Eugene Asarin Julien Cervelle Aldric Degorre Cătălin Dima Florian Horn Victor Kozyakin

IRIF, LACL, IITP

EQINOCS seminar 2016-05-11

A game of freedom

The story

Despot and Tribune rule a country, inhabited by People. D aims to minimize People's freedom, T aims to maximize it.

- Turn-based game.
- Despot issues a decree (which respects laws!), permitting/restricting activities and changing system state.
- People are then given some choice of activities (like go to circus, enrol).
- After that Tribune has control, issues (counter-)decrees and changes system state.
- Again, People are given (maybe different) choices of activities.

Despot wants people to have as few choices as possible (in the long term), Tribune wants the opposite.

Outline

1 Preliminaries — 3 reminders

- Entropy of languages of finite/infinite words
- Joint spectral radii
- Games, values, games on graphs

2 Main problems and results

- Three games
- Determinacy of entropy games
- Complexity

3 Conclusions and perspectives

Preliminaries — 3 reminders

Entropy of languages of finite/infinite words

Reminder 1: entropy of languages

Entropy of a language $L \subset \Sigma^{\omega}$ (Chomsky-Miller, Staiger)

- Count the prefixes of length *n*: find $|pref_n(L)|$
- Growth rate entropy $\mathcal{H}(L) = \limsup \frac{\log |\operatorname{pref}_n(L)|}{n}$

Explaining the definition

- Size measure: $|\operatorname{pref}_n(L)| \approx 2^{n\mathcal{H}}$.
- Information bandwidth of a typical $w \in L$ (bits/symbol)
- Related to topological entropy of a subshift, Kolmogorov complexity, fractal dimensions etc.

Preliminaries — 3 reminders

Entropy of languages of finite/infinite words

Reminder 1: entropy of ω -regular languages — example

Cardinalities: 1,2,3,6,11, ...

■
$$|\text{pref}_n(L)| \approx (1.80194)^n = \rho(M)^n = 2^{0.84955n}$$

entropy: $\mathcal{H} = \log \rho(M) \approx 0.84955$.

Entropy of languages of finite/infinite words

Reminder 1: entropy of ω -regular languages — algorithmics

Recipe: Computing entropy of an ω -regular language L

- Build a deterministic trim automaton for pref(L).
- Write down its adjacency matrix *M*.
- Compute $\rho = \rho(M)$ its spectral radius.
- Then $\mathcal{H} = \log \rho$.

Entropy of languages of finite/infinite words

Reminder 1: entropy of ω -regular languages — algorithmics

Recipe: Computing entropy of an ω -regular language L

- Build a deterministic trim automaton for pref(L).
- Write down its adjacency matrix *M*.
- Compute $\rho = \rho(M)$ its spectral radius.
- Then $\mathcal{H} = \log \rho$.

Proof

- $|L_n(i \to j)| = M_{ij}^n$
- Hence $|pref_n(L)| = sum of some elements of <math>M^n$
- Perron-Frobenius theory of nonnegative matrices ⇒ $\| pref_n(L) \| \approx \rho(M)^n \Rightarrow \mathcal{H}(L) = \log \rho(M)$

└─ Joint spectral radii

Reminder 2: Generalizations of spectral radii

Spectral radius of a matrix

- $\rho(A)$ is the maximal modulus of eigenvalues of A.
- Gelfand formula $||A^n|| \approx \rho(A)^n$, more precisely $\rho(A) = \lim ||A^n||^{1/n}$

Definition (extending to sets of matrices)

Given a set of matrices \mathcal{A} define

- joint spectral radius $\hat{\rho}(\mathcal{A}) = \lim_{n \to \infty} \sup \left\{ \|A_n \cdots A_1\|^{1/n} | A_i \in \mathcal{A} \right\}$
- joint spectral subradius $\check{
 ho}(\mathcal{A}) = \lim_{n \to \infty} \inf \left\{ \|A_n \cdots A_1\|^{1/n} | A_i \in \mathcal{A} \right\}$

Algorithmic difficulties

- **1** The problem of deciding whether $\hat{\rho}(\mathcal{A}) \leq 1$ is undecidable.
- **2** The problem of deciding whether $\check{\rho}(\mathcal{A}) = 0$ is undecidable.

Games, values, games on graphs

Reminder 3: games

Definition (Games)

- Given: two players, two sets of strategies S and T.
- Payoff of a play: when players choose strategies σ and τ , Sam pays to Tom $P(\sigma, \tau)$
- Guaranteed payoff for Sam: at most $V_+ = \min_{\sigma} \max_{\tau} P(\sigma, \tau)$.
- Guaranteed payoff for Tom: at least $V_{-} = \max_{\tau} \min_{\sigma} P(\sigma, \tau)$.
- Game is determined if $V_+ = V_-$

Games, values, games on graphs

Reminder 3: games

Definition (Games)

- Given: two players, two sets of strategies S and T.
- Payoff of a play: when players choose strategies σ and τ , Sam pays to Tom $P(\sigma, \tau)$
- Guaranteed payoff for Sam: at most $V_+ = \min_{\sigma} \max_{\tau} P(\sigma, \tau)$.
- Guaranteed payoff for Tom: at least $V_{-} = \max_{\tau} \min_{\sigma} P(\sigma, \tau)$.
- Game is determined if $V_+ = V_-$
- Equivalently: exist value V, optimal strategies σ_0 and τ_0 s.t.:
 - Sam chooses $\sigma_0 \Rightarrow \mathsf{payoff} \le V$ for any τ ;
 - Tom chooses $\tau_0 \Rightarrow \mathsf{payoff} \ge V$ for any σ ;

Preliminaries — 3 reminders

Games, values, games on graphs

Reminder 3: games 2

Example (Rock-paper-scissors)

Three strategies for each player:
$$\{r, p, s\}$$

Payoff matrix: $\begin{array}{c|c} \sigma \setminus \tau & r & p & s \\ \hline r & 0 & 1 & -1 \\ p & -1 & 0 & 1 \\ s & 1 & -1 & 0 \end{array}$

• Non-determined: $\min \max = 1$ and $\max \min = -1$

Questions on a class of games

- are they determined ($V_+ = V_-$)? (e.g. Minimax Theorem, von Neumann)
- describe optimal strategies
- how to compute the value and optimal strategies?

Games, values, games on graphs

Reminder 3: games on graphs/automata - 1

The setting. Picture - The MIT License (MIT)(c) 2014 Vincenzo Prignano

Arena: graph with vertices $S \cup T$

(belonging to Sam and Tom), edges Δ .

- Sam's strategy
 - σ : history \mapsto outgoing transition,
 - i.e. $\sigma : (S \cup T)^* S \to \Delta$. Tom's strategy τ symmetrical.
- A play: path in the graph, where in each state the vertex owner decides a transition.
- A payoff function (0-1 or \mathbb{R})

Preliminaries — 3 reminders

Games, values, games on graphs

Reminder 3: games on graphs/automata - 2

Simple strategies

A strategy is called positional (memoryless) if it depends only on the current state: $\sigma: S \rightarrow \Delta; \tau: T \rightarrow \Delta.$

Preliminaries — 3 reminders

Games, values, games on graphs

Reminder 3: games on graphs/automata - 2

Typical results

- The game of chess is determined.
- A finite-state game with parity objective is determined, and has positional optimal strategies.
- A finite-state mean-payoff game is determined, and has positional optimal strategies.

└─ Three games

A game of freedom – 1st slide again

The story — towards a formalization

Despot and Tribune rule a country, inhabited by People. D aims to minimize People's freedom (entropy), T aims to maximize it.

- Turn-based game.
- Despot issues a decree, changing system state.
- People are then given some choice of activities
- After that Tribune has control, issues (counter-)decrees and changes system state.
- Again, People are given (maybe different) choices of activities.

Despot wants people to have as few choices as possible (minimize the entropy), Tribune wants the opposite.

Three games

A game of freedom = an entropy game

$A = (D, T, \Sigma, \Delta)$ with	an arena
with $D = \{d_1, d_2, d_3\}$ $T = \{t_1, t_2, t_3\}$ $\Sigma = \{a, b\}$ $\Delta = \{d_1at_1, d_1at_2, .\}$	Despot's states Tribune's states action alphabet transition relation

Three games

A game of freedom = an entropy game

Formalization

$A = (D, T, \Sigma, \Delta)$ with	an arena
$ \begin{aligned} D &= \{d_1, d_2, d_3\} \\ T &= \{t_1, t_2, t_3\} \\ \Sigma &= \{a, b\} \\ \Delta &= \{d_1 a t_1, d_1 a t_2, .\} \end{aligned} $	Despot's states Tribune's states action alphabet transition relation

 $\sigma: (DT)^*D \to \Sigma$ Despot strategy

Three games

A game of freedom = an entropy game

$A = (D, T, \Sigma, \Delta)$ with	an arena
$D = \{d_1, d_2, d_3\}$ $T = \{t_1, t_2, t_3\}$ $\Sigma = \{a, b\}$ $\Delta = \{d_1 a t_1, d_1 a t_2, .\}$	Despot's states Tribune's states action alphabet transition relation
$\sigma:(DT)^*D o\Sigma$	Despot strategy
$ au:(DT)^* o\Sigma$	Tribune strategy

Three games

A game of freedom = an entropy game

$A = (D, T, \Sigma, \Delta)$ with	an arena
$D = \{d_1, d_2, d_3\}$ $T = \{t_1, t_2, t_3\}$ $\Sigma = \{a, b\}$ $\Delta = \{d_1at_1, d_1at_2, .\}$	Despot's states Tribune's states action alphabet transition relation
$\sigma:(DT)^*D o\Sigma$	Despot strategy
$ au:(DT)^* o \Sigma$	Tribune strategy
$Runs^\omega(\sigma, au)$	available choices for People

Three games

A game of freedom = an entropy game

$A = (D, T, \Sigma, \Delta)$ with	an arena
$D = \{d_1, d_2, d_3\}$ $T = \{t_1, t_2, t_3\}$ $\Sigma = \{a, b\}$ $\Delta = \{d_1 a t_1, d_1 a t_2, .\}$	Despot's states Tribune's states action alphabet transition relation
$\sigma:(DT)^*D ightarrow\Sigma$	Despot strategy
$ au:(DT)^* o \Sigma$	Tribune strategy
$Runs^\omega(\sigma, au)$	available choices for People
$\mathcal{H}(\mathit{Runs}^\omega(\sigma, au))$	Payoff (entropy)

L Three games

Population Game (same picture, another story)

Another story

Damian and Theo rule a colony of bacteria. Damian (every night) aims to minimize the colony, Theo (every day) to maximize it.

The same picture and tuple

$A = (D, T, \Sigma, \Delta)$	an arena
with	
D =	evening forms
T =	morning forms
$\Sigma = \{a, b\}$	action alphabet
$\Delta =$	filiation relation
Р	$= \limsup \log \operatorname{colony}_n / n$

└─ Three games

Main tool, 2nd object of study: matrix-multiplication games

The setting

- \blacksquare Adam has a set of matrices $\mathcal A,$ Eve has $\mathcal E$
- They write matrices (of their sets) in turn: $A_1E_1A_2E_2...$
- Adam wants the product to be small (in norm), Eve large.
- Payoff = $\limsup_{n \to \infty} \frac{\log ||A_1 E_1 \dots A_n E_n||}{n}$
- Solve the game: $V_+ = \min_{\sigma} \max_{\tau} P = ?$

 $V_{-} = \max_{\tau} \min_{\sigma} P = ?$

Why it cannot be easy

- If Adam is trivial $(\mathcal{A} = \{I\})$ then $V = \hat{\rho}(\mathcal{E})$.
- If Eve is trivial then $V = \check{
 ho}(\mathcal{A})$

└─ Three games

Matrix-multiplication games are really hard

Theorem

There exists a (family of) MMG with value $V \in \{0, 1\}$ such that it is undecidable whether V = 0 or V = 1.

Proof idea

Reduce a 2-counter machine halting problem:

- Eve simulates an infinite run (P = 1)
- If she cheats Adam resets the game to 0 and P = 0

So what?

We will identify a special decidable subclass of MMGs to solve our entropy games.

Main problems and results

Determinacy of entropy games

Solution plan

- Represent word counting as matrix multiplication.
- Reduce each EG to a special case of MMGs.
- Prove a minimax property for special MMGs.
- Solve special MMGs and EGs.
- Enjoy!

Main problems and results

Determinacy of entropy games

From a game graph to a set of matrices

Adjacency matrices

Set A (Adam=Despot)

 $\begin{aligned} & \text{1st row} = [1, 1, 0] \\ & \text{2nd row} \in \{[0, 1, 0], [1, 0, 1]\} \\ & \text{3rd row} = [0, 1, 1] \end{aligned}$

Set \mathcal{E} (Eve=Tribune)

$$\begin{split} & \text{1st row} \in \{ \left[0,1,0 \right], \left[1,0,0 \right] \} \\ & \text{2nd row} = \left[1,1,1 \right] \\ & \text{3rd row} \in \{ \left[0,1,0 \right], \left[0,0,1 \right] \} \end{split}$$

relation - approximated

 $|\texttt{pref}_n(L)| = ||A_1E_1A_2\dots A_nE_n||$

Main problems and results

└─ Determinacy of entropy games

Exact relation between the two games

Lemma

For every couple of strategies (κ, τ) of Despot and Tribune in the EG there exists a couple of strategies (χ, θ) of Adam and Eve in the MMG $(\operatorname{conv}(\mathcal{A}), \operatorname{conv}(\mathcal{E}))$ with exactly the same payoff.

Moreover, if κ is positional, then χ is constant and permanently chooses A_{κ} . The case of positional τ is similar.

Main problems and results

└─ Determinacy of entropy games

Exact relation between the two games

Lemma

For every couple of strategies (κ, τ) of Despot and Tribune in the EG there exists a couple of strategies (χ, θ) of Adam and Eve in the MMG $(conv(\mathcal{A}), conv(\mathcal{E}))$ with exactly the same payoff.

Moreover, if κ is positional, then χ is constant and permanently chooses A_{κ} . The case of positional τ is similar.

What does it mean?

The two games are related in some weak and subtle way.

Main problems and results

Determinacy of entropy games

Independent row uncertainty sets [Blondel & Nesterov]

Observation

Adjacency matrix sets ${\mathcal A}$ and ${\mathcal E}$ have the following special structure:

Definition (Sets of matrices with independent row uncertainties = IRU sets)

Given N sets of rows $\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_N,$ the IRU-set $\mathcal A$ consists of all matrices with

- 1st row in \mathcal{A}_1 ,
- 2nd row in A_2 ,
- *N*-th row in \mathcal{A}_N .

Main problems and results

Determinacy of entropy games

Theorem (Minimax Theorem)

For compact IRU-sets of non-negative matrices \mathcal{A}, \mathcal{B} it holds that

$$\min_{A \in \mathcal{A}} \max_{B \in \mathcal{B}} \rho(AB) = \max_{B \in \mathcal{B}} \min_{A \in \mathcal{A}} \rho(AB)$$

└─ Determinacy of entropy games

IRU matrix games are determined

Theorem (Determinacy Theorem for MMG)

For compact IRU-sets of non-negative matrices the MMG is determined, Adam and Eve possess constant optimal strategies.

Proof.

By minimax theorem $\exists V, E_0, A_0$ such that

$$\max_{E\in\mathcal{E}}\rho(EA_0)=\min_{A\in\mathcal{A}}\max_{E\in\mathcal{E}}\rho(EA)=\max_{E\in\mathcal{E}}\min_{A\in\mathcal{A}}\rho(EA)=\min_{A\in\mathcal{A}}\rho(E_0A)=V.$$

If Adam only plays $A_0 \Rightarrow$ any play $\pi = A_0 E_1 A_0 E_2 \cdots$ is a product of matrices from IRU set $\mathcal{E}A_0$, \Rightarrow growth rate $\leq \log \hat{\rho}(\mathcal{E}A_0) \leq \log \max_{E \in \mathcal{E}} \rho(EA_0) = \log V$.

If Eve only plays $E_0 \Rightarrow$ growth rate $\ge \log V$.

A naïve algorithm for solving MMGs with finite IRU-sets (exponential)

Find A, E providing minimax $\max_{A \in \mathcal{A}} \min_{E \in \mathcal{E}} \rho(EA) = \min_{E \in \mathcal{E}} \max_{A \in \mathcal{A}} \rho(EA)$.

Main problems and results

Determinacy of entropy games

Entropy games are determined

Theorem

Entropy games are determined. Both players possess optimal positional strategies.

Proof.

Reduction to IRU MMG

Main problems and results

└─ Determinacy of entropy games

Solving running example

Recalling matrices

Set \mathcal{A} (Adam=Despot)

$$\begin{split} & \text{1st row} = [1,1,0] \\ & \text{2nd row} \in \{[0,1,0]\,,[1,0,1]\} \\ & \text{3rd row} = [0,1,1] \end{split}$$

Set \mathcal{E} (Eve=Tribune)

$$\begin{split} & \text{1st row} \in \left\{ \left[0,1,0\right], \left[1,0,0\right] \right\} \\ & \text{2nd row} = \left[1,1,1\right] \\ & \text{3rd row} \in \left\{ \left[0,1,0\right], \left[0,0,1\right] \right\} \end{split}$$

Optimal strategies Strategies $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ for Adam/Despot and $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ for Eve/Tribune, Value of both games: $\log \rho(AB) = \log \rho\left(\begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}\right) = \log \left(\sqrt{17} + 3\right)/2 \simeq \log 3.5615$

Complexity

Complexity of bounding the value of EG

Theorem

Given an entropy game and $\alpha \in \mathbb{Q}_+$, the problem whether the value of the game is $< \alpha$ is in NP \cap coNP.

Bounding the joint spectral radius for IRU-sets is in P

Let ${\mathcal A}$ be a finite IRU-set of non-negative matrices

Lemma	
$\hat{ ho}(\mathcal{A}) < \alpha \Leftrightarrow \exists v > 0. \ \forall A \in \mathcal{A}. \ (Av < \alpha v)$	(*)

Lemma (inspired by [Blondel & Nesterov])

The problem $\hat{\rho}(\mathcal{A}) < \alpha$? is in P.

Proof.

Rewrite (*) as a system of inequations

 $v_i > 0$

 $c_1v_1 + c_2v_2 + \cdots + c_Nv_N < \alpha v_i$ for each row $[c_1, c_2, \dots, c_N] \in \mathcal{A}_i$

Use polynomial algorithm for linear programming.

Complexity

Bounding minimax is in NP \cap co-NP

Lemma

For IRU-sets \mathcal{A}, \mathcal{B} the problem $\min_{A \in \mathcal{A}} \max_{B \in \mathcal{B}} \rho(AB) < \alpha$? is in NP \cap coNP

Proof.

$$\min_{A \in \mathcal{A}} \max_{B \in \mathcal{B}} \rho(AB) < \alpha \Leftrightarrow \exists A \in \mathcal{A}. \ \hat{\rho}(\mathcal{B}A) < \alpha$$

Guess A and use the Lemma saying " $\hat{\rho}(A) < \alpha$?" is in P; by duality coNP.

As a corollary we obtain:

Theorem

Given an entropy game and $\alpha \in \mathbb{Q}_+$, the problem whether the value of the game is $< \alpha$ is in NP \cap coNP.

Perspectives and conclusions

Done

- Two novel games defined: Entropy Game and Matrix Multiplication Game
- \blacksquare Games solved: they are determined, optimal strategies positional, value computable in NP \cap coNP,
- Related to other games, other problems in linear algebra.

Perspectives and conclusions

Done

- Two novel games defined: Entropy Game and Matrix Multiplication Game
- \blacksquare Games solved: they are determined, optimal strategies positional, value computable in NP \cap coNP,
- Related to other games, other problems in linear algebra.

To do

- extend to probabilistic case
- extend to simultaneous moves and/or imperfect information
- find applications!