Parallel-agreement is harder than set-agreement

Corentin Travers
Joint work with Zohir Bouzid

DISPLEXITY workshop 2014
Overview

- Set agreement and Parallel agreement
 Generalize the consensus problem

- **Main question**: Relative hardness of Set/Parallel agreement in *message passing, asynchronous, crash prone* system
Processes must *agree* on one of the initial values
On the Consensus Problem

- Asynchronous fault-tolerant consensus is impossible [FLP]

- Work-around
 - Safety:
 - Quorums
 - Majority of non-faulty processes
 - Liveness:
 - Partial synchrony
 - Leader
 - Failure detection
Consensus Generalisations

- **k-set agreement** [Chaudhuri 93]
 - *weak safety*:
 - up to k distinct values can be decided

- **k-parallel agreement** [Afek et al. 10]
 - *weak termination*:
 - k parallel instances of consensus,
 each proc is required to decided in *one of them*
k-set agreement

Agree on at most k values

- n processes $\{p_1, \ldots, p_n\}$
- Initial values $\{v_1, \ldots, v_n\}$

Three properties
- Validity
- Agreement: $\#\text{decision} \leq k$
- Termination
k-parallel agreement

K instances of consensus
Each proc. has to decide in at least one instance

\[(1, \boxed{1}) (2, \boxed{2}) (1, \boxed{1}) (1, \boxed{1}) (2, \boxed{1})\]
k-parallel agreement

- Each proc pi proposes a value vi
- Decides a pair (ci,ui) such that

Validity
$1 \leq ci \leq K$
ui is a proposed value

Agreement For all i,j : If $ci = cj$ then $ui = uj$

Termination Every non faulty process decides
On parallel/set agreement

- **k-parallel/set agreement** solvable in asynch. system iff \#failures < \(K \)

- **k-set agreement** : computability benchmark
 - Classification of failures adversary [Gafni Kuznetsov 2011]
 - Smallest \(K \) for which K-set agreement is solvable => insights on what can be computed in a given model

- **k-parallel agreement**
 => K-parallel state machine replication [Gafni Guerraoui Generalized universality 2011]
set-agreement vs. parallel-agreement

- k-parallel agreement implements k-set agreement (at most one decision in each of the k instances)

- k-// agreement and k-set agreement are equivalent in shared memory [Afek et al. 2010]

Message passing model ?
Message passing vs. Shared memory

when \#failures < \#procs/2 [abd 95]
Computationnal model

Asynchronous message passing model
- \(n \) processes asynchronous, may crash
- \(t \): upper bound on \#crash (\(t \geq n/2 \))
- Asynchronous, but reliable communication
k-set vs. k-// agreement in message passing

- $t < \frac{n}{2}$: shared memory can be emulated in the message passing models
 k-set agreement and k-// agreement are equivalent

- $t \geq \frac{n}{2}$: ??
Results

Existence of leader-based protocols

<table>
<thead>
<tr>
<th>t</th>
<th>$\frac{n+k-2}{2}$</th>
<th>$\frac{kn}{k+1}$</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>

k-set agreement

k-parallel agreement

[This talk]

[Bouzid T. 10]

When k-set agreement implements k-parallel agreement

<table>
<thead>
<tr>
<th>t</th>
<th>$\frac{n}{2}$</th>
<th>$\frac{n+k-2}{2}$</th>
<th>$\frac{kn}{k+1}$</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

k-// A = k-SA

[k-SA <= k-//A]

[k-SA < k-//A]

[This talk]

[This talk]

[Gafni et al]
Leader

- At each process p: leader_p

- *Eventual leadership*:
 Eventually,
 - there is a proc q such that $\text{leader}_p = q$ for all processes
 - q is a non-faulty process
Leader-based parallel agreement

- Let f be a C coloring of the sets of procs of size $n-t$
 s.t. $f(Q) = f(Q')$ implies $Q \cap Q' \neq \emptyset$

Example: $n = 5, t = 3$

$\{p1,p2\} \{p1,p3\} \{p1,p4\} \{p1,p5\}$
$\{p2,p3\} \{p2,p4\} \{p2,p5\}$
$\{p3,p4\} \{p3,p5\} \{p4,p5\}$

Sets with the same color = A quorum system
C-parallel agreement

- Let A_1, \ldots, A_C be C instances of a quorum-based, leader-based asynchronous consensus algorithm (i.e. [mostefaoui raynal])

- Instance A_i is associated with quorum system **colored i**

 \[
 n = 5, \quad t = 3 \quad A_1 \quad \{p_1,p_2\} \quad \{p_1,p_3\} \quad \{p_1,p_4\} \quad \{p_1,p_5\} \\
 \quad A_2 \quad \{p_2,p_3\} \quad \{p_2,p_4\} \quad \{p_2,p_5\} \\
 \quad A_3 \quad \{p_3,p_4\} \quad \{p_3,p_5\} \quad \{p_4,p_5\}
 \]

- Each proc p participates simultaneously in A_1, \ldots, A_C
 - p decides v in A_i => decide (i,v) in parallel agreement
C-parallel agreement (cont'd)

- **A1, ... AC**: C instances of a *quorum-based, leader-based asynchronous* consensus algorithm
- Instance **Ai** is associated with quorum system *colored i*

\[
\begin{align*}
A1 & \quad \{p1,p2\} \quad \{p1,p3\} \quad \{p1,p4\} \quad \{p1,p5\} \\
A2 & \quad \{p2,p3\} \quad \{p2,p4\} \quad \{p2,p5\} \\
A3 & \quad \{p3,p4\} \quad \{p3,p5\} \quad \{p4,p5\}
\end{align*}
\]

n = 5, t = 3

Correctness
- **Agreement**: At most one value decided in each instance
- **Termination**: One set of (n-t) non-faulty procs colored i, for some 1 <= i <= C, the corresponding Ai terminates
- **Value of C?**
Kneser Graphs KG(n,x)

- **Vertex**: subset Q of $\{1,\ldots,n\}$ of size x
- **Edge**: (Q,Q') is an edge iff $Q \cap Q' = \emptyset$

Chromatic number

$X(KG(n,x)) = n - 2x + 2$ [Lovasz 78]

$X(KG(5,2)) = 3$
C-parallel agreement

\[C = \min \ \#\text{colors to color } KG(n,n-t) \]
\[= X(KG(n,n-t)) = 2t-n+2 \]

Lemma: There is a leader-based \(k \)-parallel agreement protocol if \(k \geq 2t-n+2 \), i.e., \(t \leq (n+k-2)/2 \)
Lemma: There is no leader-based k-parallel agreement protocol for $k < 2t-n+2$, i.e. if $t > (n+k-2)/2$
Lower bound

no leader-based k-parallel agreement if $k < 2t-n+2$

Proof protocol implies coloring of $KG(n,n-t)$

- A: t-resilient k-parallel agreement protocol
- Q, Q': subset of procs. of size $n-t$
- e_Q, e_Q': execution of A in which only processes in Q (resp. Q') participate

\[\begin{align*}
Q & \quad p \\
p & \text{decides } (c,v) \\
\text{color}(Q) & = c
\end{align*} \]

\[\begin{align*}
Q' & \quad p' \\
p' & \text{decides } (c',v') \\
\text{color}(Q') & = c'
\end{align*} \]

If $Q \cap Q' = \emptyset$, $c \neq c'$
\[1 \leq c, c' \leq k \]

coloring of $KG(n,n-t)$ hence $k \geq X(KG_n,n-t) = 2t-n+2$
Set-agreement vs. Parallel-agreement

- k-∥ agreement implements k-set agreement (at most one decision in each of the k instances)

- k-∥ agreement and k-set agreement are equivalent in shared memory [Afek et al. 2010]

Conditions on t,k,n for which k-∥ agr. can be implemented from k-set agr. in message passing, t >= n/2 ?
k-parallel agreement is harder than k-set agreement

Thm: If \(t > (n+k-2)/2 \), there is **no protocol** that implements \(k-\parallel \) agreement from k-set agreement

Proof: Reduction from (impossibility of) failures detectors emulation
Failure detectors [Chandra Toueg 96]

- Distributed oracles that give information on failures
 - Example leader f.d: output at each process a proc. Id s.t. eventually same Id of a correct process is output

- Failure detector D is *sufficient* to solve task T if there is a protocol that uses D for T
 - Leader f.d. is sufficient to solve consensus if \(t < n/2 \)

- Failure detector D is *necessary* to solve task T if for from f.d. D' sufficient for T, one can emulate D
 - Leader f.d. necessary for consensus [Chandra Hadzilacos Toueg 96]
k-parallel agreement is harder than k-set agreement

Thm: If $t > (n+k-2)/2$, there is no protocol that implements k-// agreement from k-set agreement.

Proof: Reduction to failure detectors emulation

\[
\begin{align*}
&\text{k-Set Agr} & \quad & \quad & \text{k-// Agr} & \quad & \quad & \text{Tasks} \\
&\quad & \quad & A & \quad & \quad & \quad \\
&\quad & \quad & \uparrow \text{sufficient} & \quad & \quad & \quad \\
&\quad & \quad & \text{[Bouzid T. 10]} & \quad & \quad & \quad \\
&\left(\Sigma_k, \Omega\right) & \quad & \quad & \quad & \quad & \quad & \quad & \left(V \Sigma_k\right) \\
&\quad & \quad & B & \quad & \quad & \quad & \quad & \quad & \text{Failure detectors}
\end{align*}
\]
Failure detector definitions

- Σ_k at each proc output Q : subsets of $\{p1,\ldots,pn\}$
 - **Liveness**: eventually Q contains only correct proc.
 - **Intersection**: $\forall Q_1,\ldots,Q_{k+1}, \exists i \neq j, Q_i \cap Q_j \neq \emptyset$

- $V \Sigma_k$ at each proc output V: vector $[Q_1,\ldots,Q_k]$ of k subsets of $\{p1,\ldots,pn\}$
 - **Liveness**: $\exists c, 1 \leq c \leq k$ eventually $V[c]$ contains only correct proc.
 - **Intersection**: $\forall c, 1 \leq c \leq k, \forall i, j V_i[c] \cap V_j[c] \neq \emptyset$
Σ_k cannot emulate $V \Sigma_k$

$\left(\Sigma_k , \Omega \right)$ \quad \xrightarrow{B} \quad V \Sigma_k \quad t > \frac{n+k-2}{2}$

Reduction to a k-coloring of the kneser graph $KG(n,n-t)$

$\exists c : V[c] \subseteq Q$
- eventually

Valid coloring:
- If $Q \cap Q' = \emptyset$ "merge" e_Q and e_Q'
- $c \neq c'$ (intersection property)
Open question

\[0 \leq t < \frac{n}{2} \]

k-set agr. and k-// agr.
are equivalent

\[\frac{n+k-2}{2} < t \leq n \]

k-// Agr. strictly harder
than k-set agr.

\[\frac{n}{2} \leq t \leq \frac{n+k-2}{2} \]

????
upper bound: k-set agr. implements (2k-1)-// agr.
Future work

- Computability: what can be computed when a majority of the processes may fail?

- Partition-tolerant algorithms
Thanks !
From k-SC to (2k-1)-PC

Asumption: \(t \leq \frac{n+k-2}{2} \)

\(p_i \in A \) decides \((i, v_i)\) \hspace{1cm} \(p_i \in B \) implements k-PC from k-SC in SM

Liveness: if \(A \cap Correct = \emptyset \), at most \(t - (k-1) < \frac{n-(k-1)}{2} \) failures in B
if \(A \cap Correct \neq \emptyset \), dec. of \(p \in A \) can be adopted by any proc