
Synchronous Byzantine Agreement Revisited:

Work in Progress

Achour MOSTEFAOUI

in collaboration with Darek KOWALSKI

Achour.Mostefaoui@univ-nantes.fr

LINA, Université de Nantes, France

Synchronous Byzantine Agreement Revisited 1

Synchronous Distributed System Model

• A set Π of n processes {p1, . . . , pn}

• A bound on message transfer delays (message-passing)

• A bound on the time for a process to execute a com-
putation step

• Some processes may exhibit a Byzantine behavior

• A process is correct in a run if it does not turn Byzantine
Otherwise it is faulty

• At most t processes are faulty

Synchronous Byzantine Agreement Revisited 2

The Byzantine Agreement Problem (1)

Each process pi proposes a value v taken from a set V
(| V |≥ 2) of proposable values.

Goal : Make processes decide a same value

•Termination: Every correct process eventually decides
some value.

•Agreement: No two correct processes decide on different
values.

•Validity: If all correct processes propose the same initial
value v, then v is the only possible decision value.

Synchronous Byzantine Agreement Revisited 3

The Byzantine Agreement Problem (2)

•Resilience: There exists a solution to the BA problem
only if n > 3t (Pease, Shostack and Lamport, 1980).

•Time complexity: Any correct BA algorithm requires at
least t + 1 rounds in the worst case if t processes may
be faulty (Fischer and Lynch, 1982).

• Bit complexity: No upper bound is known. The only
known bit complexity result is Ω(n2) (Dolev and Reis-
chuck, 1985).

Synchronous Byzantine Agreement Revisited 4

. . . Some history

Protocol n rounds comm.

[PSL] 80 3t+1 t+1 exp(n) vs Ω(n2)

[DFFLS,TPS] 82 3t+1 2t+ c poly(n)

[c] 85 4t+1 t+ t/d O(nd)

[DRS,BD] 86 Ω(t2) t+1 poly(n)

[BDDS] 87 3t+1 t+ t/d O(nd)
[MW] 88 6t+1 t+1 poly(n)
[BGP1] 89 4t+1 t+1 poly(n)

[BG2] 91 (3 + ǫ)t t+1 poly(n).O(21/ǫ)

[GM] 93 3t+1 t+1 O(n9)

. . . and nothing since!

Synchronous Byzantine Agreement Revisited 5

The Basic Solution: EIG BYZ

• The first proposed solution (Pease, Shostack and Lam-
port in 1980).

• Meets lower bounds for time complexity and resilience.

• Very simple as reformulated by Bar-Noy et al. in 1987
using a data structure: EIG tree.

⋆ Exponential Information Gathering tree structure

• Many proposed solutions rely on the same structure.

• Some parts of the tree are cut to reduce the commu-
nication bit complexity due to the inherent redundancy
of the tree structure.

⋆ Very complex solutions

Synchronous Byzantine Agreement Revisited 6

Exponential Information Gathering Tree

• Each process manages an EIG tree data structure

12 13 14

123 124 125

4241343231242321

2 3 41

143142135134132

126

1234 1235 1236 1243 1245

λ

145

... ...

...
... ...

.........
...

...

level 0

level 1

level 2

level 3

level 4

Synchronous Byzantine Agreement Revisited 7

EIG Protocol

• Each process manages an EIG tree with t+2 levels

• Each node x of the tree:

⋆ is labelled with a sequence of process ids

⋆ is associated with two values val(x) and newval(x)

• val(x) is set during the successive rounds
val(ijkℓ) is a fourth hand value received from pℓ

• newval(x) is set during the decision phase

⋆ Leaf nodes: newval(x) is set to val(x)

⋆ Internal nodes: newval(x) is set to a strict majority
of the newval of its child nodes or to a default value
otherwise

• The decision value is the new value of the root λ

Synchronous Byzantine Agreement Revisited 8

Elements of the proof

• val(xk)i = val(xk)j for i, j and k correct processes

• newval(xk)i = val(xk)i for i and k correct processes

Definition 1: A subset C of the nodes of a rooted tree is
a path covering if each path of the tree contains at least
one node in C.

Definition 2: A node is x common if for all correct processes
i and j: newval(x)i = newval(x)j

• After t+1 rounds:

⋆ there is a common path covering of the EIG tree.

⋆ if there is a common path covering rooted at x, then
x is common.

Synchronous Byzantine Agreement Revisited 9

The Proposed Protocol

• Each process manages an EIG tree with t+2 levels

• Each node x of the tree:

⋆ is labelled with a sequence of process ids

⋆ is associated with three values val(x), cval(x)and newval(x)

• val(x) and cval(x) are set during the successive rounds

• newval(x) is set during the decision phase

• Processes no more exchange first, second, third ... hand
values.

⋆ They exchange information on suspicions.

⋆ For this purpose they use a confirmation mechanism
to detect cheating processes

Synchronous Byzantine Agreement Revisited 10

The Proposed Protocol: Basics

• Confirmation mechanism (Srikanth and Toueg, 1987 for
asynchronous systems)

⋆ A sent value is echoed during the next round

⋆ If it is not echoed enough times (n− t) the sender is
Byzantine

• The echoes are not themselves echoed

• Each process maintains a list of uncovered Byzantine
processes

• Each message has two fileds: main data and echo

Synchronous Byzantine Agreement Revisited 11

The Proposed Protocol

• Round 1: Processes exchange proposed values (there
is no suspicion information available). These values are
stored in val(x) for each node x.

• Round 2: Processes exchange second hand values (there
is still no suspicion information available). These values
are stored in cval(x) for each node x.

• During round 2, each process starts detecting cheating
processes.

• Round 3: Processes exchange suspicion values and echo
the echos of round 2.

• Starting from round 4: Processes exchange suspicion
values and echo the suspicion information received dur-
ing the previous round.

Synchronous Byzantine Agreement Revisited 12

The Proposed Protocol: EIG Tree

• When all the rounds are over, the processes set val(x)
and cval(x) variables for the rounds greater than 1.

• The only used values are ⊥ (suspect) and ⊤ (do not
suspect)

⋆ For x = ykℓ: val(x)← ⊤ if pℓ never reported by round
t that it suspects pk; otherwise, val(x)← ⊥.

⋆ For x = yjkℓ: cval(x) ← ⊤ if pℓ never reported by
round t+1 that pk reported that it suspects pj (second-
hand information); otherwise, cval(x)← ⊥.

Synchronous Byzantine Agreement Revisited 13

The Proposed Protocol: Decision Making

• Leaf nodes: newval(x)← val(x) that is (⊥ or ⊤)

• Internal nodes (x = yj):

⋆ Let T = {z | z child of x (z = xk) ∧ newval(z) = ⊤}.
T is the set of child nodes the label of which ends
with the id k of a process that does not suspect pj

⋆ newval(x) ← v if a strict majority of the cval of the
children of x that belong to T are set to a same value
v, ⊥ otherwise.

• The root λ: newval(λ) ← v if a strict majority of the
new values of its children are set to a same non-⊥ value
v; otherwise it is set to a default value v0.
The decision value is the new value of the root.

Synchronous Byzantine Agreement Revisited 14

Illustration

• Example of node 123 of the EIG tree of pi: newval(123)
will be set to ⊤

cval
val
newval

cval
val
newval

cval
val
newval

cval
val
newval

cval
val
newval

1234 1235 1236

123

⊥

val

1237 1238

newval ?

⊥

⊥ ⊥

⊥
⊥ ⊥

⊥
⊥

⊥ ⊥ ⊥
⊥ ⊥

⊥

⊥

12val

⊥

cval ⊥

Synchronous Byzantine Agreement Revisited 15

Elements of the proof

• No correct process suspects another correct process

• val(xk)i = val(xk)j and cval(xk)i = cval(xk)j for i, j and
k correct processes

• newval(xk)i = val(xk)i for i and k correct processes

• After t+1 rounds:

⋆ there is a common path covering of the EIG tree.

⋆ if there is a common path covering rooted at x, then
either x is common or one of its ancestors is com-
mon.

Synchronous Byzantine Agreement Revisited 16

Complexity Analysis

• The size of the main exchanged information per round
is O(n2) (who suspects who).

• The size of the echoed information per round is O(n3).

• Optimization: during the whole execution of the pro-
tocol, a correct process can suspect at most t other
processes and will echo the suspicions of all the other
processes. Consequently, the total bit complexity of the
protocol is n2t log(n).

Protocol n rounds comm.

[PSL] 80 3t+1 t+1 exp(n)

[GM] 93 3t+1 t+1 O(n9)

This result 3t+1 t+1 O(n3 log(n))

Synchronous Byzantine Agreement Revisited 17

