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Introduction Volume Functional Analysis Discretization Information Theory Conclusion

Measuring Size of Timed Languages: Why?

Motivations

Verification (original motivation):

Quality of an over-approximation L ⊃ M
(compare #L and #M)
Quantitative model-checking

Information theory:

Information content
Security: timed information flow
Timed channel capacity [ABBDP’12]

Quasi-uniform random simulation [B’13]

And of course: links with symbolic dynamics (entropy of timed subshifts)
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Reminder: Size of Languages

Size and entropy of discrete languages

Take a language L ⊂ Σ∗.

Count its wordsa of length n (#Ln, Ln =def Σn ∩ L)

awe could also count prefixes or factors

An automaton:

✶ ✷

✸

❛

❜

❛

❜

❛✱�
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Reminder: Size of Languages

Size and entropy of discrete languages

Take a language L ⊂ Σ∗.

Count its wordsa of length n (#Ln, Ln =def Σn ∩ L)

Typically: exponential growth

Growth rate - entropy H(L) = lim sup log2 #Ln
n

awe could also count prefixes or factors

✶

✶

✶

✶ ✶

✷

✷

✷ ✷ ✷

✸

✸

❛

❛

❛

❜

❜

❜

❛

❛ ❛
❜

❝

Languages L0, . . . , L4:
∅; {b}; {ab}; {aab, baa, bac};
{aaab, abaa, abac, babb};

{aaaab, aabaa, aabac, ababb, babab,

baaaa, baaac, bacaa, bacac} . . .

Cardinalities: 0,1,1,3,4,9, . . .
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Computing the entropy of regular languages

Entropy for a deterministic automaton
= logarithm of the spectral radius of the adjacency matrix.

✶ ✷

✸

❛

❜

❛

❜

❛✱�
M =





1 1 0
0 0 1
1 2 0





Spectral radius: maximal norm of the eigenvalues For this M: ρ(M) ≈ 1.80194;
entropy: H = log ρ(M) ≈ 0.84955.

Entropy of Timed Regular Languages May 10 2016 – EQINOCS final Workshop – IRIF – Paris 4 / 64



Introduction Volume Functional Analysis Discretization Information Theory Conclusion

Context

Timed automata

A model for verification of real-timed systems

Invented by Alur and Dill in early 1990s

Precursors: time Petri nets (Berthomieu)

Now: an efficient model for verification, supported by tools (Uppaal)

A popular research topic (> 8000 citations for papers by Alur and Dill)

modeling and verification
decidability and algorithmics
automata and language theory
very recent: dynamics

Inspired by TA: hybrid automata, data automata, automata on nominal sets
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Foreword: timed words and languages

A word: u = abbabb represents a sequence of events in some Σ.

A timed word: w = 0.8a2.66b1.5b0a3.14159b2.71828b represents a sequence of
events and delays.

It lives in a timed monoid Σ∗ ⊕ R+ (but nevermind this!).

For us it sits in (R+ × Σ)∗ (words on some infinite alphabet), that is
w = (0.8, a), (2.66, b), (1.5, b), (0, a), (3.14159, b), (2.71828, b).

Geometrically w is a point in several copies of Rn:

w = (0.8, 2.66, 1.5, 0, 3.14159, 2.71828) ∈ R6
abbabb

A timed language is a set of timed words – examples below.
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So, what is a TA?

Recipe for making a timed automaton :

take a finite automaton;

add some variables x1, . . . , xn, called clocks;

add guards to transitions (e.g. x3 < 7);

add resets to transitions (e.g. x2 := 0);

make all clocks run at speed ẋi = 1 everywhere and interpret behaviors in
continuous time;

enjoy!
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An example of timed automaton

Timed automaton A:

q✶ q✷

❛❀ ① � ❬✁✂ ✄❪☎

❜❀ ① ✿✆ ✵

A run:
(q1, 0)

1.83
→ (q1, 1.83)

a
→ (q2, 1.83)

4.1
→ (q2, 5.93)

b
→ (q1, 0)

1
→ (q1, 1) → . . .

Its trace 1.83a4.1b1a is a timed word.

The timed language of the TA: set of all traces starting in q1, ending in q1:
{t1as1bt2as2b . . . tna|∀i .ti ∈ [1; 2]}

Observation: clock value of x : time since the last reset of x .
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Outline

1 Introduction
Entropy of regular languages
Timed Languages and Timed Automata

2 Volume
Measuring timed languages
Some simple volume computations

3 Functional Analysis Approach
Computing the volume
Main Theorem
Symbolic method
Numerical method

4 Discretization Approach

5 Information Theory
Discrete channel coding
Time channel coding

6 Conclusion
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Talking about size

Timed languages typically are non-countable sets (continuous choice of delays).

How does one describe the “size” of such an object?
(and thus translate a nice classical theory to the realm of timed automata / timed
shifts → extra-motivation).
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Introduction Volume Functional Analysis Discretization Information Theory Conclusion

Talking about size

Timed languages typically are non-countable sets (continuous choice of delays).

How does one describe the “size” of such an object?
(and thus translate a nice classical theory to the realm of timed automata / timed
shifts → extra-motivation).

The idea: timed regular languages must be seen as unions of polytopes → instead of
counting words, we sum up their volumes.
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Volume and Entropy for Timed Languages

u1 u2

u3

t1 t2

t3

Choice of a timed word (~t, u) ∈ Ln = discrete choice of path u (untiming) +
continuous choice of delay vector ~t (timing).

Given u, Lu = {~t | (~t, u) ∈ Ln} ⊆ Rn is a polytope (e.g. hypercube, simplex...)

Measure of Ln, Vol(Ln) =
∑

u∈ΣnVol(Lu)

(Rate of volumic) entropy: H = lim 1
n
log2(Vol(Ln))
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Simple n-volumes
hypercubes

dimension 1

t1 ≤ d

Volume d

dimension 2

t1, t2 ≤ d

Volume d2

dimension 3

t1, t2, t3 ≤ d

Volume d3

dimension n

?

t1, . . . , tn ≤ d

Volume dn

a, x ≤ d/x := 0

Timed word : (t1, a)(t2, a) . . . (tn, a)
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Simple n-volumes
simplices

dimension 1

t1 ≤ 1

Volume 1

dimension 2

t1 + t2 ≤ 1

Volume 1/2

dimension 3

t1 + t2 + t3 ≤ 1

Volume 1/6

dimension n

?

t1 + · · ·+ tn ≤ 1

Volume 1/n!

a, x ≤ 1

Timed word : (t1, a)(t2, a) . . . (tn, a)
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Volume and entropy of timed automata
Example 1: rectangles

♣

❛❀ ① ✷ ❬�✁ ✹❪❂① ✿✂ ✵

❜❀ ① ✷ ❬✄✁ ✶✵❪❂① ✿✂ ✵

Language:
L1 = ([2; 4]a + [3; 10]b)∗
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Volume and entropy of timed automata
Example 1: rectangles

♣

❛❀ ① ✷ ❬�✁ ✹❪❂① ✿✂ ✵

❜❀ ① ✷ ❬✄✁ ✶✵❪❂① ✿✂ ✵

Language:
L1 = ([2; 4]a + [3; 10]b)∗

For the untiming bbab the set of timings is a 4-rectangle:
[3; 10] × [3; 10] × [2; 4] × [3; 10], its volume 7 · 7 · 2 · 7 = 686.
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Volume and entropy of timed automata
Example 1: rectangles

♣

❛❀ ① ✷ ❬�✁ ✹❪❂① ✿✂ ✵

❜❀ ① ✷ ❬✄✁ ✶✵❪❂① ✿✂ ✵

Language:
L1 = ([2; 4]a + [3; 10]b)∗

For the untiming bbab the set of timings is a 4-rectangle:
[3; 10] × [3; 10] × [2; 4] × [3; 10], its volume 7 · 7 · 2 · 7 = 686.

For an untiming in {a, b}n with a × k ; b × (n − k), the set of timings is a
rectangle, volume 2k7n−k
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Volume and entropy of timed automata
Example 1: rectangles

♣

❛❀ ① ✷ ❬�✁ ✹❪❂① ✿✂ ✵

❜❀ ① ✷ ❬✄✁ ✶✵❪❂① ✿✂ ✵

Language:
L1 = ([2; 4]a + [3; 10]b)∗

For the untiming bbab the set of timings is a 4-rectangle:
[3; 10] × [3; 10] × [2; 4] × [3; 10], its volume 7 · 7 · 2 · 7 = 686.

For an untiming in {a, b}n with a × k ; b × (n − k), the set of timings is a
rectangle, volume 2k7n−k

Volume: Vn(L1) =
∑n

k=0 C
k
n 2

k7n−k = (2 + 7)n = 9n,

Entropy: H(L1) = log 9 ≈ 3.17.
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Volume and entropy of timed automata
Example 1: trapezia

♣ q

❛❀ ① ✷ ❬�✁ ✹❪

❜❀ ① ✷ ❬✂✁ ✹❪❂① ✿✄ �

Language : t1as1bt2as2b . . . tkaskb such that 2 ≤ ti + si ≤ 4

Entropy of Timed Regular Languages May 10 2016 – EQINOCS final Workshop – IRIF – Paris 15 / 64



Introduction Volume Functional Analysis Discretization Information Theory Conclusion

Volume and entropy of timed automata
Example 1: trapezia

♣ q

❛❀ ① ✷ ❬�✁ ✹❪

❜❀ ① ✷ ❬✂✁ ✹❪❂① ✿✄ � s2 4

2

4
t

Language : t1as1bt2as2b . . . tkaskb such that 2 ≤ ti + si ≤ 4

For the only n-untiming w = (ab)n/2 the set of timings is a product of n/2
trapezia.
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Volume and entropy of timed automata
Example 1: trapezia

♣ q

❛❀ ① ✷ ❬�✁ ✹❪

❜❀ ① ✷ ❬✂✁ ✹❪❂① ✿✄ � s2 4

2

4
t

Language : t1as1bt2as2b . . . tkaskb such that 2 ≤ ti + si ≤ 4

For the only n-untiming w = (ab)n/2 the set of timings is a product of n/2
trapezia.

Volume: Vn(L2) = 6n/2,

Entropy: H(L2) = log 6/2 ≈ 1.29.
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Volume and entropy of timed automata
Example 3: strange polytopes

♣ q

❛❀ ① ✷ ❬�✁ ✶❪❂① ✿✂ �

❜❀ ② ✷ ❬�✁ ✶❪❂② ✿✂ �

Language : L3 = {t1at2bt3at4b . . . |ti + ti+1 ∈ [0; 1]}

For the only n-untiming w = (ab)n/2 the set of timings is a strange polytope.

Volume: see below

Entropy: see below
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General case: some minor restrictions

For the rest of the paper, all our TAs actually are BDTAs:

Bounded Deterministic Timed Automaton

A BDTA is a timed automaton with following contraints:

1 it is deterministic.

2 its guards are conjunctions of bounded intervals.a

aWe allow “punctual” guards (singletons), in spite of induced pathologies.
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Functional Analysis Approach

The first approach is based on results from functional analysis.

Outline

We find a recurrence for computing volumes.

Volumes functions = points of some functional space.

Recurrence = some linear operator Ψ on this space.

The study of volume and entropy thus reduces to the study of the properties of Ψ

All of this is in [ABD’15].
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Recurrence for Languages and Volumes

Idea:

language recurrent equations −→ volume recurrent equations
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Recurrence for Languages and Volumes

Idea:

language recurrent equations −→ volume recurrent equations

Discrete automata: what n-language Ln(q) can you read from state q?

q

q
✵
✶

❛

q
✵
✷

❜
Lk+1(q) = aLk(q

′
1) + bLk(q

′
2)
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Recurrence for Languages and Volumes

Discrete automata: what n-language Ln(q) can you read from state q?

q

q
✵
✶

❛

q
✵
✷

❜
Lk+1(q) = aLk(q

′
1) + bLk(q

′
2)

Language recurrence

L0(q) = ε;

Lk+1(q) =
⋃

(q,a,q′)∈∆

a · Lk(q
′).
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Recurrence for Languages and Volumes

Timed automata: what n-language Ln(q, x) can you read from state (q, x)?

q

q
✵
✶❛❀ ❣✶❀ r✶

q
✵
✷

❜❀ ❣✷❀ r✷

Lk+1(q, x) =
⋃

x+τ∈g1

τa · Lk(q
′
1, r(x+ τ))

+
⋃

x+τ∈g2

τb · Lk(q
′
2, r2(x+ τ))

Language recurrence

L0(q, x) = ε;

Lk+1(q, x) =
⋃

(q,a,g,r,q′)∈∆

⋃

τ :x+τ∈g

τa · Lk(q
′, r(x + τ)).
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Recurrence for Languages and Volumes

Deterministic timed automata: what n-volume Vn(q, x) does Ln(q, x) have?

q

q
✵
✶❛❀ ❣✶❀ r✶

q
✵
✷

❜❀ ❣✷❀ r✷
vk+1(q, x) =

∫

x+τ∈g1

vk(q
′
1, r(x + τ))dτ

+

∫

x+τ∈g2

vk(q
′
2, r2(x+ τ))dτ

Volume recurrence

v0(q, x) = 1;

vk+1(q, x) =
∑

(q,a,g,r,q′)∈∆

∫

τ :x+τ∈g
vk(q

′, r(x + τ)) dτ.
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First Theorem

Theorem (Volume is computable)

vn is polynomial on each clock region.
Vn(= vn(q0,0)) is a rational number.
They can be computed using the recurrence above.

Example (Volume of L3)

The volume for our running example is

Vn(L3) =

∫ 1

0
dt1

∫ 1−t1

0
dt2

∫ 1−t2

0
dt3 . . .

∫ 1−tn−1

0
dtn

That isa

1;
1

2
;
1

3
;
5

24
;
2

15
;
61

720
;
17

315
;
277

8064
; . . .

a... which also happens to be the coefficients of the Taylor expansion of (sin x + 1)/ cos x − 1 !
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Reconsidering the Recurrence for Volumes

Volume recurrence formula

v0(q, x) = 1;

vk+1(q, x) =
∑

(q,a,g,r,q′)∈∆

∫

τ :x+τ∈g
vk(q

′, r(x + τ)) dτ.

Can we use these equations to compute entropy?
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Reconsidering the Recurrence for Volumes

Volume recurrence formula

v0(q, x) = 1;

vk+1(q, x) =
∑

(q,a,g,r,q′)∈∆

∫

τ :x+τ∈g
vk(q

′, r(x + τ)) dτ.

Volume recurrence – in 12 symbols

Same formulas, shorter version:
v0 = 1;

vk+1 = Ψvk ,

where Ψ is a positive linear operator on some functional space.
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Toward the Main Theorem

We want to find H by studying (the iterates of) Ψ.

Ψ’s nice properties

Trivial: Ψ is a linear, bounded, positive operator on a Banach space. (Ψ lives in
F = C (Q × [0;M]n))

If A is strongly connected of period p and H > −∞a, then Ψp has a spectral gap.

Results from functional analysis apply
(cf. [Krasnosel’skij, Lifshits, Sobolev 89]).

⇒ Ψk f ∼ ρk f ∗ (Gelfand). For us: vk(q, x) ∼ ρk f ∗(q, x).

a[AB’11]: H > −∞ can be checked in time exponential to the number of clocks.
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Spectral gap

Re

Im

λ ρ

Figure: Spectrum of an operator having a gap.
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Main theorem

Theorem (Main result of [ABD’15])

For a BDTA A, either ρ(Ψ) = 0 (and H = −∞) or H = log ρ(Ψ).
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Main theorem

Theorem (Main result of [ABD’15])

For a BDTA A, either ρ(Ψ) = 0 (and H = −∞) or H = log ρ(Ψ).

H = log ρ(Ψ) → Are We Done?

Yes – we have a characterization of the entropy.
No – how do we know the maximal λ such that Ψf = λf ?

An awful integral equation . . .

How to get a number?
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Main theorem

Theorem (Main result of [ABD’15])

For a BDTA A, either ρ(Ψ) = 0 (and H = −∞) or H = log ρ(Ψ).

H = log ρ(Ψ) → Are We Done?

Yes – we have a characterization of the entropy.
No – how do we know the maximal λ such that Ψf = λf ?

An awful integral equation . . .

How to get a number?

→ reduction to ODE in a particular case

→ iterative method of approximation for the general case
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The Easy Case : 11
2 Clocks

Definition (11
2 clocks timed automata)

BDTA is 1 1
2 clocks ⇔ after every transition at most one clock 6= 0.

Then v(q, x) has 1-dim argument ⇒ linear ODE: all is easy.

Entropy of Timed Regular Languages May 10 2016 – EQINOCS final Workshop – IRIF – Paris 25 / 64



Introduction Volume Functional Analysis Discretization Information Theory Conclusion

The Easy Case : 11
2
Clocks

Case of our favorite example

♣ q

❛❀ ① ✷ ❬�✁ ✶❪❂① ✿✂ �

❜❀ ② ✷ ❬�✁ ✶❪❂② ✿✂ �

Integral equation: λf (x) = Ψf (x) with Ψf (x) =
∫ 1−x

0
f (s) ds.

Derived twice: λ2f ”(x) = −f (x), with f (1) = 0, f ′(0) = 0.

We find: λ = 2/π; f ∗(x) = cos( xπ2 )

⇒ entropy: H = log(2/π) ≈ −0.6515
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The Easy Case : 11
2
Clocks

General case

Lemma

The solutions of Ψv = λv are the solutions of the differential equation λY ′ = AY

satisfying Y (1/2) =

(

X
X

)

with MλX = 0.

The details:

Y is the vector of volume functions (slightly transformed)

A can be derived directly from A

Mλ is slightly more involved (contains
∫ 0

−1/2
exp t

λAdt)

The ODE has non-zero solution iff det Mλ = 0. Thus:

Theorem

For 1 1
2 -clocks BDTA, H = logmax{|λ|| det Mλ = 0}.
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General case: Iteration method for positive operators

Theorem (Iteration)

For a strongly connected BDTA of period p with H > −∞,
ρn = ‖v(n+1)p‖/‖vnp‖ →n→∞ ρ with exponential speed.

(Recall: vn = Ψnv0 and Ψ has a spectral gap. Thus vn ≃ ρnv0.)
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Iteration method for positive operators
Applied to our favorite example...

♣ q

❛❀ ① ✷ ❬�✁ ✶❪❂① ✿✂ �

❜❀ ② ✷ ❬�✁ ✶❪❂② ✿✂ �

n vn(x) ‖vn‖ ρn−1

0 1 1

1 1− x 1 1

2 1− x − (1− x)2/2 1/2 0.5

3 (1− x)/2 − (1− x)3/6 1/3 0.6667

4 (1− x)/3 + (1− x)4/24− (1− x)3/6 5/24 0.6250

5 5
24(1− x) + (1− x)5/120 − (1− x)3/12 2/15 0.6400

6 2
15 (1− x)− (1− x)6/720 + (1− x)5/120 − (1− x)3/18 61/720 0.6354

7 61
720 (1− x)− (1− x)7/5040 + (1− x)5/240 − 5

144(1− x)3 17/315 0.6370

8 17
315 (1− x) + (1− x)8/40320 − (1− x)7 /5040 + (1− x)5 /360 − (1− x)3 /45 277/8064 0.63648

Table: Iterating the operator for A3 (H = log(2/π) ≈ log 0.6366 ≈ −0.6515)
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Discretization Approach

The second approach is based on brute force discretization of timed automata.

Outline

We take a BDTA A (and remove punctual guards).

We fix a discretization step ε.

We transform A into a finite automaton Aε on alphabet Σ ∪ {τ} that
approximates its behaviors up to precision ε.

We use classical methods to compute the entropy of Aε.

Finally we deduce the entropy of A.

This approach is described in [AD’09].
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Discretizing Timed Automata

An example of such a discretization:

♣ q

❛❀ ① ✷ ❬�✁ ✶❪❂① ✿✂ �

❜❀ ② ✷ ❬�✁ ✶❪❂② ✿✂ �

❛❀ ❝ ✷ ❬�✁ ✂�❪❂❝ ✿✄ �

❜❀ ❞ ✷ ❬�✁ ✂�❪❂❞ ✿✄ �

✜❂❝❞ ✰ ✰✜❂❝❞ ✰ ✰

More details:

Take the BDTA A. Fix ε > 0.

Replace every clock x by a counter c ≈ x/ε.

Add to every state a τ, c++-loop (ε-time progress).

Bounded counters =⇒ finite state space.
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Counting Words and Computing Entropy

Lε: language of the discretized automaton
= set of ε-samples of L

Vn(Ln) ≈ #Lεn · ε
n (i.e. #samples · Vol(ε-ball))

So we take the logarithm and...

Entropy of Timed Regular Languages May 10 2016 – EQINOCS final Workshop – IRIF – Paris 32 / 64



Introduction Volume Functional Analysis Discretization Information Theory Conclusion

Counting Words and Computing Entropy

Lε: language of the discretized automaton
= set of ε-samples of L

Vn(Ln) ≈ #Lεn · ε
n (i.e. #samples · Vol(ε-ball))

So we take the logarithm and...

Theorem

Computing Entropy by Discretization [AD’09, AB’11]

H(L)−Hdiscrete(L
ε)− log(ε) = o(1)
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Discretization of L3

♣ q

❛❀ ① ✷ ❬�✁ ✶❪❂① ✿✂ �

❜❀ ② ✷ ❬�✁ ✶❪❂② ✿✂ �

Applying the method to the 3rd example,

for ε = 0.1, we find

H ∈ [log 0.62; log 0.653] ⊂ (−0.69;−0.61)

and for ε = 0.01,

H ∈ [log 0.6334; log 0.63981] ⊂ (−0.659;−0.644).

(reminder: H = log(2/π) ≈ −0.6515)
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Information theory
(Links with and applications to... )

Volumic entropy: several information theoretical characterizations: ε-entropy (see
above), Kolmogorov complexity (next slide), ...

A concrete application: channel coding

→ we generalize the classical theory of constrained channel coding for timed sources
and/or timed channels.
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Kolmogorov Complexity of Timed Words

Definition

Kolmogorov complexity of a word w [Kolmogorov 65]:

K (w) = min# of instructions to define w

Theorem

For L a timed regular language,

max
w∈Ln

min
d(v ,w)<ε

K (v) ≈ n(H(L)− log ε)

Proof idea: close to discretization theorem.

The bottom line: entropy is linked to the worst case complexity of the best
ε-approximation a word in Ln.
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Typical problems of channel coding

Given...

a source: S ⊆ A∗ (e.g. possible message, contents of a file, etc.);

a channel: C ⊆ A′∗ (e.g. what can be transmit by telegraph, written on a DVD,
etc.).

In this paradigm: no noise, no probability.

Questions

Is it possible to transmit any source message via the channel?

What would be the transmission speed?

How to encode the message before and to decode it after transmission?
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Coding: a definition

Definition (φ : S → C , encoding with rate α ∈ Q )

it is of rate α, i.e. α = |w |
|φ(w)| ;

it is injective,
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Introduction Volume Functional Analysis Discretization Information Theory Conclusion

Coding: a definition

Definition (φ : S → C , encoding with rate α ∈ Q )

it is of rate α, i.e. α = |w |
|φ(w)| ;

it is almost injective with delay d , i.e. if |w | = |w ′| and |u| = |u′| = d then
φ(wu) = φ(w ′u′) ⇒ w = w ′.
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A coding realized by a transducer with delay 1

p q0 | a

1 | a

2 | b

1 | d

0 | c 2 | d

Coding: 10217→acdd .
Decoding: acdd 7→ 102.(1 or 2).

Properties of the transducer

Deterministic on its input.

Deterministic on its output with delay d = 1.
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Finite state coding theorem

Proposition

Let S and C be factorial and extensible languages. If an (S ,C )-encoding with rate α
exists, then (II) holds.

Information Inequality

αH(S) ≤ H(C ), (II)

Theorem

If S and C are sofica and strong (II) holds, then there exists an (S ,C )-encoding
realized by a finite-state transducer.

aregular+. . .

The optimal rate. . .

. . . is α ≤ H(C)
H(S) .
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Problem I: timed source, discrete channel, approximate transmission

Usually timed words are stored in text files.

Subtitle file: SubRip .srt file example (Wikipedia)1

00:00:20,000 --> 00:00:24,400

Altocumulus clouds occur between six thousand

2

00:00:24,600 --> 00:00:27,800

and twenty thousand feet above ground level.

What is the optimal encoding for that type of data?
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Problem I: timed source S, discrete channel C

Definition (Encoding φ : S → C : precision ε, rate α, delay d)

it is of rate α, i.e. α = |w |
|φ(w)| ;

“injective” with precision ε and delay d i.e.

∀n ∈ N,w ,w ′ ∈ An : φ(w) = φ(w ′) ⇒ dist(w ,w ′) < ε.

if |w | = |w ′|, |u| = |u′| = d and φ(wu) = φ(w ′u′) then dist(w ,w ′) < ε.

Example

S = ([0, 1] × {a, b})∗, C = (ASCII )∗.
Encoding: truncation to 2 digits.

(1/3, a)(0.338, a)(ln(2), b) 7→ 33a33a69b.

Rate α = 1/3, delay d = 0, precision ε = 0.01.
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Theorem for Problem I (timed source, discrete channel)

Information Inequality

α(H(S) + log2(1/ε)) ≤ H(C ) (II)

Proposition

If an encoding with rate α and precision ε exists then (II) holds

Theorem

For regular languages S (timed) and C (untimed), if some strong version of (II) holds
then an S-C encoding can be realized by a real-time transducer.
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Problem II: timed source, timed channel, exact transmission, rate 1

Definition (Encoding φ : S → C with delay d)

it is length preserving (rate 1): |φ(w)| = |w |,

it is almost injective (with delay d),

no time scaling.
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Theorem for Problem II (timed source, timed channel)

Information Inequality

H(S) ≤ H(C ). (II)

Proposition

If an encoding exists then (II) holds.

Theorem

If strong (II) holds then an encoding from S to C can be realized by a real time
transducer.
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A failure: timed source, timed channel, exact transmission, rate 6= 1

Definition (Encoding φ : S → C with delay d and rate α)

it is of rate α, i.e. α = |w |
|φ(w)| ;

it is almost injective (with delay d),

no time scaling.

The results: whatever the entropies of H(S), H(C )

If α > 1 then no coding exists.

If α < 1 then there is always a coding

Entropy of Timed Regular Languages May 10 2016 – EQINOCS final Workshop – IRIF – Paris 45 / 64



Introduction Volume Functional Analysis Discretization Information Theory Conclusion

Sketch of construction of the real time transducers

A transition of a real time transducer:

p q
a, [0.5, 0.6] | b,−0.2

(clock x ∈ [0.5, 0.6]; output x − 0.2)
Example: (a, 0.54321etc .) 7→ (a, 0.34321etc .)

Properties of the real-time transducer

Real time = one clock always reset (very simple timed automaton/transducer).

Guards multiple of a fixed discretization step ε = 0.1.

Exact transmission, no approximation (same etc .).
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Discretization and real-time approximation

p q r

c , x ∈ [0, 3], x := 0

a, x ∈ [0, 3] d , x ∈ [0, 2], x := 0

b, x ∈ [0, 2]

Lac

1 2 30

1

2

3
t2

t1 1 2 30

1

2

3
t2

t1

Lbd
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Discretization and real-time approximation

Lac

1 2 30

1

2

3
t2

t1 1 2 30

1

2

3
t2

t1

Lbd

Discretisation Lε with ε = 1
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Discretization and real-time approximation

Lac

1 2 30

1

2

3
t2

t1 1 2 30

1

2

3
t2

t1

Lbd

Discretisation L+ε with ε = 1 Over-approximation L ⊆ BNE
ε (L+ε )
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Discretization and real-time approximation

Lac

1 2 30

1

2

3
t2

t1 1 2 30

1

2

3
t2

t1

Lbd

Discretisation L−ε with ε = 1 Under-approximation BNE
ε (L−ε ) ⊆ L

Entropy of Timed Regular Languages May 10 2016 – EQINOCS final Workshop – IRIF – Paris 47 / 64



Introduction Volume Functional Analysis Discretization Information Theory Conclusion

Realised by DFA and real-time automaton

p1

p0

q r

(0, c) (0, a)(1, c)

(0, c)

(1, a) (0, d)

(0, b)

p1

p0

q r

[0, 1], c [0, 1], a[1, 2], c

[0, 1], c

[1, 2], a [0, 1], d

[0, 1], b

Lac

1 2 30

1

2

3
t2

t1 1 2 30

1

2

3
t2

t1

Lbd

Discretisation L−ε with ε = 1 Under-approximation BNE
ε (L−ε ) ⊆ L
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Reduction to the discrete case

3-step reduction scheme

1 discretize the timed languages S ,C with a sampling rate ε to obtain S+
ε ,C−

ε ;
ensure II: h(S+

ε ) < h(C−
ε )

2 use classical coding theorem: build coding S+
ε → C−

ε ;

3 go back to timed languages by taking 1 cube for each discrete points.

Finally :
S ⊆ BNE

ε (S+
ε ) → BNE

ε (C−
ε ) ⊆ C

of Sε and Cε.
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Sketch of construction of the real time transducers

A transition of the discrete transducer between S+
ε and C−

ε :

p q
(a, 5ε) | (b, 3ε)

The corresponding transition of the real time transducer:

p q
a, [5ε, 6ε] | b,−2ε
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Summary

Definition of volume and entropy for TA

Recurrent formula for volume =⇒ computable

A symbolic algorithm to compute H for 11
2 clocks

2 algorithms to approximate H: using operators or discretization

Links to other entropies (discretization) and information theory (Kolmogorov
complexity, timed coding).
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Other applications

Mostly N. Basset’s works:

Eigenvectors of operator Ψ can be used to add “natural”1 probabilities to timed
automata (generalization of Shannon-Parry measure)
→ quasi-uniform statistical model checking.

Computing volumes is linked to counting permutations of a certain kind.

1i.e. maximal entropy
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Future work

Entropy/unit of time (actually ongoing work)

Efficient algorithms (zone based, ... )

More applications.

Extensions (hybrid automata, ...)
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Relevant publications

This talk is based on:

Main source: [ABD15] E. Asarin, N. Basset, A. Degorre. Entropy of regular timed
languages. Information and Computation 241, 2015.

Discretization aspects: [AD’09] E. Asarin, A. Degorre. Volume and entropy of
regular timed languages: Discretization Approach. Concur’09.

Channel coding: [ABBDP’12] E. Asarin, N. Basset, M.-P. Béal, A. Degorre, D.
Perrin. Toward a Timed Theory of Channel Coding. Formats’12.
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Not presented here

Various directions explored by us:

E. Asarin, A. Degorre. Two Size Measures for Timed Languages. FSTTCS’10.

E. Asarin, N. Basset, A. Degorre. Generating Functions of Timed Languages
Generating functions. MFCS’12.

N. Basset. Maximal entropy timed stochastic process. ICALP’13.

N. Basset. Counting and Generating Permutations Using Timed Languages.
LATIN’14.
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Thank you!

Questions?
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Playing with dimensions

Punctual guards should be fine!

This time we do not accept 0 (or −∞) as a meaningful answer for the size of a
degenerated automaton.

However we want to keep punctual guards.

What can we do?

Remark 1: the operator Ψ will always yield volume 0 for degenerated runs.

Remark 2: discretization approach gives non-zero answers, but how to interpret it
in an example such as (next slide), where it adds up meters to square meters ?
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Playing with dimensions

A bothering example

q✵
❜❀ ① ❂ ✸�① ✿❂ ✁

❛❀ ① ✷ ❬✁✂ ✺❪�① ✿❂ ✁❛❀ ① ✷ ❬✁✂ ✸❪�① ✿❂ ✁

Left or right?

a∗, set [0, 3]n , volume 3n, entropy log 3 (i.e. 3 sec/symbol)

ba∗, set 3× [0, 5]n, volume 0, entropy −∞ (but 5 sec/symbol)

Something is wrong.
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Playing with dimensions

A bothering example

q✵
❜❀ ① ❂ ✸�① ✿❂ ✁

❛❀ ① ✷ ❬✁✂ ✺❪�① ✿❂ ✁❛❀ ① ✷ ❬✁✂ ✸❪�① ✿❂ ✁

Left or right?

a∗, set [0, 3]n , dimension n, n-volume 3n

ba∗, set 3× [0, 5]n, dimension n − 1, (n − 1)-volume 3n

Who does win?
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Playing with dimensions

Another embarassing example

q✵
❜❀ ① ✷ ❬�❀ ✺❪❂① ✿✁ ✂

❝❀ ① ✁ ✶❂① ✿✁ ✂

❛❀ ① ✷ ❬✄❀ ✺❪❂① ✿✁ ✂ ❛❀ ❜❀ ❝❀ ① ✁ ✸❂① ✿✁ ✂

❛❀ ❜❀ ❝❀ ① ✷ ❬✂❀ ✶✂✂✂✂❪❂① ✿✁ ✂

❛❀ ❜❀ ❝❀ ① ✷ ❬✶☎ ✶✶❪❂① ✿✁ ✂

❛❀ ❜❀ ❝❀ ① ✷ ❬�☎ ✸❪❂① ✿✁ ✂

a, b or c?

aΣ∗, dimension n,
volume 3n−1;

bΣ∗, dimension (n+1/2),
volume 300n−1 · 3;

cΣ∗, dimension n − 1,
volume 30n−1;

Choose your champion.

Entropy of Timed Regular Languages May 10 2016 – EQINOCS final Workshop – IRIF – Paris 58 / 64



Playing with dimensions

Key to solution

Information measure: inspired by Kolmogorov-Tikhomirov ε-entropy.

Ln → set of disjoint
timing polyhedra

metric for spaces of
every dimension

Size = cardinality of
the ε-net of this set
≃

∑

m Vm(P
m
n )ε−m

ε

Figure: Adding meters to square meters:
two polyhedra and their minimal
ε-partitions.
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Playing with dimensions

Solution

We define the corresponding entropy:

Definition (ε-entropy)

hε(Ln) = log
∑

m

Vm(P
m
n )ε−m

With such a definition, the following holds (for “some” ≃) :

hε(Ln) ≃ n(−α log ε+Hα)

Explanation : when n → ∞ and ε → 0, only terms of “maximal” dimension do matter.

α = limn→∞ dim Ln/n: mean dimension of L
(à la Gromov)

Hα: volumic entropy, i.e. logarithmic asymptotic growth of the (αn)-volume
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Playing with dimensions

Mean dimension

a, b, c , x = 3/x := 0

a, b, c , x ∈ [0; 10000]/x := 0

q0
b, x ∈ [2; 5]/x := 0

a, x ∈ [4; 5]
/x := 0

c , x = 1
/x := 0

a, b, c , x ∈ [1; 11]/x := 0

a, b, c , x ∈ [4; 5]/x := 0

A timed automaton...
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Playing with dimensions

Mean dimension

0

1

q0
1

1

0

1

1

Let’s keep only the dimension of guards!
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Playing with dimensions

Mean dimension

0

1

q0
1

1

0

1

1

mean dim.: 1

mean dim.: 1/2

mean dim.: 1

We find 2 critical cycles, with mean dim.= 1.
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Playing with dimensions

Mean dimension

0

1

q0
1

1

0

1

1

↔ Φ =













0 1 1 −∞ −∞
−∞ 1 −∞ −∞ −∞
−∞ −∞ −∞ −∞ 0
−∞ −∞ −∞ 1 −∞
−∞ −∞ 1 −∞ −∞













Max dim. p →n q = (Φn)pq (in max-plus algebra)

dim Ln = maxq∈Q(Φ
n)q0q = ρ(Φ)n+constant

(ρ: max-plus spectral radius)

Lemma

Mean dimension of L: α = ρ(Φ)
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Playing with dimensions

Volumic entropy

What about Hvol?

Hvol : volume growth of critical paths in the dimension graph

Hvol can be computed using similar techniques as H before (full-dimension entropy),
restricting the operator Ψ to critical components of the automaton.
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Playing with dimensions

Related topics

Volume generating functions: allow manipulating heterogenous n-volumes in the
same operator → generalization of symbolic method to a larger class of automata.

Entropy rate with respect to time: volumes of different dimension naturally appear
for a same total duration. How do we sum them? (ongoing work)
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