
Renaming

c. travers
travers@labri.fr

Displexity December 2012

1 / 76

Origin: Mutual Exclusion

a := 2;

// enter critical section

{ // critical section

b:= 2 +a;

c:= 2*b - 4;

}
// exit critical section

[Dijsktra 1965]

2 / 76

Exclusive access

p1 p2 p3 p4 p5

Resource can be accessed by at most one process at a time

3 / 76

Exclusive access

p1 p2 p3 p4 p5

Resource can be accessed by at most one process at a time

4 / 76

Renaming

n processes

initial names 1 34 21 9

new names 1 2 3 4 N

• n processes, provided with an initial name ∈ 1..M

5 / 76

Renaming

n processes

initial names 1 34 21 9

new names 1 2 3 4 N

• n processes, provided with an initial name ∈ 1..M

• each proc. has to get an unique name ∈ 1..N,N << M

6 / 76

Renaming

n processes

initial names 1 34 21 9

new names 1 2 3 4 N

• n processes, provided with an initial name ∈ 1..M

• each proc. has to get an unique name ∈ 1..N,N << M

Comparison-based algorithms
initial ids van only be compared

7 / 76

Renaming Variants

n processes

initial names 1 34 21 9

new names 1 2 3 4 . . . N

Tight/Loose renaming

• Tight : N = n / Loose : N > n

8 / 76

Renaming Variants

n processes

initial names 1 34 21 9

new names 1 2 3 4 N

Tight/Loose renaming

• Tight : N = n / Loose : N > n

9 / 76

Renaming Variants

n processes

initial names 1 34 21 9

new names 1 2 3 4 N

Tight/Loose renaming

• Tight : N = n / Loose : N > n

Adaptive renaming

• Final name space function of # participating procs.

10 / 76

Renaming Variants

n processes

initial names 1 34 21 9

new names 1 2 3 4 5 6 7 8 . . . N

Tight/Loose renaming

• Tight : N = n / Loose : N > n

Adaptive renaming

• Final name space function of # participating procs.

Order preserving

• Final names preserve the order of initial names

11 / 76

Questions

Name space: how many final names?

Complexity: how much work to acquire a new name?

12 / 76

Distributed models

Message passing

• Complete network

• Failures: crashes

• Synchronous/Asynchronous

13 / 76

Distributed models

Message passing

• Complete network

• Failures: crashes

• Synchronous/Asynchronous

14 / 76

Distributed Models

p0 p1 p2 p3 p4 p5 p6

⊥ ⊥ ⊥ ⊥ ⊥⊥ ⊥

Shared memory

• n Processes {p1, . . . , pn}

15 / 76

Distributed Models

p0 p1 p2 p3 p4 p5 p6

⊥ ⊥ ⊥ ⊥ ⊥⊥ ⊥

Shared memory

• n Processes {p1, . . . , pn}
• Asynchronous communications

• read() from/write() to any memory cell
• finite but unbounded delay between steps

16 / 76

Distributed Models

p0 p1 p2 p3 p4 p5 p6

⊥ ⊥ ⊥ ⊥ ⊥v2 ⊥

Shared memory

• n Processes {p1, . . . , pn}
• Asynchronous communications

• read() from/write() to any memory cell
• finite but unbounded delay between steps

p2 R[2].write(v2)
p4 R[4].write(v4)
p2 R .read() [. . . , v2,⊥, v4, . . .]

17 / 76

Distributed Models

p0 p1 p2 p3 p4 p5 p6

⊥ ⊥ ⊥ ⊥ ⊥v2 v4

Shared memory

• n Processes {p1, . . . , pn}
• Asynchronous communications

• read() from/write() to any memory cell
• finite but unbounded delay between steps

p2 R[2].write(v2)
p4 R[4].write(v4)
p2 R .read() [. . . , v2,⊥, v4, . . .]

18 / 76

Distributed Models

p0 p1 p2 p3 p4 p5 p6

⊥ ⊥ ⊥ ⊥ ⊥⊥ ⊥

Shared memory

• n Processes {p1, . . . , pn}
• Asynchronous communications

• read() from/write() to any memory cell
• finite but unbounded delay between steps

p2 R[2].write(v2)
p2 R .read() [. . . , v2,⊥,⊥, . . .]
p4 R[4].write(v4)

19 / 76

Distributed Models

p0 p1 p2 p3 p4 p5 p6

⊥ ⊥ ⊥ ⊥ ⊥v2 ⊥

Shared memory

• n Processes {p1, . . . , pn}
• Asynchronous communications

• read() from/write() to any memory cell
• finite but unbounded delay between steps

p2 R[2].write(v2)
p2 R .read() [. . . , v2,⊥,⊥, . . .]
p4 R[4].write(v4)

20 / 76

Distributed Models

p0 p1 p2 p3 p4 p5 p6

⊥ ⊥ ⊥ ⊥ ⊥v2 v4

Shared memory

• n Processes {p1, . . . , pn}
• Asynchronous communications

• read() from/write() to any memory cell
• finite but unbounded delay between steps

p2 R[2].write(v2)
p2 R .read() [. . . , v2,⊥,⊥, . . .]
p4 R[4].write(v4)

21 / 76

Distributed Models

p0 p1 p2 p3 p4 p5 p6

⊥ ⊥ ⊥ ⊥ ⊥v2 v4

Shared memory

• n Processes {p1, . . . , pn}
• Asynchronous communications

• read() from/write() to any memory cell
• finite but unbounded delay between steps

• Failures : crash

22 / 76

Equivalence

p0

p1

p2

p3

p4

p5 ≈ p0 p1 p2 p3 p4 p5

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Asynchronous models
Shared memory can be simulated in message passing
if #crashs < n

2

23 / 76

Asynchronous Renaming

24 / 76

Wait-free renaming

Model

• n-process asynchronous shared memory

• Wait-free: all but one process may crash

p0 p1 p2 p3 p4

Question

• Name space How many final names needed to solve
renaming?

25 / 76

Wait-free renaming

Model

• n-process asynchronous shared memory

• Wait-free: all but one process may crash

p0 p1 p2 p3 p4

Question

• Name space How many final names needed to solve
renaming?

26 / 76

Wait-free renaming

• 2n− 1 names are sufficient
[Attiya et al., Borowsky Gafni, Attiya Fouren, Gafni

Rajsbaum]

• n+ 1 names are necessary [Attiya et al.]

• 2n− 1 names are necessary
[Herlihy Shavit, Herlihy Rajsbaum, Attiya Rajsbaum]

27 / 76

Wait-free renaming

• 2n− 1 names are sufficient
[Attiya et al., Borowsky Gafni, Attiya Fouren, Gafni

Rajsbaum]

• n+ 1 names are necessary [Attiya et al.]

• 2n− 1 names are necessary
[Herlihy Shavit, Herlihy Rajsbaum, Attiya Rajsbaum]

> 10 years later

• 2n− 1 names are necessary for some values of n
[Casteñada Rajsbaum, Attiya Paz]

28 / 76

Wait-free renaming

• 2n− 1 names are sufficient
[Attiya et al., Borowsky Gafni, Attiya Fouren, Gafni

Rajsbaum]

• n+ 1 names are necessary [Attiya et al.]

• 2n− 1 names are necessary
[Herlihy Shavit, Herlihy Rajsbaum, Attiya Rajsbaum]

> 10 years later

• 2n− 1 names are necessary for some values of n
[Casteñada Rajsbaum, Attiya Paz]

Theorem
(2n− 2)-renaming solvable ⇐⇒ n is not a prime power

29 / 76

Open questions

Asynchronous message passing renaming

• [Attiya et al.] (2n-1)-renaming : exponential worst case
complexity

• [Alistarh et al.] attempt to transform synchronous algs.
into (partially) asynchronous ones

⇒ News ideas are needed

Wait-free shared memory renaming

• Explicit algorithm for (2n− 2)-renaming

30 / 76

Synchronous renaming

31 / 76

Round-by-round computation

1 2 3rounds

proc1

proc2

proc3

proc4

In a round r , each proc.

• Sends messages to every procs.

• Receives messages sent in round r

32 / 76

Round-by-round computation

1 2 3rounds

proc1

proc2

proc3

proc4

In a round r , each proc.

• Sends messages to every procs.

• Receives messages sent in round r

33 / 76

Round-by-round computation

1 2 3rounds

proc1

proc2

proc3

proc4

In a round r , each proc.

• Sends messages to every procs.

• Receives messages sent in round r

34 / 76

Round-by-round computation

1 2 3rounds

proc1

proc2

proc3

proc4

In a round r , each proc.

• Sends messages to every procs.

• Receives messages sent in round r

35 / 76

Complexity of synchronous renaming

Complexity = # rounds before decision

n procs renaming, tolerating up to n− 1 failures :

Complexity Remarks
Chaudhuri et al [CHT90] O(log n) tight
Okun [Okun10] O(log n) tight, order preserving

Lower bound :
Ω(log n) for tolerating n− 1 failures [CHT90]
holds for tight and loose renaming

36 / 76

Ω(log n) lower bound
[CHT 90]

ids

• 2/3 processes fail per round

37 / 76

Ω(log n) lower bound
[CHT 90]

ids

p

p

• 2/3 processes fail per round

38 / 76

Ω(log n) lower bound
[CHT 90]

ids

p

p

q

q

• 2/3 processes fail per round

• non-faulty proc. are in order equivalent states
rank(idp,ids rcved by p) = 4 = rank(idq,ids rcved by q)

39 / 76

Early Decision

Failures occur but are rare in practice

• Decide earlier when there are few failures

• Complexity = function of f actual #failures

Early deciding agreement:

• O(f) early deciding for consensus

• O(f
k
) k-set-agreement

40 / 76

Early Deciding Renaming
[Alistarh, Attiya, T. 2012]

Two early deciding renaming algorithms

name-space complexity
Alg. 1 loose 1..2n log f + 5
Alg. 2 tight 1..n cst for f ≤ √

n

5 log(f) + 10 otherwise

n = # procs.
f = # failures

41 / 76

Early Deciding Renaming
[Alistarh, Attiya, T. 2012]

Two early deciding renaming algorithms

name-space complexity
Alg. 1 loose 1..2n log f + 5
Alg. 2 tight 1..n cst for f ≤ √

n

5 log(f) + 10 otherwise

n = # procs.
f = # failures

Alg. 1 based on [CHT90]
Alg. 2 based on [Okun10]

42 / 76

Algorithm 1

43 / 76

CHT 90 Renaming

• Tight name-space

• Complexity O(log n) rounds

44 / 76

CHT 90 Renaming

• Tight name-space

• Complexity O(log n) rounds

rou
n
d
s

1 2 3 4 5 6 7 8

For each proc p

• interval Ip of
preferred names

45 / 76

CHT 90 Renaming

• Tight name-space

• Complexity O(log n) rounds

rou
n
d
s

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 85 6 7 8

For each proc p

• interval Ip of
preferred names

• interval
periodically
halved

46 / 76

CHT 90 Renaming

• Tight name-space

• Complexity O(log n) rounds

rou
n
d
s

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 85 6 7 8

1 2 3 4 5 6 7 85 6

For each proc p

• interval Ip of
preferred names

• interval
periodically
halved

47 / 76

CHT 90 Renaming

• Tight name-space

• Complexity O(log n) rounds

rou
n
d
s

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 85 6 7 8

1 2 3 4 5 6 7 85 6

1 2 3 4 5 6 7 86

For each proc p

• interval Ip of
preferred names

• interval
periodically
halved

• decision when
|Ip| = 1

48 / 76

CHT 90 Renaming

• Tight name-space

• Complexity O(log n) rounds

rou
n
d
s

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 85 6 7 8

1 2 3 4 5 6 7 85 6

1 2 3 4 5 6 7 86

For each proc p

• interval Ip of
preferred names

• interval
periodically
halved

• decision when
|Ip| = 1

Round complexity depends on initial size of Ip

49 / 76

CHT analysis

Invariant 1
Preferences interval are well formed
∀I, I′ : I ∩ I′ = ∅ or I ⊆ I′ or I′ ⊆ I

50 / 76

CHT analysis

Invariant 1
Preferences interval are well formed
∀I, I′ : I ∩ I′ = ∅ or I ⊆ I′ or I′ ⊆ I

Invariant 2
For each preferences interval I,
at most |I| procs with preferences ⊆ I

51 / 76

CHT analysis

Invariant 1
Preferences interval are well formed
∀I, I′ : I ∩ I′ = ∅ or I ⊆ I′ or I′ ⊆ I

Invariant 2
For each preferences interval I,
at most |I| procs with preferences ⊆ I

Complexity

• In each round, largest preferences intervals are halved

• Initial interval of the form 1..2b with b ≤ ⌈log n⌉

52 / 76

Early-deciding CHT

Idea: carefully select initial preferences interval
based on an estimation of #failures in round 1

round 1 send idp to all; rank idp among ids received
{2, 6, 12, 34, 35, 41} → rank = 4

53 / 76

Early-deciding CHT

Idea: carefully select initial preferences interval
based on an estimation of #failures in round 1

round 1 send idp to all; rank idp among ids received
{2, 6, 12, 34, 35, 41} → rank = 4

round 2 send 〈idp, rankp〉, pick initial preferences interval

54 / 76

Early-deciding CHT

Idea: carefully select initial preferences interval
based on an estimation of #failures in round 1

round 1 send idp to all; rank idp among ids received
{2, 6, 12, 34, 35, 41} → rank = 4

round 2 send 〈idp, rankp〉, pick initial preferences interval
round r ≥ 3 CHT algorithm

55 / 76

Initial preferences selection

round 1 p ranks its id among ids received

{2, 6, 12, 34, 35, 41} → rank = 4
{2, 6,✚✚❩❩12, 34, 35, 41} → rank = 4
{2, ✁❆6,✚✚❩❩12, 34, 35, 41} → rank = 4

56 / 76

Initial preferences selection

round 1 p ranks its id among ids received

{2, 6, 12, 34, 35, 41} → rank = 4
{2, 6,✚✚❩❩12, 34, 35, 41} → rank = 4
{2, ✁❆6,✚✚❩❩12, 34, 35, 41} → rank = 4

p has the ith id ⇒ i − f1 ≤ rankp ≤ i f1 = #failures in rd 1

57 / 76

Initial preferences selection
round 1 p ranks its id among ids received

{2, 6, 12, 34, 35, 41} → rank = 4
{2, 6,✚✚❩❩12, 34, 35, 41} → rank = 4
{2, ✁❆6,✚✚❩❩12, 34, 35, 41} → rank = 4

p has the ith id ⇒ i − f1 ≤ rankp ≤ i f1 = #failures in rd 1

round 2 p receives a set of 〈id , rank〉

a

I

#ranks ∈ I ≤ |I |+ f1

58 / 76

Initial preferences selection
round 1 p ranks its id among ids received

{2, 6, 12, 34, 35, 41} → rank = 4
{2, 6,✚✚❩❩12, 34, 35, 41} → rank = 4
{2, ✁❆6,✚✚❩❩12, 34, 35, 41} → rank = 4

p has the ith id ⇒ i − f1 ≤ rankp ≤ i f1 = #failures in rd 1

round 2 p receives a set of 〈id , rank〉

a

I

#ranks ∈ I ≤ |I |+ f1

estf = maxI{(#ranks ∈ I)− |I |}
59 / 76

Initial preferences selection cont’

Invariants

1 Well formed: any two intervals do not intersect or one is
included in the other

2 At most |I| procs with preferences I′ ⊆ I

For proc p, choose

• j = ⌈log estf ⌉
• d : d2j ≤ rkp ≤ (d + 1)2j

Preferences interval J = d2j...(d+ 1)2j ?
well-formed

but # procs with rank in J ≤ |J |+f1

J = d2j+1...(d+ 1)2j+1

60 / 76

Early-deciding CHT

Name-space 1..2n

Complexity 5 + log f1

where f1 = #failures in the first round

61 / 76

Algorithm 2

62 / 76

Okun Renaming

• Tight name space

• (Order preserving)

• Complexity O(log n)

• Based on approximate agreement

63 / 76

Okun Renaming

• Ranking initial ids
{2, 6, 12, 34, 35, 41} → rank34 = 4
{2, 6,✚✚❩❩12, 34, 35, 41} → rank34 = 3
{2, ✁❆6,✚✚❩❩12, 34, 35, 41} → rank34 = 2

64 / 76

Okun Renaming

• Ranking initial ids
{2, 6, 12, 34, 35, 41} → rank34 = 4
{2, 6,✚✚❩❩12, 34, 35, 41} → rank34 = 3
{2, ✁❆6,✚✚❩❩12, 34, 35, 41} → rank34 = 2

• Associate an agreement protocol (AP) with each id

65 / 76

Okun Renaming

• Ranking initial ids
{2, 6, 12, 34, 35, 41} → rank34 = 4
{2, 6,✚✚❩❩12, 34, 35, 41} → rank34 = 3
{2, ✁❆6,✚✚❩❩12, 34, 35, 41} → rank34 = 2

• Associate an agreement protocol (AP) with each id

id1 id2 id3 id4

AP AP AP AP
Agree on the rank of each id → new names

66 / 76

Okun renaming

id1 id2 id3 id4

AP AP AP AP

Algorithm sketch
phase 1 send idp to all,

V set of ids received
rank(id ,V) : rank of id in V

phase 2 Participate simultaneously in each APid

with initial value rank(id ,V)
decide Output of APmyid

67 / 76

Okun renaming

id1 id2 id3 id4

AP AP AP AP

2 4 5 6

1 2 4 5

68 / 76

Okun renaming

id1 id2 id3 id4

AP AP AP AP

2 4 5 6

1 2 4 5

Parallel composition of AP
If for every proc. p, propj − propi ≥ δ then decj − deci ≥ δ

69 / 76

Okun renaming

id1 id2 id3 id4

AP AP AP AP

2 4 5 6

1 2 4 5

decisions 2 4 5 6

Parallel composition of AP
If for every proc. p, propj − propi ≥ δ then decj − deci ≥ δ

70 / 76

Agreement protocol

• Consensus

• decide one of the proposed value (validity)
• no two processes decide differently (agreement)
• no non-faulty proc never decide (termination)

Complexity O(f)

• Approximate agreement with parameter ǫ

v1 v2 v3 v4

ǫ

d d′

71 / 76

Okun renaming
id1 id2 id3 id4

ǫ-AA ǫ-AA ǫ-AA ǫ-AA

• final rank of idi = output of AA rounded to nearest
integer

• ǫ small enough such that no two distinct ids receive same
rank after rounding

Complexity = complexity of the AA protocol

72 / 76

Okun renaming
id1 id2 id3 id4

ǫ-AA ǫ-AA ǫ-AA ǫ-AA

• final rank of idi = output of AA rounded to nearest
integer

• ǫ small enough such that no two distinct ids receive same
rank after rounding

Complexity = complexity of the AA protocol

[Alistarh, Attiya T.]

Finer analysis of the complexity of AA,
function of actual # failures

• cst (≤ 10) when f ≤ √
n

• O(log f) otherwise

73 / 76

Synchronous Complexity

rounds

cst log n n/k n

renaming,
f ≤ √

n
renaming k-set agreement

consensus,
interactive
consistency

74 / 76

Thanks!

75 / 76

[Wattenhofer, Sirocco 2012 Prize Lecture]

76 / 76

