Renaming

c. travers
travers@labri.fr

Displexity December 2012

Origin: Mutual Exclusion

a : $=2$;
// enter critical section
\{ // critical section

$$
\begin{aligned}
& \mathrm{b}:=2+\mathrm{a} ; \\
& \mathrm{c}:=2 * \mathrm{~b}-4 ;
\end{aligned}
$$

\}
// exit critical section
[Dijsktra 1965]

Exclusive access

Resource can be accessed by at most one process at a time

Exclusive access

Resource can be accessed by at most one process at a time

Renaming

- n processes, provided with an initial name $\in \mathbf{1}$.. \mathbf{M}

Renaming

- n processes, provided with an initial name $\in \mathbf{1}$.. \mathbf{M}
- each proc. has to get an unique name $\in \mathbf{1}$.. $\mathbf{N}, \mathbf{N} \ll \mathbf{M}$

Renaming

new names

- n processes, provided with an initial name $\in \mathbf{1}$.. \mathbf{M}
- each proc. has to get an unique name $\in \mathbf{1}$.. $\mathbf{N}, \mathbf{N} \ll \mathbf{M}$

Comparison-based algorithms initial ids van only be compared

Renaming Variants

Tight/Loose renaming

- Tight: $\mathbf{N}=\mathbf{n} /$ Loose : $\mathbf{N}>\mathbf{n}$

Renaming Variants

Tight/Loose renaming

- Tight: $\mathbf{N}=\mathbf{n} /$ Loose : $\mathbf{N}>\mathbf{n}$

Renaming Variants

n processes
initial names

134

9
new names

- Tight : $\mathbf{N}=\mathbf{n} /$ Loose : $\mathbf{N}>\mathbf{n}$

Adaptive renaming

- Final name space function of \# participating procs.

Renaming Variants

Tight/Loose renaming

- Tight: $\mathbf{N}=\mathbf{n} /$ Loose : $\mathbf{N}>\mathbf{n}$

Adaptive renaming

- Final name space function of \# participating procs.

Order preserving

- Final names preserve the order of initial names

Questions

Name space: how many final names?

Complexity: how much work to acquire a new name?

Distributed models

Message passing

- Complete network
- Failures: crashes
- Synchronous/Asynchronous

Distributed models

Message passing

- Complete network
- Failures: crashes
- Synchronous/Asynchronous

Distributed Models

Shared memory

- n Processes $\left\{p_{1}, \ldots, p_{n}\right\}$

Distributed Models

Shared memory

- n Processes $\left\{p_{1}, \ldots, p_{n}\right\}$
- Asynchronous communications
- read() from/write() to any memory cell
- finite but unbounded delay between steps

Distributed Models

Shared memory

- n Processes $\left\{p_{1}, \ldots, p_{n}\right\}$
- Asynchronous communications
- read() from/write() to any memory cell
- finite but unbounded delay between steps
$\mathbf{p}_{2} \quad R[2]$.write $\left(v_{2}\right)$
$\mathrm{p}_{4} \quad R[4]$.write $\left(v_{4}\right)$
$\mathrm{p}_{2} \quad$ R.read()
$\left[\ldots, \mathbf{v}_{2}, \perp, \mathbf{v}_{4}, \ldots\right]$

Distributed Models

Shared memory

- n Processes $\left\{p_{1}, \ldots, p_{n}\right\}$
- Asynchronous communications
- read() from/write() to any memory cell
- finite but unbounded delay between steps
$\mathbf{p}_{2} \quad R[2]$.write $\left(v_{2}\right)$
$\mathrm{p}_{4} \quad R[4]$.write $\left(v_{4}\right)$
$\mathrm{p}_{2} \quad$ R.read()
$\left[\ldots, \mathbf{v}_{2}, \perp, \mathbf{v}_{4}, \ldots\right]$

Distributed Models

Shared memory

- n Processes $\left\{p_{1}, \ldots, p_{n}\right\}$
- Asynchronous communications
- read() from/write() to any memory cell
- finite but unbounded delay between steps
$\mathbf{p}_{2} \quad R[2]$.write $\left(v_{2}\right)$
$\mathrm{p}_{2} \quad$ R.read()
$\mathrm{p}_{4} \quad R[4]$.write $\left(v_{4}\right)$

Distributed Models

Shared memory

- n Processes $\left\{p_{1}, \ldots, p_{n}\right\}$
- Asynchronous communications
- read() from/write() to any memory cell
- finite but unbounded delay between steps
$\mathbf{p}_{2} \quad R[2]$.write $\left(v_{2}\right)$
$\mathrm{p}_{2} \quad$ R.read()
$\mathrm{p}_{4} \quad R[4]$.write $\left(v_{4}\right)$

Distributed Models

Shared memory

- n Processes $\left\{p_{1}, \ldots, p_{n}\right\}$
- Asynchronous communications
- read() from/write() to any memory cell
- finite but unbounded delay between steps
$\mathbf{p}_{2} \quad R[2]$.write $\left(v_{2}\right)$
$\mathrm{p}_{2} \quad$ R.read()
$\mathrm{p}_{4} \quad R[4]$.write $\left(v_{4}\right)$

Distributed Models

Shared memory

- n Processes $\left\{p_{1}, \ldots, p_{n}\right\}$
- Asynchronous communications
- read() from/write() to any memory cell
- finite but unbounded delay between steps
- Failures: crash

Equivalence

Asynchronous models
Shared memory can be simulated in message passing if \#crashs $<\frac{n}{2}$

Asynchronous Renaming

Wait-free renaming

Model

- n-process asynchronous shared memory
- Wait-free: all but one process may crash

Question

- Name space How many final names needed to solve renaming?

Wait-free renaming

Model

- n-process asynchronous shared memory
- Wait-free: all but one process may crash

Question

- Name space How many final names needed to solve renaming?

Wait-free renaming

- $2 \mathrm{n}-1$ names are sufficient [Attiya et al., Borowsky Gafni, Attiya Fouren, Gafni Rajsbaum]
- $\mathrm{n}+1$ names are necessary
[Attiya et al.]
- $2 \mathbf{n}-1$ names are necessary
[Herlihy Shavit, Herlihy Rajsbaum, Attiya Rajsbaum]

Wait-free renaming

- $2 \mathbf{n}-1$ names are sufficient [Attiya et al., Borowsky Gafni, Attiya Fouren, Gafni Rajsbaum]
- $\mathrm{n}+1$ names are necessary
[Attiya et al.]
- 2n-1 names are necessary
[Herlihy Shavit, Herlihy Rajsbaum, Attiya Rajsbaum]
>10 years later
- $2 \mathbf{n}-1$ names are necessary for some values of \mathbf{n} [Casteñada Rajsbaum, Attiya Paz]

Wait-free renaming

- $2 \mathrm{n}-1$ names are sufficient [Attiya et al., Borowsky Gafni, Attiya Fouren, Gafni Rajsbaum]
- $\mathrm{n}+1$ names are necessary
[Attiya et al.]
- 2n-1 names are necessary
[Herlihy Shavit, Herlihy Rajsbaum, Attiya Rajsbaum]
>10 years later
- $2 \mathbf{n}-1$ names are necessary for some values of \mathbf{n} [Casteñada Rajsbaum, Attiya Paz]

Theorem
(2n-2)-renaming solvable $\Longleftrightarrow \mathrm{n}$ is not a prime power

Open questions

Asynchronous message passing renaming

- [Attiya et al.] ($2 \mathrm{n}-1$)-renaming : exponential worst case complexity
- [Alistarh et al.] attempt to transform synchronous algs. into (partially) asynchronous ones
\Rightarrow News ideas are needed

Wait-free shared memory renaming

- Explicit algorithm for ($2 \mathbf{n}-2$)-renaming

Synchronous renaming

Round-by-round computation

proc $_{1}$
proc $_{2}$
proc $_{3}$
proc $_{4}$
In a round r, each proc.

- Sends messages to every procs.
- Receives messages sent in round r

Round-by-round computation

In a round r, each proc.

- Sends messages to every procs.
- Receives messages sent in round r

Round-by-round computation

In a round r, each proc.

- Sends messages to every procs.
- Receives messages sent in round r

Round-by-round computation

In a round r, each proc.

- Sends messages to every procs.
- Receives messages sent in round r

Complexity of synchronous renaming

Complexity = \# rounds before decision
n procs renaming, tolerating up to $\mathbf{n} \mathbf{- 1}$ failures :

	Complexity	Remarks
Chaudhuri et al [CHT90]	$O(\log n)$	tight
Okun [Okun10]	$O(\log n)$	tight, order preserving

Lower bound :
$\boldsymbol{\Omega}(\log \mathbf{n})$ for tolerating $\mathbf{n}-\mathbf{1}$ failures [CHT90]
holds for tight and loose renaming

$\Omega(\log \mathbf{n})$ lower bound [CHT 90]

ids
0000000000

- $2 / 3$ processes fail per round

$\boldsymbol{\Omega}(\log \mathbf{n})$ lower bound [CHT 90]

- $2 / 3$ processes fail per round

$\boldsymbol{\Omega}(\log \mathbf{n})$ lower bound

 [CHT 90]ids

- $2 / 3$ processes fail per round
- non-faulty proc. are in order equivalent states $\operatorname{rank}\left(i d_{p}\right.$,ids rcved by $\left.p\right)=4=\operatorname{rank}\left(i d_{q}\right.$, ids rcved by $\left.q\right)$

Early Decision

Failures occur but are rare in practice

- Decide earlier when there are few failures
- Complexity $=$ function of \mathbf{f} actual $\#$ failures

Early deciding agreement:

- O(f) early deciding for consensus
- $\mathbf{O}\left(\frac{\mathrm{f}}{\mathrm{k}}\right) k$-set-agreement

Early Deciding Renaming

[Alistarh, Attiya, T. 2012]

Two early deciding renaming algorithms

	name-space	complexity	
Alg. 1	loose $1 . .2 \mathrm{n}$	$\log f+5$	
Alg. 2	tight 1..n	cst	for $f \leq \sqrt{n}$
		$5 \log (f)+10$	otherwise

$\mathrm{n}=\#$ procs.
$\mathrm{f}=\#$ failures

Early Deciding Renaming

[Alistarh, Attiya, T. 2012]

Two early deciding renaming algorithms

	name-space	complexity	
Alg. 1	loose $1 . .2 \mathrm{n}$	$\log f+5$	
Alg. 2	tight 1..n	cst	for $f \leq \sqrt{n}$
		$5 \log (f)+10$	otherwise

$\mathrm{n}=\#$ procs.
$f=\#$ failures

Alg. 1	based on [CHT90]
Alg. 2	based on [Okun10]

Algorithm 1

CHT 90 Renaming

- Tight name-space
- Complexity $O(\log n)$ rounds

CHT 90 Renaming

- Tight name-space
- Complexity $O(\log n)$ rounds

For each proc p

- interval I_{p} of preferred names

CHT 90 Renaming

- Tight name-space
- Complexity $O(\log n)$ rounds

CHT 90 Renaming

- Tight name-space
- Complexity $O(\log n)$ rounds

For each proc p

- interval I_{p} of preferred names
- interval
periodically halved

CHT 90 Renaming

- Tight name-space
- Complexity $O(\log n)$ rounds

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1	2	3	4	5	6	7	8

1	2	3	4	5	6	7	8

For each proc p

- interval I_{p} of preferred names
- interval
periodically halved
- decision when
$\left|I_{p}\right|=1$

CHT 90 Renaming

- Tight name-space
- Complexity $O(\log n)$ rounds

For each proc p

- interval I_{p} of preferred names
- interval periodically halved
- decision when
$\left|I_{p}\right|=1$
Round complexity depends on initial size of $\mathbf{I}_{\mathbf{p}}$

CHT analysis

Invariant 1
Preferences interval are well formed $\forall \mathbf{I}, \mathbf{I}^{\prime}: \mathbf{I} \cap \mathbf{I}^{\prime}=\emptyset$ or $\mathbf{I} \subseteq \mathbf{I}^{\prime}$ or $\mathbf{I}^{\prime} \subseteq \mathbf{I}$

CHT analysis

Invariant 1
Preferences interval are well formed
$\forall \mathbf{I}, \mathbf{I}^{\prime}: \mathbf{I} \cap \mathbf{I}^{\prime}=\emptyset$ or $\mathbf{I} \subseteq \mathbf{I}^{\prime}$ or $\mathbf{I}^{\prime} \subseteq \mathbf{I}$
Invariant 2
For each preferences interval I,
at most $|\mathbf{I}|$ procs with preferences $\subseteq \mathbf{I}$

CHT analysis

Invariant 1
Preferences interval are well formed
$\forall \mathbf{I}, \mathbf{I}^{\prime}: \mathbf{I} \cap \mathbf{I}^{\prime}=\emptyset$ or $\mathbf{I} \subseteq \mathbf{I}^{\prime}$ or $\mathbf{I}^{\prime} \subseteq \mathbf{I}$
Invariant 2
For each preferences interval \mathbf{I},
at most $|\mathbf{I}|$ procs with preferences $\subseteq \mathbf{I}$
Complexity

- In each round, largest preferences intervals are halved
- Initial interval of the form $\mathbf{1 . .} \mathbf{2}^{\mathbf{b}}$ with $\mathbf{b} \leq\lceil\log \mathbf{n}\rceil$

Early-deciding CHT

Idea: carefully select initial preferences interval based on an estimation of $\#$ failures in round 1
round $\mathbf{1}$ send $\mathbf{i d}_{\mathbf{p}}$ to all; rank $\mathbf{i d}_{\mathbf{p}}$ among ids received
$\{2,6,12,34,35,41\} \rightarrow$ rank $=4$

Early-deciding CHT

Idea: carefully select initial preferences interval based on an estimation of $\#$ failures in round 1
round $\mathbf{1}$ send $\mathbf{i d}_{\mathbf{p}}$ to all; rank $\mathbf{i d}_{\mathbf{p}}$ among ids received $\{2,6,12,34,35,41\} \rightarrow$ rank $=4$
round 2 send $\left\langle\mathbf{i d}_{\mathbf{p}}\right.$, rank $\left._{\mathbf{p}}\right\rangle$, pick initial preferences interval

Early-deciding CHT

Idea: carefully select initial preferences interval based on an estimation of $\#$ failures in round 1
round $\mathbf{1}$ send $\mathbf{i d}_{\mathbf{p}}$ to all; rank $\mathbf{i d}_{\mathbf{p}}$ among ids received
$\{2,6,12,34,35,41\} \rightarrow$ rank $=4$
round 2 send $\left\langle\mathbf{i d}_{\mathbf{p}}\right.$, rank $\left._{\mathbf{p}}\right\rangle$, pick initial preferences interval round $\mathbf{r} \geq 3 \mathrm{CHT}$ algorithm

Initial preferences selection

round $1 p$ ranks its id among ids received
$\{2,6,12,34,35,41\} \rightarrow$ rank $=4$
$\{2,6,12,34,35,41\} \rightarrow$ rank $=4$
$\{2,6,12,34,35,41\} \rightarrow$ rank $=4$

Initial preferences selection

round $1 p$ ranks its id among ids received

$$
\begin{aligned}
& \{2,6,12,34,35,41\} \rightarrow \text { rank }=4 \\
& \{2,6,12,34,35,41\} \rightarrow \text { rank }=4 \\
& \{2,6,12,34,35,41\} \rightarrow \text { rank }=4
\end{aligned}
$$

p has the ith id $\Rightarrow i-f_{1} \leq \operatorname{rank}_{p} \leq i \quad f_{1}=\#$ failures in rd 1

Initial preferences selection

round $1 p$ ranks its id among ids received

$$
\{2,6,12,34,35,41\} \rightarrow \text { rank }=4
$$

$$
\{2,6,12,34,35,41\} \rightarrow \text { rank }=4
$$

$$
\{2,6,12,34,35,41\} \rightarrow \text { rank }=4
$$

p has the ith id $\Rightarrow i-f_{1} \leq \operatorname{rank}_{p} \leq i \quad f_{1}=\#$ failures in rd 1
round $2 p$ receives a set of $\langle i d$, rank \rangle

$\#$ ranks $\in \mathbf{I} \leq|I|+f_{1}$

Initial preferences selection

round $1 p$ ranks its id among ids received

$$
\begin{aligned}
& \{2,6,12,34,35,41\} \rightarrow \text { rank }=4 \\
& \{2,6,12,34,35,41\} \rightarrow \text { rank }=4 \\
& \{2,6,12,34,35,41\} \rightarrow \text { rank }=4
\end{aligned}
$$

p has the ith id $\Rightarrow i-f_{1} \leq \operatorname{rank}_{p} \leq i \quad f_{1}=\#$ failures in rd 1
round $2 p$ receives a set of $\langle i d$, rank \rangle

Initial preferences selection cont'

Invariants

(1) Well formed: any two intervals do not intersect or one is included in the other
(2) At most $|\mathbf{I}|$ procs with preferences $\mathbf{I}^{\prime} \subseteq \mathbf{I}$

For proc p, choose

- $j=\left\lceil\log e s t_{f}\right\rceil$
- $d: d 2^{j} \leq r k_{p} \leq(d+1) 2^{j}$

Preferences interval $J=\mathbf{d} 2^{\mathbf{j}} \ldots(\mathbf{d}+1) \mathbf{2}^{\mathbf{j}}$?
well-formed
but \# procs with rank in $J \leq|J|+\mathbf{f}_{1}$

$$
J=\mathbf{d} 2^{\mathbf{j}+1} \ldots(\mathbf{d}+\mathbf{1}) 2^{\mathbf{j}+1}
$$

Early-deciding CHT

Name-space $1 . .2 n$
 Complexity $5+\log f_{1}$

where $f_{1}=\#$ failures in the first round

Algorithm 2

Okun Renaming

- Tight name space
- (Order preserving)
- Complexity $O(\log n)$
- Based on approximate agreement

Okun Renaming

- Ranking initial ids $\{2,6,12,34,35,41\} \rightarrow$ rank $_{34}=4$ $\{2,6,12,34,35,41\} \rightarrow$ rank $_{34}=3$ $\{2,6,12,34,35,41\} \rightarrow$ rank $_{34}=2$

Okun Renaming

- Ranking initial ids $\{2,6,12,34,35,41\} \rightarrow$ rank $_{34}=4$ $\{2,6,12,34,35,41\} \rightarrow$ rank $_{34}=3$ $\{2,6,12,34,35,41\} \rightarrow$ rank $_{34}=2$
- Associate an agreement protocol (AP) with each id

Okun Renaming

- Ranking initial ids $\{2,6,12,34,35,41\} \rightarrow$ rank $_{34}=4$ $\{2,6,12,34,35,41\} \rightarrow$ rank $_{34}=3$ $\{2,6,12,34,35,41\} \rightarrow$ rank $_{34}=2$
- Associate an agreement protocol (AP) with each id

Okun renaming

$i d_{1}$	$i d_{2}$	$i d_{3}$	$i d_{4}$
AP	AP	AP	AP

Algorithm sketch
phase 1 send id $_{p}$ to all,
V set of ids received
rank(id, V) : rank of id in V
phase 2 Participate simultaneously in each $A P_{i d}$ with initial value $\operatorname{rank}(i d, V)$
decide Output of $A P_{\text {myid }}$

Okun renaming

$i d_{1}$	$i d_{2}$	$i d_{3}$	$i d_{4}$
AP	AP	AP	AP
2	4	5	6
1	2	4	5

Okun renaming

$i d_{1}$	$i d_{2}$	$i d_{3}$	$i d_{4}$
AP	AP	AP	AP
2	4	5	6
1	2	4	5

Parallel composition of $A P$
If for every proc. p, prop $_{j}-\operatorname{prop}_{i} \geq \delta$ then $\operatorname{dec}_{j}-\operatorname{dec}_{i} \geq \delta$

Okun renaming

	$i d_{1}$	$i d_{2}$	$i d_{3}$	$i d_{4}$
	AP	AP	AP	AP
	2	4	5	6
decisions	1	2	4	5
	2	4	5	6

Parallel composition of $A P$
If for every proc. p, prop $_{j}-$ prop $_{i} \geq \delta$ then $\operatorname{dec}_{j}-\operatorname{dec}_{i} \geq \delta$

Agreement protocol

- Consensus
- decide one of the proposed value (validity)
- no two processes decide differently (agreement)
- no non-faulty proc never decide (termination)

Complexity $\mathbf{O}(\mathbf{f})$

- Approximate agreement with parameter ϵ

Okun renaming

$i d_{1}$	$i d_{2}$	$i d_{3}$	$i d_{4}$
$\epsilon-\mathrm{AA}$	$\epsilon-\mathrm{AA}$	$\epsilon-\mathrm{AA}$	$\epsilon-\mathrm{AA}$

- final rank of $i d_{i}=$ output of $A A$ rounded to nearest integer
- ϵ small enough such that no two distinct ids receive same rank after rounding
Complexity $=$ complexity of the AA protocol

Okun renaming

$i d_{1}$	$i d_{2}$	$i d_{3}$	$i d_{4}$
$\epsilon-\mathrm{AA}$	$\epsilon-\mathrm{AA}$	$\epsilon-\mathrm{AA}$	$\epsilon-\mathrm{AA}$

- final rank of $i d_{i}=$ output of $A A$ rounded to nearest integer
- ϵ small enough such that no two distinct ids receive same rank after rounding
Complexity $=$ complexity of the AA protocol
[Alistarh, Attiya T.]
Finer analysis of the complexity of AA, function of actual \# failures
- cst (≤ 10) when $f \leq \sqrt{n}$
- $O(\log f)$ otherwise

Synchronous Complexity

Thanks!

Distributed Complexity Classification

[Wattenhofer, Sirocco 2012 Prize Lecture]

