Entropy Games and Matrix Multiplication Games

Eugene Asarin Julien Cervelle Aldric Degorre
Cătălin Dima Florian Horn Victor Kozyakin
IRIF, LACL, IITP
EQINOCS seminar
2016-05-11

A game of freedom

The story

Despot and Tribune rule a country, inhabited by People. D aims to minimize People's freedom, T aims to maximize it.

■ Turn-based game.

- Despot issues a decree (which respects laws!), permitting/restricting activities and changing system state.
- People are then given some choice of activities (like go to circus, enrol).
- After that Tribune has control, issues (counter-)decrees and changes system state.
- Again, People are given (maybe different) choices of activities.

Despot wants people to have as few choices as possible (in the long term), Tribune wants the opposite.

Outline

1 Preliminaries - 3 reminders

- Entropy of languages of finite/infinite words
- Joint spectral radii
- Games, values, games on graphs

2 Main problems and results

- Three games
- Determinacy of entropy games
- Complexity

3 Conclusions and perspectives

Reminder 1: entropy of languages

Entropy of a language $L \subset \Sigma^{\omega}$ (Chomsky-Miller, Staiger)

- Count the prefixes of length n : find $\left|\operatorname{pref}_{n}(L)\right|$
- Growth rate - entropy $\mathcal{H}(L)=\lim \sup \frac{\log \left|\operatorname{pref}_{n}(L)\right|}{n}$

Explaining the definition

- Size measure: $\left|\operatorname{pref}_{n}(L)\right| \approx 2^{n \mathcal{H}}$.
- Information bandwidth of a typical $w \in L$ (bits/symbol)
- Related to topological entropy of a subshift, Kolmogorov complexity, fractal dimensions etc.

Reminder 1: entropy of ω-regular languages - example

$$
M=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 2 & 0
\end{array}\right)
$$

■ Prefixes: $\{\varepsilon\} ;\{a, b\} ;\{a a, a b, b a\} ;\{a a a, a a b, a b a, b a a, b a b, b a c\} ;$ \{aaaa, aaab, aaba, abaa, abab, abac, baaa, bab, baca, baba, babb\}

- Cardinalities: $1,2,3,6,11, \ldots$
- $\left|\operatorname{pref}_{n}(L)\right| \approx(1.80194)^{n}=\rho(M)^{n}=2^{0.84955 n}$. entropy: $\mathcal{H}=\log \rho(M) \approx 0.84955$.

Reminder 1: entropy of ω-regular languages - algorithmics

Recipe: Computing entropy of an ω-regular language L

- Build a deterministic trim automaton for pref(L).
- Write down its adjacency matrix M.
- Compute $\rho=\rho(M)$ - its spectral radius.
- Then $\mathcal{H}=\log \rho$.

Reminder 1: entropy of ω-regular languages - algorithmics

Recipe: Computing entropy of an ω-regular language L

- Build a deterministic trim automaton for pref(L).
- Write down its adjacency matrix M.
- Compute $\rho=\rho(M)$ - its spectral radius.
- Then $\mathcal{H}=\log \rho$.

Proof

- $\left|L_{n}(i \rightarrow j)\right|=M_{i j}^{n}$
- Hence $\left|\operatorname{pref}_{n}(L)\right|=$ sum of some elements of M^{n}
- Perron-Frobenius theory of nonnegative matrices
$\Rightarrow\left\|\operatorname{pref}_{n}(L)\right\| \approx \rho(M)^{n} \Rightarrow \mathcal{H}(L)=\log \rho(M)$

Reminder 2: Generalizations of spectral radif

Spectral radius of a matrix

- $\rho(A)$ is the maximal modulus of eigenvalues of A.
- Gelfand formula $\left\|A^{n}\right\| \approx \rho(A)^{n}$, more precisely $\rho(A)=\lim \left\|A^{n}\right\|^{1 / n}$

Definition (extending to sets of matrices)
Given a set of matrices \mathcal{A} define

- joint spectral radius $\hat{\rho}(\mathcal{A})=\lim _{n \rightarrow \infty} \sup \left\{\left\|A_{n} \cdots A_{1}\right\|^{1 / n} \mid A_{i} \in \mathcal{A}\right\}$
- joint spectral subradius $\check{\rho}(\mathcal{A})=\lim _{n \rightarrow \infty} \inf \left\{\left\|A_{n} \cdots A_{1}\right\|^{1 / n} \mid A_{i} \in \mathcal{A}\right\}$

Algorithmic difficulties

1 The problem of deciding whether $\hat{\rho}(\mathcal{A}) \leq 1$ is undecidable.
2. The problem of deciding whether $\check{\rho}(\mathcal{A})=0$ is undecidable.

Reminder 3: games

Definition (Games)

- Given: two players, two sets of strategies S and T.
- Payoff of a play: when players choose strategies σ and τ, Sam pays to Tom $P(\sigma, \tau) \$$
- Guaranteed payoff for Sam: at most $V_{+}=\min _{\sigma} \max _{\tau} P(\sigma, \tau)$.
- Guaranteed payoff for Tom: at least $V_{-}=\max _{\tau} \min _{\sigma} P(\sigma, \tau)$.
- Game is determined if $V_{+}=V_{-}$

Reminder 3: games

Definition (Games)

- Given: two players, two sets of strategies S and T.
- Payoff of a play: when players choose strategies σ and τ, Sam pays to Tom $P(\sigma, \tau) \$$
- Guaranteed payoff for Sam: at most $V_{+}=\min _{\sigma} \max _{\tau} P(\sigma, \tau)$.
- Guaranteed payoff for Tom: at least $V_{-}=\max _{\tau} \min _{\sigma} P(\sigma, \tau)$.
- Game is determined if $V_{+}=V_{-}$
- Equivalently: exist value V, optimal strategies σ_{0} and τ_{0} s.t.:
- Sam chooses $\sigma_{0} \Rightarrow$ payoff $\leq V$ for any τ;
- Tom chooses $\tau_{0} \Rightarrow$ payoff $\geq V$ for any σ;

Reminder 3: games 2

Example (Rock-paper-scissors)

- Three strategies for each player: $\{r, p, s\}$
- Payoff matrix: | $\sigma \backslash \tau$ | r | p | s |
| :---: | :---: | :---: | :---: | :---: |
| r | 0 | 1 | -1 |
| p | -1 | 0 | 1 |
| s | 1 | -1 | 0 |
- Non-determined: $\min \max =1$ and $\max \min =-1$

Questions on a class of games

- are they determined $\left(V_{+}=V_{-}\right)$? (e.g. Minimax Theorem, von Neumann)
- describe optimal strategies
- how to compute the value and optimal strategies?

Reminder 3: games on graphs/automata - 1

The setting. Picture - The MIT License (MIT)(c) 2014 Vincenzo Prignano

- Arena: graph with vertices $S \cup T$
(belonging to Sam and Tom), edges Δ.
- Sam's strategy
σ : history \mapsto outgoing transition,
i.e. $\sigma:(S \cup T)^{*} S \rightarrow \Delta$. Tom's strategy τ-symmetrical.
- A play: path in the graph, where in each state the vertex owner decides a transition.
- A payoff function (0-1 or \mathbb{R})

Reminder 3: games on graphs/automata - 2

Simple strategies

A strategy is called positional (memoryless) if it depends only on the current state: $\sigma: S \rightarrow \Delta ; \tau: T \rightarrow \Delta$.

Reminder 3: games on graphs/automata - 2

Typical results

- The game of chess is determined.
- A finite-state game with parity objective is determined, and has positional optimal strategies.
- A finite-state mean-payoff game is determined, and has positional optimal strategies.

ᄂ Three games

A game of freedom - 1st slide again

The story - towards a formalization
Despot and Tribune rule a country, inhabited by People. D aims to minimize People's freedom (entropy), T aims to maximize it.

- Turn-based game.

■ Despot issues a decree, changing system state.

- People are then given some choice of activities
- After that Tribune has control, issues (counter-)decrees and changes system state.
- Again, People are given (maybe different) choices of activities.

Despot wants people to have as few choices as possible (minimize the entropy), Tribune wants the opposite.

A game of freedom $=$ an entropy game

Formalization

```
A=(D,T, \Sigma, \Delta)
with
D={d, , d},\mp@subsup{d}{2}{},\mp@subsup{d}{3}{}
    Despot's states
T={t, th, th}
\Sigma={a,b}
    Tribune's states
action alphabet
\Delta={d, at , d, d
an arena
```

with
$D=\left\{d_{1}, d_{2}, d_{3}\right\}$

$\Sigma=\{a, b\}$ action alphabet transition relation

A game of freedom $=$ an entropy game

Formalization

$$
\begin{array}{ll}
A=(D, T, \Sigma, \Delta) & \text { an arena } \\
\text { with } & \\
D=\left\{d_{1}, d_{2}, d_{3}\right\} & \text { Despot's states } \\
T=\left\{t_{1}, t_{2}, t_{3}\right\} & \text { Tribune's states } \\
\Sigma=\{a, b\} & \text { action alphabet } \\
\Delta=\left\{d_{1} a t_{1}, d_{1} a t_{2}, .\right\} & \text { transition relatiol } \\
\sigma:(D T)^{*} D \rightarrow \Sigma & \text { Despot strategy }
\end{array}
$$

A game of freedom $=$ an entropy game

Formalization

$$
\begin{array}{ll}
A=(D, T, \Sigma, \Delta) & \text { an arena } \\
\text { with } & \\
D=\left\{d_{1}, d_{2}, d_{3}\right\} & \text { Despot's states } \\
T=\left\{t_{1}, t_{2}, t_{3}\right\} & \text { Tribune's states } \\
\Sigma=\{a, b\} & \text { action alphabet } \\
\Delta=\left\{d_{1} a t_{1}, d_{1} a t_{2}, .\right\} & \text { transition relatior } \\
\sigma:(D T)^{*} D \rightarrow \Sigma & \text { Despot strategy } \\
\tau:(D T)^{*} \rightarrow \Sigma & \text { Tribune strategy }
\end{array}
$$

A game of freedom $=$ an entropy game

Formalization

```
A=(D,T,\Sigma,\Delta)
with
D={d
T={t, th, th}
\Sigma={a,b}
\Delta={d, at , d
\sigma:(DT)* D 
```



```
Runs}\mp@subsup{}{}{\omega}(\sigma,\tau
an arena
Despot's states
Tribune's states
action alphabet
available choices for People
```


A game of freedom = an entropy game

Formalization

$$
\begin{array}{ll}
\begin{array}{l}
A=(D, T, \Sigma, \Delta) \\
\text { with }
\end{array} & \text { an arena } \\
D=\left\{d_{1}, d_{2}, d_{3}\right\} & \text { Despot's states } \\
T=\left\{t_{1}, t_{2}, t_{3}\right\} & \text { Tribune's states } \\
\Sigma=\{a, b\} & \text { action alphabet } \\
\Delta=\left\{d_{1} a t_{1}, d_{1} a t_{2}, .\right\} & \text { transition relation } \\
\sigma:(D T)^{*} D \rightarrow \Sigma & \text { Despot strategy } \\
\tau:(D T)^{*} \rightarrow \Sigma & \text { Tribune strategy } \\
R^{*} s^{\omega}(\sigma, \tau) & \text { available choices for People } \\
\mathcal{H}\left(\text { Runs }^{\omega}(\sigma, \tau)\right) & \text { Payoff (entropy) }
\end{array}
$$

Population Game (same picture, another story)

Another story

Damian and Theo rule a colony of bacteria. Damian (every night) aims to minimize the colony, Theo (every day) to maximize it.

The same picture and tuple

```
A=(D,T, \Sigma, \Delta) an arena
with
D=
T= morning forms
\Sigma={a,b} action alphabet
\Delta=
P = lim sup log |\mp@subsup{colony }{n}{}|/n
```


Main tool, 2nd object of study: matrix-multiplication games

The setting

- Adam has a set of matrices \mathcal{A}, Eve has \mathcal{E}
- They write matrices (of their sets) in turn: $A_{1} E_{1} A_{2} E_{2} \ldots$
- Adam wants the product to be small (in norm), Eve large.
- Payoff $=\lim \sup _{n \rightarrow \infty} \frac{\log \left\|A_{1} E_{1} \ldots A_{n} E_{n}\right\|}{n}$
- Solve the game: $V_{+}=\min _{\sigma} \max _{\tau} P=$?

$$
V_{-}=\max _{\tau} \min _{\sigma} P=?
$$

Why it cannot be easy

- If Adam is trivial $(\mathcal{A}=\{I\})$ then $V=\hat{\rho}(\mathcal{E})$.
- If Eve is trivial then $V=\check{\rho}(\mathcal{A})$

Matrix-multiplication games are really hard

Theorem

There exists a (family of) MMG with value $V \in\{0,1\}$ such that it is undecidable whether $V=0$ or $V=1$.

Proof idea

Reduce a 2-counter machine halting problem:

- Eve simulates an infinite run $(P=1)$
- If she cheats Adam resets the game to 0 and $P=0$

So what?

We will identify a special decidable subclass of MMGs to solve our entropy games.

Solving entropy games

Solution plan

- Represent word counting as matrix multiplication.
- Reduce each EG to a special case of MMGs.
- Prove a minimax property for special MMGs.
- Solve special MMGs and EGs.

■ Enjoy!

From a game graph to a set of matrices

Adjacency matrices

Set $\mathcal{A}($ Adam $=$ Despot $)$

$$
\begin{aligned}
\text { 1st row } & =[1,1,0] \\
2 \text { nd row } & \in\{[0,1,0],[1,0,1]\} \\
\text { 3rd row } & =[0,1,1]
\end{aligned}
$$

Set \mathcal{E} (Eve=Tribune)

$$
\begin{aligned}
\text { 1st row } & \in\{[0,1,0],[1,0,0]\} \\
\text { 2nd row } & =[1,1,1] \\
\text { 3rd row } & \in\{[0,1,0],[0,0,1]\}
\end{aligned}
$$

relation - approximated

$$
\left|\operatorname{pref}_{n}(L)\right|=\left\|A_{1} E_{1} A_{2} \ldots A_{n} E_{n}\right\|
$$

Exact relation between the two games

Lemma

For every couple of strategies (κ, τ) of Despot and Tribune in the EG there exists a couple of strategies (χ, θ) of Adam and Eve in the $\operatorname{MMG}(\operatorname{conv}(\mathcal{A}), \operatorname{conv}(\mathcal{E}))$ with exactly the same payoff.
Moreover, if κ is positional, then χ is constant and permanently chooses A_{κ}. The case of positional τ is similar.

Exact relation between the two games

Lemma

For every couple of strategies (κ, τ) of Despot and Tribune in the EG there exists a couple of strategies (χ, θ) of Adam and Eve in the $\operatorname{MMG}(\operatorname{conv}(\mathcal{A}), \operatorname{conv}(\mathcal{E}))$ with exactly the same payoff.
Moreover, if κ is positional, then χ is constant and permanently chooses A_{κ}. The case of positional τ is similar.

What does it mean?
The two games are related in some weak and subtle way.

Independent row uncertainty sets [Blondel \& Nesterov]

Observation

Adjacency matrix sets \mathcal{A} and \mathcal{E} have the following special structure:
Definition (Sets of matrices with independent row uncertainties =IRU sets)
Given N sets of rows $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{N}$, the IRU-set \mathcal{A} consists of all matrices with

- 1st row in \mathcal{A}_{1},
- 2 nd row in \mathcal{A}_{2},
- N-th row in \mathcal{A}_{N}.

L Determinacy of entropy games

Key theorem

Theorem (Minimax Theorem)
For compact IRU-sets of non-negative matrices \mathcal{A}, \mathcal{B} it holds that

$$
\min _{A \in \mathcal{A}} \max _{B \in \mathcal{B}} \rho(A B)=\max _{B \in \mathcal{B}} \min _{A \in \mathcal{A}} \rho(A B)
$$

IRU matrix games are determined

Theorem (Determinacy Theorem for MMG)

For compact IRU-sets of non-negative matrices the MMG is determined, Adam and Eve possess constant optimal strategies.

Proof.

By minimax theorem $\exists V, E_{0}, A_{0}$ such that

$$
\max _{E \in \mathcal{E}} \rho\left(E A_{0}\right)=\min _{A \in \mathcal{A}} \max _{E \in \mathcal{E}} \rho(E A)=\max _{E \in \mathcal{E}} \min _{A \in \mathcal{A}} \rho(E A)=\min _{A \in \mathcal{A}} \rho\left(E_{0} A\right)=V
$$

If Adam only plays $A_{0} \Rightarrow$ any play $\pi=A_{0} E_{1} A_{0} E_{2} \ldots$ is a product of matrices from IRU set $\mathcal{E} A_{0}$,

$$
\Rightarrow \text { growth rate } \leq \log \hat{\rho}\left(\mathcal{E} A_{0}\right) \leq \log \max _{E \in \mathcal{E}} \rho\left(E A_{0}\right)=\log V
$$

If Eve only plays $E_{0} \Rightarrow$ growth rate $\geq \log V$.

A naïve algorithm for solving MMGs with finite IRU-sets (exponential)

Find A, E providing minimax $\max _{A \in \mathcal{A}} \min _{E \in \mathcal{E}} \rho(E A)=\min _{E \in \mathcal{E}} \max _{A \in \mathcal{A}} \rho(E A)$.

Entropy games are determined

Theorem

Entropy games are determined. Both players possess optimal positional strategies.
Proof.
Reduction to IRU MMG

Solving running example

Recalling matrices

Set \mathcal{A} (Adam=Despot)

$$
\begin{aligned}
& \text { 1st row }=[1,1,0] \\
& \text { 2nd row } \in\{[0,1,0],[1,0,1]\} \\
& \text { 3rd row }=[0,1,1]
\end{aligned}
$$

Set \mathcal{E} (Eve=Tribune)

$$
\begin{aligned}
\text { 1st row } & \in\{[0,1,0],[1,0,0]\} \\
\text { 2nd row } & =[1,1,1] \\
\text { 3rd row } & \in\{[0,1,0],[0,0,1]\}
\end{aligned}
$$

Optimal strategies

Strategies $\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 \\ 0 & 1\end{array}\right]$ for Adam/Despot and $\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$ for Eve/Tribune,
Value of both games: $\log \rho(A B)=\log \rho\left(\left[\begin{array}{ccc}2 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 2\end{array}\right]\right)=\log (\sqrt{17}+3) / 2 \simeq \log 3.5615$

Complexity of bounding the value of EG

Theorem

Given an entropy game and $\alpha \in \mathbb{Q}_{+}$, the problem whether the value of the game is $<\alpha$ is in $N P \cap$ coNP.

Bounding the joint spectral radius for IRU-sets is in P

Let \mathcal{A} be a finite IRU-set of non-negative matrices

Lemma

$\hat{\rho}(\mathcal{A})<\alpha \Leftrightarrow \exists v>0 . \forall A \in \mathcal{A} .(A v<\alpha v) \quad(*)$
Lemma (inspired by [Blondel \& Nesterov])
The problem $\hat{\rho}(\mathcal{A})<\alpha$? is in P .

Proof.

Rewrite (*) as a system of inequations

$$
\begin{gathered}
v_{i}>0 \\
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{N} v_{N}<\alpha v_{i} \text { for each row }\left[c_{1}, c_{2}, \ldots, c_{N}\right] \in \mathcal{A}_{i}
\end{gathered}
$$

Use polynomial algorithm for linear programming.

Bounding minimax is in NP \cap co-NP

Lemma

For IRU-sets \mathcal{A}, \mathcal{B} the problem $\min _{A \in \mathcal{A}} \max _{B \in \mathcal{B}} \rho(A B)<\alpha$? is in NP $\cap \operatorname{coNP}$

Proof.

$$
\min _{A \in \mathcal{A}} \max _{B \in \mathcal{B}} \rho(A B)<\alpha \Leftrightarrow \exists A \in \mathcal{A} . \hat{\rho}(\mathcal{B} A)<\alpha
$$

Guess A and use the Lemma saying " $\hat{\rho}(\mathcal{A})<\alpha$?" is in P; by duality coNP.

As a corollary we obtain:

Theorem

Given an entropy game and $\alpha \in \mathbb{Q}_{+}$, the problem whether the value of the game is $<\alpha$ is in $N P \cap \operatorname{coNP}$.

Perspectives and conclusions

Done

- Two novel games defined: Entropy Game and Matrix Multiplication Game
- Games solved: they are determined, optimal strategies positional, value computable in NP \cap coNP,
- Related to other games, other problems in linear algebra.

Perspectives and conclusions

Done

- Two novel games defined: Entropy Game and Matrix Multiplication Game
- Games solved: they are determined, optimal strategies positional, value computable in NP \cap coNP,
- Related to other games, other problems in linear algebra.

To do

- extend to probabilistic case
- extend to simultaneous moves and/or imperfect information
- find applications!

