t p⟧v is monotonic (increasing wrt v ∈ N) .

Its limit exists and is

⋃
v∈N

⟦◻◇t p⟧v

... but it is not an ω-regular language:

⋃
v∈N

⟦◻◇t p⟧v = “words having (uniformly) upper-
bounded subsequences of ¬p”

So ⋃
v∈N

⟦◻◇t p⟧v ≠ ⟦◻◇ p⟧.
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Entropy and asymptotics Convergence problems for PLTL formulas

Interpreting limt ◻◇t p = ◻◇ p

Topological interpretation?

Work with (topological) closures:

cl(⋃
t∈N

⟦◻◇t p⟧) = cl(⟦◻◇ p⟧) = ⟦true⟧

But also:
cl(⋂

t∈N

⟦◇◻t p⟧) = cl(⟦◇◻ p⟧) = ⟦true⟧?

Also not clear how to generalize to formulas with nested bounded operators (even if
the operators have the same “polarity”).
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Entropy and asymptotics Convergence problems for PLTL formulas

Interpreting limt ◻◇t p = ◻◇ p

Probabilistic interpretations?

Incompatibility with “convergence” of formulas

Take any Markov chainM with positive probabilities and p true in some state and false
in some other.

Then Pr(M, v ⊧ ◻◇t p) = 0 for all v ∈ N;

but meanwhile Pr(M ⊧ ◻◇ p) = 1.

Too coarse metric
Many interesting probabilities are actually either 0 or 1.

C. Dima (LIAFA, Univ. Paris-Direrot) Entropy and temporal specifications EQINOCS, 9/05/2016 23 / 40



Entropy and asymptotics Convergence problems for PLTL formulas

Interpreting limt ◻◇t p = ◻◇ p

Probabilistic interpretations?

Example

System S :

pq pq̄

p̄q p̄q̄

Specifications: φ = ◻p, or more involved ψ = never 100 times in a row p̄ = ◻◇<100 p.
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Entropy and asymptotics Convergence problems for PLTL formulas

Our proposal for interpreting limt ◻◇t p = ◻◇ p

Interpretation as entropy

Convergence in entropy
lim
v→∞
H(⟦◻◇t p⟧v) = lim

v→∞
(∣AP ∣ − 2−v) = ∣AP ∣ = H(⟦◻◇ p⟧)

lim
v→∞
H(⟦◇◻t p⟧v) = lim

v→∞
∣AP ∣ = ∣AP ∣ = H(⟦◇◻ p⟧)
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Entropy and asymptotics Convergence problems for PLTL formulas

Our proposal for interpreting limt ◻◇t p = ◻◇ p

Interpretation as entropy

Convergence in entropy
lim
v→∞
H(⟦◻◇t p⟧v) = lim

v→∞
(∣AP ∣ − 2−v) = ∣AP ∣ = H(⟦◻◇ p⟧)

lim
v→∞
H(⟦◇◻t p⟧v) = lim

v→∞
∣AP ∣ = ∣AP ∣ = H(⟦◇◻ p⟧)

But also for all v,

H(⟦◇t ◻ p⟧v) = 1 ≠ 2 = H(⟦◇◻ p⟧)

Goal
We want to decide whether limvH(⟦φt⟧v) = H(⟦φ∞⟧).
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Main result and techniques

Restricting to fragments of PLTL

First, some bad news
For instance: ◻tp ∧◇s¬p admits no entropy limit.

So we restrict our problem to:

Fragments of PLTL [Alur et al, ICALP’99]

PLTL◇: PLTL without Rt , “positive fragment”.

ϕ ∶∶= p ∣ ¬p ∣◯ϕ ∣ ϕ ∧ϕ ∣ ϕ ∨ϕ ∣ ϕUϕ ∣ ϕRϕ ∣ ϕUtϕ

PLTL◻: PLTL without Ut , “negative fragment”.

ϕ ∶∶= p ∣ ¬p ∣◯ϕ ∣ ϕ ∧ϕ ∣ ϕ ∨ϕ ∣ ϕUϕ ∣ ϕRϕ ∣ ϕRtϕ
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Main result and techniques

Our actual result

Theorem (Main)

Given a formula ϕ in PLTL◇ or PLTL◻,

lim
v
H (⟦ϕ⟧v) always exists and is computable as the logarithm of an algebraic real

number;

consequently, it is decidable whether lim
v
H (⟦ϕ⟧v) = H (⟦ϕ∞⟧).

C. Dima (LIAFA, Univ. Paris-Direrot) Entropy and temporal specifications EQINOCS, 9/05/2016 27 / 40



Main result and techniques

Our actual result

Theorem (Main)

Given a formula ϕ in PLTL◇ or PLTL◻,

lim
v
H (⟦ϕ⟧v) always exists and is computable as the logarithm of an algebraic real

number;

consequently, it is decidable whether lim
v
H (⟦ϕ⟧v) = H (⟦ϕ∞⟧).

Method for computing limvH

1 Build a parameterized Büchi automaton for ϕ.

2 Find its useful part (details depend on PLTL◇ or PLTL◻).

3 Determinize the “limit” automaton, compute its spectral radius, conclude.
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Main result and techniques Discrete timed automata with parameters (GTBAC)

Generalized Büchi automata with parameters and counters
(BüAPC)

⊺, c ∶= 0

p, c ++
r ∧ c < t, c ++

q ∧ c < t, c ++

⊺, c ++

BüAPC≃ discrete timed automaton with parameters

p,q, r ∈ AP

c is a counter (a discrete clock either incremented or reset at each transition)

t is a parameter

all transition colors (here: only green) must be visited infinitely often

for a BüAPC B, L(B, v) is its language for t ∶= v
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Main result and techniques Producing entropy in GTBAC

Where is entropy produced in a GTBAC?

We need to compute

lim
v→∞
H(L(B, v)) = lim

v→∞
lim sup
n→∞

1

n
log#Ln(B, v)
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Main result and techniques Producing entropy in GTBAC

Where is entropy produced in a GTBAC?
We need to compute

lim
v→∞
H(L(B, v)) = lim

v→∞
lim sup
n→∞

1

n
log#Ln(B, v)

One single transition with a lower guard, no resets:

a, c ++

b, c ++
a, c ++

b, c < t

b, c ++

a, c ++

a, c ++

b, c ++
a, c ++

b, c ++

a, c ++

Only the right-hand side component produces entropy for any t.
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Main result and techniques Producing entropy in GTBAC

Where is entropy produced in a GTBAC?

We need to compute

lim
v→∞
H(L(B, v)) = lim

v→∞
lim sup
n→∞

1

n
log#Ln(B, v)

One single transition with a lower guard, some resets:

a, c ++

b, c ∶= 0
a, c ++

b, c < t

b, c ++

a, c ++

a, c ++

b, c ++
a, c ++

b, c ++

a, c ++

The left-hand side component produces the entropy: any run can be modified by looping
through the blue reset and then taking the red transition.
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Main result and techniques Producing entropy in GTBAC

Where is entropy produced in a GTBAC?

We need to compute

lim
v→∞
H(L(B, v)) = lim

v→∞
lim sup
n→∞

1

n
log#Ln(B, v)

One single transition with an upper guard, some resets:

a, c ++

b, c ∶= 0
a, c ++

b, c > t

b, c ++

a, c ++

a, c ++

b, c ++
a, c ++

b, c ++

a, c ++

The left-hand side component produces entropy since any run can be modified by
looping sufficiently (at most t times) in state 2.
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Main result and techniques Translating from PLTL to GTBAC

Construction sketch

(construction inspired by [Couvreur], extended with counters for Rt and Ut)

states: consistent sets of subformulas;

“colours”: obligations to satisfy an U (1 for each occurrence).

counters: for satisfying Rt and Ut (1 for each occurrence):

▸ counters always reset except when relevant
(i.e. within corresponding Rt ’s or Ut ’s scope)

▸ upper-bounded guards allow “staying” in the scope of a Ut ;
▸ lower-bounded guards allow “escaping” the scope of a Rt .
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Main result and techniques Translating from PLTL to GTBAC

Example of construction
Automaton built for p ∨◯(qUtr)

p ∨◯(qUtr) qUtr

∅

2AP,∅,true, c ∶= 0

p,∅,true, c ++
r ,∅, c < t, c ++

q,∅, c < t, c ++

2AP,∅,true, c ++

No color because there is no U . All infinite runs are accepting.
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Main result and techniques Translating from PLTL to GTBAC

PLTL to BüAPC

Two subclasses of BüAPC

BüAPC+ : all guards are upper bounds ⋀i xi ≤ ti
BüAPC− : all guards are lower bounds ⋀i xi ≥ ti
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Main result and techniques Translating from PLTL to GTBAC

PLTL to BüAPC

Two subclasses of BüAPC

BüAPC+ : all guards are upper bounds ⋀i xi ≤ ti
BüAPC− : all guards are lower bounds ⋀i xi ≥ ti

Theorem
For a PLTL formula ϕ, we can construct a BüAPC A such that

for any v ∈ NParam, ⟦ϕ⟧v = L(A, v);
if ϕ is in PLTL◇ then A is a BüAPC+;

and if ϕ is in PLTL◻ then A is a BüAPC−.
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Main result and techniques Translating from PLTL to GTBAC

Key result

Theorem
For any BüAPC+ or BüAPC−, B, the limit entropy lim

v
H(L(B, v)) exists and can be

computed.

. . . and thus the main theorem (stated before) directly follows: limit entropy of PLTL◇
and PLTL◻formulas can be computed.
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Computing limit entropies “Positive” case

BüAPC+: asymptotic analysis, a single strongly connected
component

B: BüAPC+ (guards: x < t), v →∞

If B does not reset all counters, L(B, v) = ∅.
Otherwise (B resets all counters)

▸ B∞ ∶= B without constraints and parameters.
▸ Clearly H(B, v) ≤H(B∞), since L(B, v) ⊆ L(B∞).
▸ Other direction: ∣v∣+c

∣v∣
H(B, v) >H(B∞) (see below the proof method).

▸ Thus limvH(B, v) =H(B∞).

Proof method
Construct an injection (L(B∞)→ L(B, v)) that inserts resetting cycles every ∼ ∣v∣
transitions

⇒ constraints of Bv satisfied

⇒ small increase of length.
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Computing limit entropies “Positive” case

BüAPC+: computing the limit entropy

General case: Only consider (reachable, co-reachable, ...) SCCs of B that reset all
counters.

Idea of the algorithm

Find the part of B that resets all counters and is usable in accepting runs (for all v).

Compute its entropy.
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Computing limit entropies “Positive” case

BüAPC+: computing the limit entropy

Algorithm

Data: a BüAPC+ B
Result: H = lim

v
H(B, v) as log of an algebraic number

SCC← Tarjan(B);
SCCG ← set of non-trivial components resetting all counters;
SCCA ← set of accepting non-trivial components;
B1 ←trim(B,Q0,SCCA ∩ SCCG) ; /* find useful part */

B2 ← restrict(B1,SCCG) ; /* keep good SCCs */

return H(L(B2)).

Proposition

For a BüAPC+ B, the algorithm above computes H = lim
v
H(B, v).
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Computing limit entropies “Negative” case

BüAPC−: asymptotic analysis
B: BüAPC− (guards: x > t), v →∞

Essential object to build

Symbolic automaton E , mimicking B for big v.

Construction idea
E remembers which counters are big. Thus we know what transitions can be fired. E
also has “pumping” transitions everywhere B had non-resetting cycles.

Example (B and E for ◻tp)

0 1
x ≥ t
⊺

p ⊺ 0,∅ 1,∅p ⊺

0,{x} 1,{x}

p
⊺

p ⊺

Dashed arrow: a “pumping” transition.
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Computing limit entropies “Negative” case

BüAPC−: computing limit entropy

Idea of the algorithm

Build symbolic automaton E

Compute the entropy of its useful part.

Algorithm

Data: a BüAPC− B
Result: lim

v
H(L(B, v)) as log of an algebraic number

E ←symbolic(B);
E1 ←trim(E ,Q0 ×∅,Acc);
E2 ←restrict(E1, non-pumping transitions);
return H(L(E2));

Proposition

For a BüAPC− B, the algorithm above computes lim
v
H(B, v).
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Conclusions

Conclusions

Problems

How to formalize asymptotic convergence for PLTL?

How to decide it?
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Conclusions

Conclusions

Problems

How to formalize asymptotic convergence for PLTL?

How to decide it?

Results

Comparing convergence in entropy to other convergences.

Criteria of convergence in entropy for PLTL◇ and PLTL◻.

Computing limits of entropies for BüAPC+ and BüAPC−.
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Problems

How to formalize asymptotic convergence for PLTL?

How to decide it?

Results

Comparing convergence in entropy to other convergences.

Criteria of convergence in entropy for PLTL◇ and PLTL◻.

Computing limits of entropies for BüAPC+ and BüAPC−.

Open questions and further work

Entropy and topology?

Relevance in verification?

Extensions to branching temporal logics?
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Conclusions

Conclusions

Problems

How to formalize asymptotic convergence for PLTL?

How to decide it?

Results

Comparing convergence in entropy to other convergences.

Criteria of convergence in entropy for PLTL◇ and PLTL◻.

Computing limits of entropies for BüAPC+ and BüAPC−.

Open questions and further work

Entropy and topology?

Relevance in verification?

Extensions to branching temporal logics?

Thank you!
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