Renaming

c. travers
travers@labri.fr

Displexity December 2012

76

Origin: Mutual Exclusion

a := 2;
// enter critical section
{ // critical section
b:= 2 +a;
c:= 2xb - 4;
}
// exit critical section

[Dijsktra 1965]

76

Exclusive access

Resource can be accessed by at most one process at a time

/76

Exclusive access

Resource can be accessed by at most one process at a time

/76

Renaming

n processes O Q O O O Q

initial names 1 34 21 9

newnames[l 20314l |- [N]

e n processes, provided with an initial name € 1..M

N processes

initial names 1 Y34

21

Renaming

new names [i {

3

Y

e n processes, provided with an initial name € 1..M

e each proc. has to get an unique name € 1. NN << M

76

Renaming

N processes O Q O O O Q

initial names 1 34 21 9

new names []_ 21314]| - [N]

e n processes, provided with an initial name € 1..M

e each proc. has to get an unique name € 1. NN << M

Comparison-based algorithms
initial ids van only be compared

Renaming Variants

n processes Q O O O Q O

initial names 1 34 21 9

newnames{l 2 (341 - N}

Tight/Loose renaming
e Tight: N=n / Loose: N > n

/76

Renaming Variants

n processes Q O O O Q O

initial names 1 34 21 9

new names {1 2(3(af---{---]--] N

Tight/Loose renaming
e Tight: N=n / Loose: N > n

76

Renaming Variants

n processes O O O O Q O

initial names 1 34 21 9

new names {1 2(3(af---{---]--] N

Tight/Loose renaming
e Tight : N=n / Loose : N > n
Adaptive renaming

e Final name space function of # participating procs.

10/76

Renaming Variants

N processes O O O O O O

newnames[l 2|8 5\6I7I‘BI~--IN]

Tight/Loose renaming
e Tight: N=n / Loose: N > n
Adaptive renaming

e Final name space function of # participating procs.
Order preserving

e Final names preserve the order of initial names

11/76

Questions

Name space: how many final names?

Complexity: how much work to acquire a new name?

12 /76

Distributed models

Message passing
e Complete network
e Failures: crashes

e Synchronous/Asynchronous

13/76

Distributed models

Message passing
e Complete network
e Failures: crashes

e Synchronous/Asynchronous

14 /76

Distributed Models

)

Shared memory

e n Processes {p1,...,p,}

Distributed Models

)

Shared memory

e n Processes {p1,...,p,}
e Asynchronous communications

e read() from/write() to any memory cell
e finite but unbounded delay between steps

16/76

Distributed Models

Shared memory

e n Processes {p1,...,p,}
e Asynchronous communications
e read() from/write() to any memory cell
e finite but unbounded delay between steps
p> R[2].write(vs)
ps R[4].write(vs)
p> R.read() [...,v2, L va,..]

17 /76

Distributed Models

Shared memory

e n Processes {p1,...,p,}
e Asynchronous communications
e read() from/write() to any memory cell
e finite but unbounded delay between steps
p> R[2].write(vs)
ps R[4].write(vs)
p> R.read() [...,v2, L va,..]

18/76

Distributed Models

Shared memory
e n Processes {p1,...,p,}

e Asynchronous communications
e read() from/write() to any memory cell
e finite but unbounded delay between steps
p> R[2].write(vs)
p> R.read() [..,vo, L, L.]
ps R[4].write(vs)

19/76

Distributed Models

Shared memory
e n Processes {p1,...,p,}

e Asynchronous communications
e read() from/write() to any memory cell
e finite but unbounded delay between steps
p> R[2].write(vs)
p> R.read() [..,vo, L, L.]
ps R[4].write(vs)

20/76

Distributed Models

Shared memory

e n Processes {p1,...,p,}
e Asynchronous communications
e read() from/write() to any memory cell
e finite but unbounded delay between steps
p> R[2].write(vs)
p> R.read() [..,vo, L, L.]
ps R[4].write(vs)

21/76

Distributed Models

e

Shared memory

e n Processes {p1,...,p,}
e Asynchronous communications

e read() from/write() to any memory cell
e finite but unbounded delay between steps

e Failures : crash

22/76

Equivalence

Asynchronous models
Shared memory can be simulated in message passing
if #crashs < 7

23 /76

Asynchronous Renaming

24/76

Wait-free renaming

Model
e n-process asynchronous shared memory

e Wait-free: all but one process may crash

e Name space How many final names needed to solve
renaming?

Question

25 /76

Wait-free renaming

Model
e n-process asynchronous shared memory
e Wait-free: all but one process may crash

XN)

e Name space How many final names needed to solve
renaming?

Question

26 /76

Wait-free renaming

e 2n — 1 names are sufficient
[Attiya et al., Borowsky Gafni, Attiya Fouren, Gafni
Rajsbaum]|

e n -+ 1 names are necessary [Attiya et al]

e 2n — 1 names are necessary
[Herlihy Shavit, Herlihy Rajsbaum, Attiya Rajsbaum]

27 /76

Wait-free renaming

e 2n — 1 names are sufficient
[Attiya et al., Borowsky Gafni, Attiya Fouren, Gafni
Rajsbaum]

e n -+ 1 names are necessary [Attiya et al.]
e 2n — 1 names are necessary
[Herlihy Shavit, Herlihy Rajsbaum, Attiya Rajsbaum]
> 10 years later

e 2n — 1 names are necessary for some values of n
[Castefiada Rajsbaum, Attiya Paz]

28 /76

Wait-free renaming

e 2n — 1 names are sufficient
[Attiya et al., Borowsky Gafni, Attiya Fouren, Gafni
Rajsbaum]

e n -+ 1 names are necessary [Attiya et al.]
e 2n — 1 names are necessary
[Herlihy Shavit, Herlihy Rajsbaum, Attiya Rajsbaum]
> 10 years later

e 2n — 1 names are necessary for some values of n
[Castefiada Rajsbaum, Attiya Paz]

Theorem
(2n — 2)-renaming solvable <= n is not a prime power

29 /76

Open questions

Asynchronous message passing renaming

o [Attiya et al.] (2n-1)-renaming : exponential worst case
complexity

o [Alistarh et al.] attempt to transform synchronous algs.
into (partially) asynchronous ones

= News ideas are needed

Wait-free shared memory renaming
e Explicit algorithm for (2n — 2)-renaming

30/76

Synchronous renaming

31/76

Round-by-round computation

roundst 1 } 2 i 3 |

pProc;

proc,

Procs

Y v v ¥

procy

In a round r, each proc.
e Sends messages to every procs.

e Receives messages sent in round r

32/76

Round-by-round computation

rounds}? 1 t 2 i 3 |
proc; >
procs =
procs >
proca \ >

In a round r, each proc.
e Sends messages to every procs.

e Receives messages sent in round r

33/76

Round-by-round computation

rounds'! 1 t 2 i 3 |
proc; >
procs =
procs >
proca \ >

In a round r, each proc.
e Sends messages to every procs.

e Receives messages sent in round r

34/76

Round-by-round computation

roundst! 1 i 2 I 3 |

proc;

proc,

pProcs

Y VYV VY

procy

In a round r, each proc.
e Sends messages to every procs.

e Receives messages sent in round r

35/76

Complexity of synchronous renaming

Complexity = # rounds before decision
n procs renaming, tolerating up to n — 1 failures :

‘ Complexity ‘ Remarks

Chaudhuri et al [CHT90] | O(log n) tight
Okun [Okun10] O(log n) tight, order preserving

Lower bound :
Q(logn) for tolerating n — 1 failures [CHT90]
holds for tight and loose renaming

36/76

Q(log n) lower bound

[CHT 90]
ids

O0O0O0OO0O0O0O0O0O0O0

e 2/3 processes fail per round

37/76

Q(log n) lower bound

[CHT 90]

e 2/3 processes fail per round

38/76

Q(log n) lower bound

[CHT 90]

e 2/3 processes fail per round

e non-faulty proc. are in order equivalent states
rank(id,,ids rcved by p) = 4 = rank(idy,ids rcved by q)

39/76

Early Decision

Failures occur but are rare in practice
e Decide earlier when there are few failures
e Complexity = function of f actual #failures

Early deciding agreement:
e O(f) early deciding for consensus

o O(f) k-set-agreement

40/76

Early Deciding Renaming

[Alistarh, Attiya, T. 2012]

Two early deciding renaming algorithms

name-space | complexity
Alg. 1 | loose 1..2n | logf + 5
Alg. 2 | tight 1.n | cst for f < +/n
5log(f) +10 otherwise
n = # procs.

f = # failures

41/76

Early Deciding Renaming

[Alistarh, Attiya, T. 2012]

Two early deciding renaming algorithms

name-space

complexity

Alg. 1

loose 1..2n

logf + 5

Alg. 2

tight 1..n

n = # procs.
f = # failures

Alg. 1 |

cst for f < +/n
5log(f) + 10 otherwise

based on [CHT90]

Alg. 2 | based on [Okun10]

42 /76

Algorithm 1

CHT 90 Renaming

e Tight name-space

o Complexity O(log n) rounds

44 /76

CHT 90 Renaming

e Tight name-space

e Complexity O(log n) rounds

spuno

For each proc p

e interval |, of
preferred names

45 /76

CHT 90 Renaming

e Tight name-space
e Complexity O(log n) rounds
For each proc p

1|2]|3]|4]5]|]6|7]8 e interval |, of
preferred names
2 .
2 periodically

halved

46 /76

CHT 90 Renaming

e Tight name-space
e Complexity O(log n) rounds
For each proc p

1|2]3]|4]5]|6]|7]S8s e interval |, of
preferred names
U2 e | e interval
= periodically
1l2|3fla]ls|e]|7]|¢s halved

47 /76

CHT 90 Renaming

e Tight name-space
e Complexity O(log n) rounds

spunou

For each proc p
e interval |, of
preferred names
e interval
periodically
halved

e decision when
|lp| =1

48 /76

CHT 90 Renaming

e Tight name-space
o Complexity O(log n) rounds

For each proc p

2|3|a|5]|6]|7]8 e interval |, of
preferred names
23 arsyelrte| |- e interval
2 .
2 periodically
213145671 7]|¢8 halved
e decision when
213|als5]e6]7]|s _
o] =1

Round complexity depends on initial size of |,

49 /76

CHT analysis

Invariant 1
Preferences interval are well formed
VLI :INV=0orlIClorl Cl

50/76

CHT analysis

Invariant 1
Preferences interval are well formed
VLI :INV=0orlIClorl Cl

Invariant 2
For each preferences interval I,
at most |l| procs with preferences C |

51/76

CHT analysis

Invariant 1
Preferences interval are well formed
VLI :INV=0orlIClorl Cl

Invariant 2
For each preferences interval I,
at most |l| procs with preferences C |

Complexity

¢ In each round, largest preferences intervals are halved
e Initial interval of the form 1..2° with b < [logn]

52/76

Early-deciding CHT

Idea: carefully select initial preferences interval
based on an estimation of #failures in round 1

round 1 send id, to all; rank id, among ids received
{2,6,12,34,35,41} — rank = 4

53 /76

Early-deciding CHT

Idea: carefully select initial preferences interval
based on an estimation of #failures in round 1

round 1 send id, to all; rank id, among ids received

{2,6,12,34,35,41} — rank = 4
round 2 send (id,, rank,), pick initial preferences interval

54 /76

Early-deciding CHT

Idea: carefully select initial preferences interval
based on an estimation of #failures in round 1

round 1 send id, to all; rank id, among ids received
{2,6,12,34,35,41} — rank = 4

round 2 send (id,, rank,), pick initial preferences interval

round r > 3 CHT algorithm

55 /76

Initial preferences selection

round 1 p ranks its id among ids received
{2,6,12,34,35,41} — rank = 4
{2,6,12,34,35,41} — rank = 4
{2,6,12,34,35,41} — rank = 4

56 /76

Initial preferences selection

round 1 p ranks its id among ids received
{2,6,12,34,35,41} — rank = 4
{2,6,12,34,35,41} — rank = 4
{2,6,12,34,35,41} — rank = 4

p has the jthid = i — f <rank, <i £ = #failures in rd 1

57 /76

Initial preferences selection

round 1 p ranks its id among ids received
{2,6,12,34,35,41} — rank = 4
{2,6,12,34,35,41} — rank = 4
{2,6,12,34,35,41} — rank = 4

p has the jithid = i — f < rank, <i f = #failures in rd 1

round 2 p receives a set of (id, rank)

I l #ranks € | < |I| + £

58 /76

Initial preferences selection

round 1 p ranks its id among ids received
{2,6,12,34,35,41} — rank = 4
{2,6,12,34,35,41} — rank = 4
{2,8,12,34,35,41} — rank = 4

p has the ithid = i — f <rank, <i £ = #failures in rd 1

round 2 p receives a set of (id, rank)

I l #ranks € | < |I|+ £

esty = max,{(#ranks el)—|I}

59 /76

Initial preferences selection cont’

Invariants
©® Well formed: any two intervals do not intersect or one is
included in the other
® At most |l| procs with preferences I' C |

For proc p, choose
o j = [log estr]
o d:dY <rk,<(d+1)¥
Preferences interval J = d2i...(d +1)2i ?
well-formed

but # procs with rank in J < |J|+f;

J=d2il. (d + 1)2i+

60 /76

Early-deciding CHT

Name-space \ 1..2n

Complexity \ 5+ logf

where f; = #failures in the first round

61/76

Algorithm 2

Okun Renaming

Tight name space
(Order preserving)
Complexity O(log n)

Based on approximate agreement

63 /76

Okun Renaming

e Ranking initial ids
{2,6,12,34,35,41} — ranks, = 4
{2,6,12,34,35,41} — ranks, = 3
{2,8,12,34,35,41} — ranks, = 2

64 /76

Okun Renaming

e Ranking initial ids
{2,6,12,34,35,41} — ranks, = 4
{2,6,12,34,35,41} — ranks, = 3
{2,8,12,34,35,41} — ranks, = 2

e Associate an agreement protocol (AP) with each id

65 /76

Okun Renaming

e Ranking initial ids
{2,6,12,34,35,41} — ranks, = 4
{2,6,12,34,35,41} — ranks, = 3
{2,8,12,34,35,41} — ranksy = 2

e Associate an agreement protocol (AP) with each id
idy idy ids idy

Agree on the rank of each id — new names

66 /76

Okun renaming

idy id, ids idy

Algorithm sketch

phase 1 send id, to all,
V set of ids received
rank(id, V) : rank of id in V

phase 2 Participate simultaneously in each AP
with initial value rank(id, V)

decide Output of AP,y

67 /76

Okun renaming

ids

ids

id,

idy

68 /76

Okun renaming

id id, id ids

1 3
2 4 5 6
1 2 4 5

Parallel composition of AP
If for every proc. p, prop; — prop; > ¢ then dec; — dec; > ¢

69 /76

Okun renaming

idy id, ids ids
2 4 5 6
1 2 4 5

decisions @ @ @ @

Parallel composition of AP
If for every proc. p, prop; — prop; > ¢ then dec; — dec; > 0

70/76

Agreement protocol

e Consensus

e decide one of the proposed value (validity)
e no two processes decide differently (agreement)
 no non-faulty proc never decide (termination)

Complexity O(f)

e Approximate agreement with parameter ¢

Vi I Vo V3 Vy

——

€

71/76

Okun renaming
idy id> ids idy

e final rank of id; = output of AA rounded to nearest
integer

e ¢ small enough such that no two distinct ids receive same
rank after rounding

Complexity = complexity of the AA protocol

72/76

Okun renaming
idy id> ids idy

e final rank of id; = output of AA rounded to nearest
integer

e ¢ small enough such that no two distinct ids receive same
rank after rounding

Complexity = complexity of the AA protocol
[Alistarh, Attiya T.]

Finer analysis of the complexity of AA,
function of actual # failures

e cst (< 10) when f < \/n
e O(log f) otherwise

73/76

Synchronous Complexity

rounds

/cst /Iog n 7/k n\)

renaming, . . .
& renaming k-set agreement Interactive
f<+/n

consistency

consensus,

74 /76

Thanks!

Distributed Complexity Classification

various problems
in growth-bounded
graphs

[Wattenhofer, Sirocco 2012 Prize Lecture]

76 /76

