Compact routing, spanners, multipath routing

Laurent Uiennot

Inria

Compact routing

- Information theory approach to network routing
- Trade-off space us length :
- routing table size
- route lenath

Routing model

Routing model

Routing scheme

- Each node has a routing table T(u)
- Each node has a label L(u)
- Routing function f:
- Packet P arrives at u with header H or $\mathrm{H}:=\mathrm{L}(\mathrm{t})$
- ($\left.H^{\prime}, P\right):=f(T(u), H)$
- Forward P on port p with header $\mathrm{H}^{\text { }}$

Route

- Route(s \rightarrow t) : s=u_Ou_1,...,u_d-1u_d=t with :
- $\mathrm{HO}=\mathrm{L}(\mathrm{t})$
- $\forall \mathrm{i}:\left(\mathrm{H}\right.$ _i+1, $\left.\mathrm{p}_{\mathbf{i}} \mathrm{i}+1\right)=\mathrm{f}\left(\mathrm{T}\left(\mathrm{u}\right.\right.$ _i), $\left.\mathrm{H}_{\mathbf{\prime}} \mathrm{i}\right)$
- $\forall \mathrm{i}:$ neighbor(u_i, p_i+1) = u_i+1
- f(T(u_d), H_d) $=0$ (packet arrives)
- Route lenath is \mid Route $(s \rightarrow t) \mid=d$

Problem

- Given a network G define f and compute T, L s.t. :
- for all $s, t \in U(G)$: all packets from s to t arrive.
- Complexity measures:
- Table size = max_u|T(u)|
- Lable size = max_u |T(u)|
- Stretch = max_st \mid Route $(s \rightarrow t) \mid / d _G(s, t)$
- Time complexity of f (usually O(1))
- Classical routing: u stores next hop for all t
- size n log n and stretch 1

Uariants

- Labelled : $L(u)$ is designer choice (DNS)
- Name independent : $L(u)$ is chosen by an adversary
- Designer port / fixed port
- Weighted : edges of G have weights
- Oblivious : H_i+1 = H_i
- G is a tree, a planar graph, a clique, is doubling, . . .
- (For a survey : (Dom 07))

Main results

- [Kleinrock \& Kamoun 77] Hierarchical routing
- [Peleq \& Upfal 88] Trade-off size O(n^\{1+1/k\}) us stretch O(k) for integral $k \geq 1$
- [Gavoille \& Pérennès 96] stretch $\leq 1 \Rightarrow$ size \geq n In n
- [Gavoille \& Gengler 97] stretch $<3 \Rightarrow$ size $\geq n$
- [Awerbuch \& al 89] name independent
- [TZO1 / Fraiqniaud \& G 02] trees \Rightarrow size $\leq(\ln n$)^^2/Inln n
- [Thorup \& Zwick 01] size $<\sqrt{ }(n \ln n)$, stretch ≤ 3
- [Abraham \& al 04] same but name independent

Open issues

- Applicable to Internet ? [Mahadevan \& al 04]
- Destinations are not nodes.
- Need for distributed computation ?
- Consider throughput, delay, traffic rather than just size.

Link with spanners

Main open issue : additive stretch

- Every graph has a (2k-1)-spanner of size $0\left(n^{\wedge}\{1+1 / k\}\right)$
- (a,b)-spanner : for all u,v d_H(u,v) \leq a d_G(u,v) + b
- Has every graph a (1,2k-2)-spanner of small size?
- Every graph has a (1,2)-spanner of size O(n^\{1+1/2\}) [Aingworth \& al. 99]
- Every graph has a (1,6)-spanner of size $0\left(n^{\wedge}\{1+1 / 3\}\right)$ [Baswana \& al. 06]
- Every graph has a (1,4)-spanner of size O(n^\{1+2/3\}) [Chechik \& al. 13]

Multipath

Multipath spanners

- Definition: H is a k-path s-spanner of G iff $H \subseteq G$ and $d_{-} H^{\wedge} k(s, t) \leq d_{-} G^{\wedge} k(s, t)$ for all s, t.
 is a k-path $c_{2} 1(1+k / p) \wedge\{2 p-1\}$-spanner of G with at most c_2 $n^{\wedge}\{1+1 / p\}$ log^2 n edges.
- Th2 (k=p=2) : Every graph has a k-path spanner with stretch almost 2 and $O\left(n^{\wedge}\{1+1 / 2\}\right)$ edges.
- Conjecture : Every graph has a k-path spanner with stretch $O(k p)$ and $O\left(n^{\wedge}\{1+1 / p\}\right)$ edges.

Multipath routing

- Work in progress [Mathieu, de Montgolfier \& U.]
- Classical routing : T(u)=\{NextHop(t) for all t\}
- Problem : define for all u,s,t,i a neighbor NextHop_u(s,t,i) such that forwarding along index i=1..k results in disjoint routes.
- Brute force : size kn^2
- Can you factorize paths ? (as in the case $k=1$)
- If so (same NextHop(t,i) $\forall s$) : size kn
- Conjecture : G k-connected \Rightarrow yes you can

Uote

- G k-connected \Rightarrow you can factorize NextHop
- Don't worry, I don't know the answer.
- Hint 1 : if you want shortest k-path then No.
- Hint 2 : if $k=2$ then Yes.
- Thank you, we will try to prove . . . first.

