c. travers
travers@labri.fr

Displexity December 2012

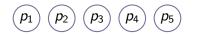
Origin: Mutual Exclusion

[Dijsktra 1965]

Exclusive access

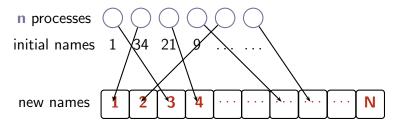
Resource can be accessed by at most one process at a time

Exclusive access



Resource can be accessed by at most one process at a time

• *n* processes, provided with an initial name \in **1**..**M**

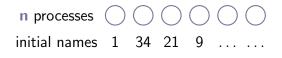


- *n* processes, provided with an initial name \in **1**..**M**
- each proc. has to get an unique name $\in 1..N$, N << M

new names $1 2 3 4 \cdots \cdots \cdots N$

- *n* processes, provided with an initial name \in **1**..**M**
- each proc. has to get an unique name $\in 1..N, N << M$

Comparison-based algorithms initial ids van only be compared



new names

Tight/Loose renaming

• Tight : N = n / Loose : N > n

new names

Tight/Loose renaming

• Tight : N = n / Loose : N > n

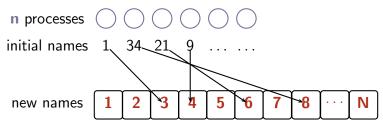
new names

Tight/Loose renaming

• Tight : N = n / Loose : N > n

Adaptive renaming

• Final name space function of # participating procs.



Tight/Loose renaming

• Tight : N = n / Loose : N > n

Adaptive renaming

• Final name space function of # participating procs.

Order preserving

• Final names preserve the order of initial names

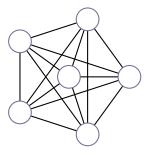
Questions

Name space: how many final names?

Complexity: how much work to acquire a new name?

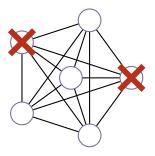
Message passing

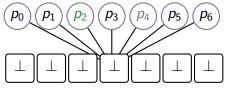
- Complete network
- Failures: crashes
- Synchronous/Asynchronous



Message passing

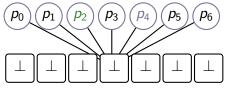
- Complete network
- Failures: crashes
- Synchronous/Asynchronous



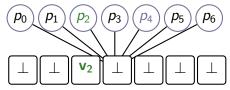


Shared memory

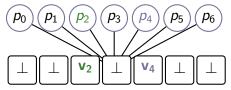
• *n* Processes $\{p_1, \ldots, p_n\}$



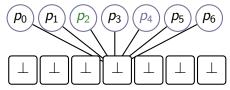
- *n* Processes $\{p_1, \ldots, p_n\}$
- Asynchronous communications
 - read() from/write() to any memory cell
 - finite but unbounded delay between steps



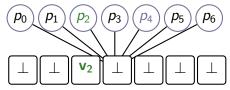
- *n* Processes $\{p_1, \ldots, p_n\}$
- Asynchronous communications
 - read() from/write() to any memory cell
 - finite but unbounded delay between steps
 - $\mathbf{p}_2 \quad R[2].write(v_2)$
 - $\mathbf{p}_4 \quad R[4].write(v_4)$
 - \mathbf{p}_2 R.read() [..., $\mathbf{v}_2, \perp, \mathbf{v}_4, \ldots$]



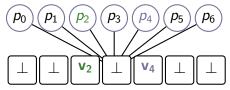
- *n* Processes $\{p_1, \ldots, p_n\}$
- Asynchronous communications
 - read() from/write() to any memory cell
 - finite but unbounded delay between steps
 - $\mathbf{p}_2 \quad R[2].write(v_2)$
 - $\mathbf{p}_4 \quad R[4].write(v_4)$
 - \mathbf{p}_2 R.read() $[\ldots, \mathbf{v}_2, \bot, \mathbf{v}_4, \ldots]$



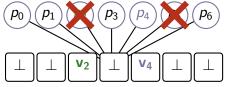
- *n* Processes $\{p_1, \ldots, p_n\}$
- Asynchronous communications
 - read() from/write() to any memory cell
 - finite but unbounded delay between steps
 - $\mathbf{p}_2 \quad R[2].write(v_2)$
 - \mathbf{p}_2 R.read() [..., $\mathbf{v}_2, \perp, \perp, \ldots$]
 - $\mathbf{p}_4 \quad R[4].write(v_4)$



- *n* Processes $\{p_1, \ldots, p_n\}$
- Asynchronous communications
 - read() from/write() to any memory cell
 - finite but unbounded delay between steps
 - $\mathbf{p}_2 \quad R[2].write(v_2)$
 - \mathbf{p}_2 R.read() [..., $\mathbf{v}_2, \perp, \perp, \ldots$]
 - $\mathbf{p}_4 \quad R[4].write(v_4)$

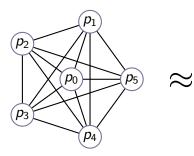


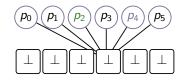
- *n* Processes $\{p_1, \ldots, p_n\}$
- Asynchronous communications
 - read() from/write() to any memory cell
 - finite but unbounded delay between steps
 - $\mathbf{p}_2 \quad R[2].write(v_2)$
 - \mathbf{p}_2 R.read() [..., $\mathbf{v}_2, \perp, \perp, \ldots$]
 - $\mathbf{p}_4 \quad R[4].write(v_4)$



- *n* Processes $\{p_1, \ldots, p_n\}$
- Asynchronous communications
 - read() from/write() to any memory cell
 - finite but unbounded delay between steps
- Failures : crash

Equivalence





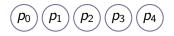
Asynchronous models

Shared memory can be simulated in message passing if $\# {\rm crashs} < \frac{n}{2}$

Asynchronous Renaming

Model

- n-process asynchronous shared memory
- Wait-free: all but one process may crash



Question

• Name space How many final names needed to solve renaming?

Model

- n-process asynchronous shared memory
- Wait-free: all but one process may crash

Question

• Name space How many final names needed to solve renaming?

- 2n 1 names are sufficient [Attiya et al., Borowsky Gafni, Attiya Fouren, Gafni Rajsbaum]
- n+1 names are necessary [Attiya et al.]
 2n-1 names are necessary

[Herlihy Shavit, Herlihy Rajsbaum, Attiya Rajsbaum]

- 2n 1 names are sufficient [Attiya et al., Borowsky Gafni, Attiya Fouren, Gafni Rajsbaum]
- n + 1 names are necessary [Attiya et al.]
- 2n 1 names are necessary [Herlihy Shavit, Herlihy Rajsbaum, Attiya Rajsbaum]
- > 10 years later
 - 2n 1 names are necessary for some values of n [Casteñada Rajsbaum, Attiya Paz]

- 2n 1 names are sufficient [Attiya et al., Borowsky Gafni, Attiya Fouren, Gafni Rajsbaum]
- n+1 names are necessary [Attiya et al.]
- 2n 1 names are necessary [Herlihy Shavit, Herlihy Rajsbaum, Attiya Rajsbaum]
- > 10 years later
 - 2n 1 names are necessary for some values of n [Casteñada Rajsbaum, Attiya Paz]

Theorem

(2n - 2)-renaming solvable \iff n is not a prime power

Open questions

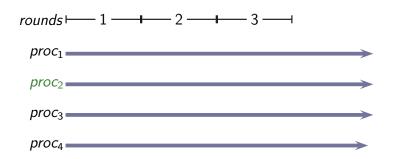
Asynchronous message passing renaming

- [Attiya et al.] (2n-1)-renaming : exponential worst case complexity
- [Alistarh et al.] attempt to transform synchronous algs. into (partially) asynchronous ones
- \Rightarrow News ideas are needed

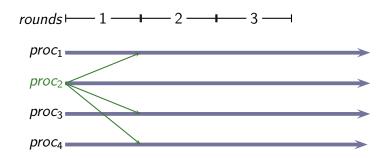
Wait-free shared memory renaming

• Explicit algorithm for (2n - 2)-renaming

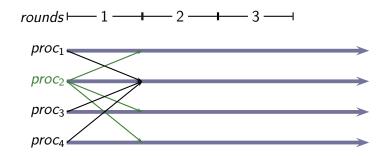
Synchronous renaming



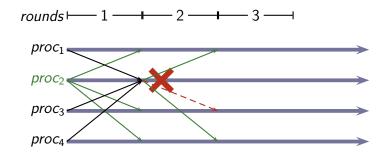
- Sends messages to every procs.
- Receives messages sent in round r



- Sends messages to every procs.
- Receives messages sent in round r



- Sends messages to every procs.
- Receives messages sent in round r



- Sends messages to every procs.
- Receives messages sent in round r

Complexity of synchronous renaming

Complexity = **# rounds** before decision

n procs renaming, tolerating up to $\mathbf{n} - \mathbf{1}$ failures :

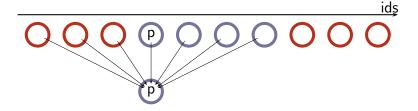
	Complexity	Remarks
Chaudhuri et al [CHT90]	$O(\log n)$	tight
Okun [Okun10]	$O(\log n)$	tight, order preserving

Lower bound : $\Omega(\log n)$ for tolerating n - 1 failures [CHT90] holds for tight and loose renaming

$\Omega(\log n)$ lower bound [CHT 90]

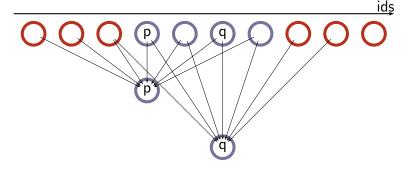
• 2/3 processes fail per round

$\Omega(\log n)$ lower bound [CHT 90]



• 2/3 processes fail per round

$\Omega(\log n)$ lower bound [CHT 90]



- 2/3 processes fail per round
- non-faulty proc. are in order equivalent states
 rank(*id_p*,ids rcved by *p*) = 4 = rank(*id_q*,ids rcved by *q*)

Early Decision

Failures occur but are rare in practice

- Decide earlier when there are few failures
- Complexity = function of **f** actual #failures

Early deciding agreement:

- O(f) early deciding for consensus
- $O(\frac{f}{k})$ k-set-agreement

Early Deciding Renaming

[Alistarh, Attiya, T. 2012]

Two early deciding renaming algorithms

	name-space	complexity	
Alg. 1	loose 12n	$\log f + 5$	
Alg. 2	tight 1n	cst	for $f \leq \sqrt{n}$
		$5\log(f) + 10$	otherwise

n = # procs. f = # failures

Early Deciding Renaming

[Alistarh, Attiya, T. 2012]

Two early deciding renaming algorithms

	name-space	complexity	
Alg. 1	loose 12n	$\log f + 5$	
Alg. 2	tight 1n	cst	for $f \leq \sqrt{n}$
		$5\log(f) + 10$	otherwise

n = # procs. f = # failures

-	based on [CHT90]
Alg. 2	based on [Okun10]

Algorithm 1

- Tight name-space
- Complexity $O(\log n)$ rounds

- Tight name-space
- Complexity $O(\log n)$ rounds

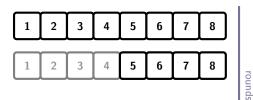
1	2	3	4	5	6	(8

For each proc p

rounds

 interval I_p of preferred names

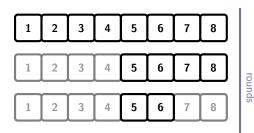
- Tight name-space
- Complexity $O(\log n)$ rounds



For each proc p

- interval I_p of preferred names
- interval periodically halved

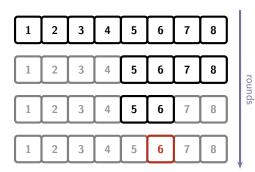
- Tight name-space
- Complexity $O(\log n)$ rounds



For each proc p

- interval I_p of preferred names
- interval periodically halved

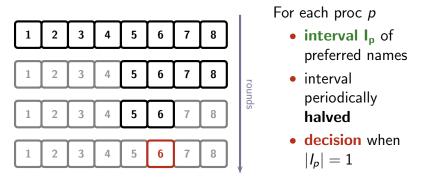
- Tight name-space
- Complexity $O(\log n)$ rounds



For each proc p

- interval I_p of preferred names
- interval periodically halved
- decision when $|I_{p}| = 1$

- Tight name-space
- Complexity $O(\log n)$ rounds



Round complexity depends on initial size of I_p

CHT analysis

Invariant 1 Preferences interval are well formed $\forall I, I' : I \cap I' = \emptyset$ or $I \subseteq I'$ or $I' \subseteq I$

CHT analysis

Invariant 1

Preferences interval are well formed $\forall I, I' : I \cap I' = \emptyset$ or $I \subseteq I'$ or $I' \subseteq I$

Invariant 2 For each preferences interval I, at most |I| procs with preferences $\subseteq I$

CHT analysis

Invariant 1

Preferences interval are well formed $\forall I, I' : I \cap I' = \emptyset$ or $I \subseteq I'$ or $I' \subseteq I$

Invariant 2 For each preferences interval I, at most |I| procs with preferences $\subseteq I$

Complexity

- In each round, largest preferences intervals are halved
- Initial interval of the form $1..2^b$ with $b \leq \lceil \log n \rceil$

Idea: carefully select initial preferences interval based on an estimation of #failures in round 1

 $\begin{array}{l} \textbf{round 1} \text{ send } \textbf{id}_{p} \text{ to all; rank } \textbf{id}_{p} \text{ among ids received} \\ \{2,6,12,\textbf{34},35,41\} \rightarrow \textit{rank} = \textbf{4} \end{array}$

Idea: carefully select initial preferences interval based on an estimation of #failures in round 1

round 1 send id_p to all; rank id_p among ids received $\{2, 6, 12, 34, 35, 41\} \rightarrow rank = 4$

round 2 send $\langle id_p, rank_p \rangle$, pick initial preferences interval

Idea: carefully select initial preferences interval based on an estimation of #failures in round 1

 $\begin{array}{l} \textbf{round 1} \ \textbf{send id}_{p} \ \textbf{to all; rank id}_{p} \ \textbf{among ids received} \\ \{2, 6, 12, \textbf{34}, 35, 41\} \rightarrow \textit{rank} = \textbf{4} \\ \textbf{round 2} \ \textbf{send} \ \langle \textbf{id}_{p}, \textbf{rank}_{p} \rangle, \ \textbf{pick initial preferences interval} \\ \textbf{round r} \geq 3 \ \textbf{CHT algorithm} \end{array}$

round 1 p ranks its id among ids received

$$\begin{array}{l} \{2, 6, 12, \textbf{34}, \textbf{35}, \textbf{41}\} \rightarrow \textit{rank} = \textbf{4} \\ \{2, 6, \textbf{12}, \textbf{34}, \textbf{35}, \textbf{41}\} \rightarrow \textit{rank} = \textbf{4} \\ \{2, \textbf{0}, \textbf{12}, \textbf{34}, \textbf{35}, \textbf{41}\} \rightarrow \textit{rank} = \textbf{4} \end{array}$$

round 1 p ranks its id among ids received

$$\begin{array}{l} \{2, 6, 12, \textbf{34}, \textbf{35}, \textbf{41}\} \rightarrow \textit{rank} = \textbf{4} \\ \{2, 6, \textbf{12}, \textbf{34}, \textbf{35}, \textbf{41}\} \rightarrow \textit{rank} = \textbf{4} \\ \{2, \textbf{6}, \textbf{12}, \textbf{34}, \textbf{35}, \textbf{41}\} \rightarrow \textit{rank} = \textbf{4} \end{array}$$

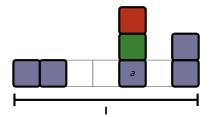
p has the *ith* id $\Rightarrow i - f_1 \leq rank_p \leq i$ $f_1 = \# failures$ in rd 1

round 1 p ranks its id among ids received

$$\begin{array}{l} \{2, 6, 12, \textbf{34}, 35, 41\} \rightarrow rank = \textbf{4} \\ \{2, 6, \textbf{M}, \textbf{34}, \textbf{35}, 41\} \rightarrow rank = \textbf{4} \\ \{2, \textbf{6}, \textbf{M}, \textbf{34}, \textbf{35}, \textbf{41}\} \rightarrow rank = \textbf{4} \end{array}$$

 $p \text{ has the } ith \text{ id } \Rightarrow i - f_1 \leq rank_p \leq i \quad f_1 = \#failures \text{ in rd } 1$

round 2 p receives a set of $\langle id, rank \rangle$



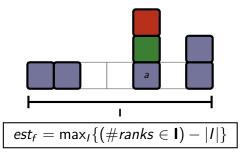
#*ranks* \in **I** \leq $|I| + f_1$

round 1 p ranks its id among ids received

 $\begin{array}{l} \{2, 6, 12, 34, 35, 41\} \rightarrow rank = 4\\ \{2, 6, 12, 34, 35, 41\} \rightarrow rank = 4\\ \{2, 6, 12, 34, 35, 41\} \rightarrow rank = 4\end{array}$

p has the *ith* id $\Rightarrow i - f_1 \leq rank_p \leq i$ $f_1 = \#failures$ in rd 1

round 2 *p* receives a set of $\langle id, rank \rangle$



#*ranks* \in **I** \leq $|I| + f_1$

Invariants

- Well formed: any two intervals do not intersect or one is included in the other
- ${\it @}$ At most $|{\bf I}|$ procs with preferences ${\bf I}'\subseteq {\bf I}$

For proc p, choose

- $j = \lceil \log est_f \rceil$
- $d: d2^j \leq rk_p \leq (d+1)2^j$

Preferences interval $J = d2^j...(d + 1)2^j$?

well-formed

but # procs with rank in $J \leq |J| + \mathbf{f_1}$

 $\textit{J} = d2^{j+1}...(d+1)2^{j+1}$

Name-space1..2nComplexity $5 + \log f_1$

where $f_1 = \# failures$ in the first round

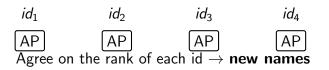
Algorithm 2

- Tight name space
- (Order preserving)
- Complexity $O(\log n)$
- Based on approximate agreement

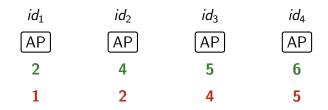
• Ranking initial ids $\{2, 6, 12, 34, 35, 41\} \rightarrow rank_{34} = 4$ $\{2, 6, 12, 34, 35, 41\} \rightarrow rank_{34} = 3$ $\{2, 6, 12, 34, 35, 41\} \rightarrow rank_{34} = 2$

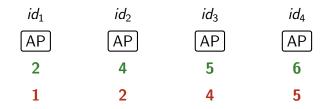
- Ranking initial ids $\{2, 6, 12, 34, 35, 41\} \rightarrow rank_{34} = 4$ $\{2, 6, 12, 34, 35, 41\} \rightarrow rank_{34} = 3$ $\{2, 6, 12, 34, 35, 41\} \rightarrow rank_{34} = 2$
- Associate an agreement protocol (AP) with each id

- Ranking initial ids $\{2, 6, 12, 34, 35, 41\} \rightarrow rank_{34} = 4$ $\{2, 6, 12, 34, 35, 41\} \rightarrow rank_{34} = 3$ $\{2, 6, 12, 34, 35, 41\} \rightarrow rank_{34} = 2$
- Associate an agreement protocol (AP) with each id



Algorithm sketch **phase 1** send id_p to all, V set of ids received rank(id, V) : rank of id in V **phase 2** Participate simultaneously in each AP_{id} with initial value rank(id, V)**decide** Output of AP_{mvid}





Parallel composition of APIf for every proc. p, $prop_j - prop_i \ge \delta$ then $dec_j - dec_i \ge \delta$



Parallel composition of AP

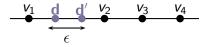
If for every proc. p, $prop_j - prop_i \ge \delta$ then $dec_j - dec_i \ge \delta$

Agreement protocol

- Consensus
 - decide one of the proposed value (validity)
 - no two processes decide differently (agreement)
 - no non-faulty proc never decide (termination)

Complexity O(f)

• Approximate agreement with parameter ϵ



- final rank of *id_i* = output of *AA* rounded to nearest integer
- ϵ small enough such that no two distinct ids receive same rank after rounding
- $\label{eq:complexity} \textbf{Complexity} = \text{complexity of the AA protocol}$

- final rank of *id_i* = output of *AA* rounded to nearest integer
- ϵ small enough such that no two distinct ids receive same rank after rounding

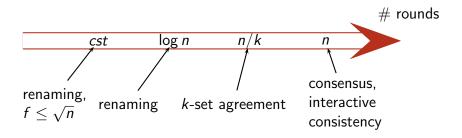
 $\label{eq:complexity} \textbf{Complexity} = \text{complexity of the AA protocol}$

[Alistarh, Attiya T.]

Finer analysis of the complexity of AA, function of actual # failures

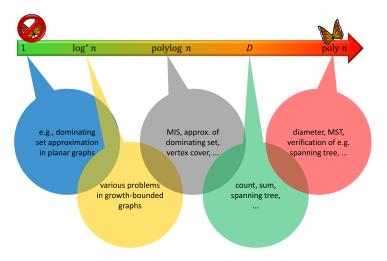
- cst (\leq 10) when $f \leq \sqrt{n}$
- $O(\log f)$ otherwise

Synchronous Complexity



Thanks!

Distributed Complexity Classification



[Wattenhofer, Sirocco 2012 Prize Lecture]