Svynchronous Byzantine Agreement Revisited:

Work In Progress

Achour MOSTEFAOQUI

in collaboration with Darek KOWALSKI

Achour .Mostefaoui@univ—nantes.fr

LINA, Université de Nantes, France

Synchronous Byzantine Agreement Revisited

Svynchronous Distributed System Model

A set M of n processes {p1,...,pn}

A bound on message transfer delays (message-passing)

A bound on the time for a process to execute a com-
putation step

Some processes may exhibit a Byzantine behavior

A process is correctin a run if it does not turn Byzantine
Otherwise it is faulty

At most t processes are faulty

Synchronous Byzantine Agreement Revisited

The Byzantine Agreement Problem (1)

Each process p; proposes a value v taken from a set V
(| V |> 2) of proposable values.

Goal : Make processes decide a same value

e Termination: Every correct process eventually decides
some value.

eAgreement: NoO two correct processes decide on different
values.

e \Validity: If all correct processes propose the same initial
value v, then v is the only possible decision value.

Synchronous Byzantine Agreement Revisited

The Byzantine Agreement Problem (2)

e Resilience: There exists a solution to the BA problem
only if n > 3t (Pease, Shostack and Lamport, 1980).

e [Ime complexity: Any correct BA algorithm requires at
least ¢t + 1 rounds in the worst case if t processes may
be faulty (Fischer and Lynch, 1982).

e Bit complexity: No upper bound is known. The only

known bit complexity result is 2(n?) (Dolev and Reis-
chuck, 1985).

Synchronous Byzantine Agreement Revisited 4

... Some history

Protocol n rounds comm.
PSL] 80 3t+1 | t+1 | exp(n) vsQn?)
DFFLS, TPS] 82| 3t+1 | 2t+ ¢ poly(n)
c] 85 Aat+1 | t+t/d O(n®)
DRS,BD] 86 Q) | t+1 poly(n)
BDDS] 87 3t+1 | t+t/d O(n%)
‘MW] 88 6t+1 | t+1 poly(n)
BGP1] 89 4t4+1 | t4+1 poly(n)
BG?2] 91 (34+e)t| t+1 |poly(n).0(21/¢)
‘GM] 93 3t+1 | t41 O(n?)

. and nothing since!

Synchronous Byzantine Agreement Revisited

T he Basic Solution: EIG BYZ

The first proposed solution (Pease, Shostack and Lam-
port in 1980).

Meets lower bounds for time complexity and resilience.

Very simple as reformulated by Bar-Noy et al. in 1987
using a data structure: EIG tree.

* Exponential Information Gathering tree structure

Many proposed solutions rely on the same structure.
Some parts of the tree are cut to reduce the commu-

nication bit complexity due to the inherent redundancy
of the tree structure.

* Very complex solutions

Synchronous Byzantine Agreement Revisited

Exponential Information Gathering Tree

e Each process manages an EIG tree data structure

12 13 14 EEn

21 23 24 === 31 32 34 === 4] 42 wnuc»

123 24 125 1268 u u »
132 134 135 www 142 143 145 wus

1234 1235 1236 ww s 1243 1245 wu s

Synchronous Byzantine Agreement Revisited 7

EIG Protocol

Each process manages an EIG tree with ¢t + 2 levels
Each node x of the tree:

* IS labelled with a sequence of process ids
% is associated with two values val(x) and newval(x)

val(x) is set during the successive rounds
val(ijkf) is a fourth hand value received from py

newval(x) is set during the decision phase

x Leaf nodes: newwval(x) is set to val(x)

x Internal nodes: newwval(x) is set to a strict majority

of the newwval of its child nodes or to a default value
otherwise

T he decision value is the new value of the root)\

Synchronous Byzantine Agreement Revisited

Elements of the proof

e val(xk); = val(zk); for i, j and k correct processes

e newval(xk);, = val(xk); for i and k correct processes

Definition 1: A subset C' of the nodes of a rooted tree is
a path covering if each path of the tree contains at least

one node in C.
Definition 2: A node is x common if for all correct processes

i and j: newval(x); = newval(x);

o After t + 1 rounds:
* there is a common path covering of the EIG tree.

* If there is a common path covering rooted at x, then
T IS common.

Synchronous Byzantine Agreement Revisited

The Proposed Protocol

Each process manages an EIG tree with ¢t + 2 levels

Each node x of the tree:

*x IS labelled with a sequence of process ids

x is associated with three values val(x), cval(x)and newval(x)

val(x) and cval(x) are set during the successive rounds

newval(x) is set during the decision phase

Processes no more exchange first, second, third ...

values.

*x [hey exchange information on suspicions.

hand

*x For this purpose they use a confirmation mechanism

to detect cheating processes

Synchronous Byzantine Agreement Revisited

10

The Proposed Protocol: Basics

e Confirmation mechanism (Srikanth and Toueg, 1987 for
asynchronous systems)

* A sent value is echoed during the next round

x If it is not echoed enough times (n —t) the sender is
Byzantine

e [he echoes are not themselves echoed

e Each process maintains a list of uncovered Byzantine
processes

e Each message has two fileds: main data and echo

Synchronous Byzantine Agreement Revisited 11

The Proposed Protocol

Round 1: Processes exchange proposed values (there
IS no suspicion information available). These values are
stored in val(x) for each node .

Round 2: Processes exchange second hand values (there
is still no suspicion information available). These values
are stored in cval(xz) for each node x.

During round 2, each process starts detecting cheating
processes.

Round 3: Processes exchange suspicion values and echo
the echos of round 2.

Starting from round 4: Processes exchange suspicion
values and echo the suspicion information received dur-
iIng the previous round.

Synchronous Byzantine Agreement Revisited 12

The Proposed Protocol: EIG Tree

e When all the rounds are over, the processes set val(x)
and cval(x) variables for the rounds greater than 1.

e The only used values are 1 (suspect) and T (do not
suspect)

x For x = ykf: val(x) < T if pp never reported by round
t that it suspects p;; otherwise, val(x) <+ L.

*x For © = yjkl: cval(x) < T if py never reported by
round t+4-1 that p;, reported that it suspects p; (second-

hand information); otherwise, cval(xz) < L.

Synchronous Byzantine Agreement Revisited 13

The Proposed Protocol: Decision Making

e Leaf nodes: newval(x) < val(x) that is (L or T)

e Internal nodes (x = yj):

x Let T'= {2z | z child of z (z = xk) A newval(z) = T}.
T is the set of child nodes the label of which ends
with the id k£ of a process that does not suspect p;

x newval(x) < v if a strict majority of the cval of the
children of z that belong to 71" are set to a same value
v, L otherwise.

e The root A\: newwval(\) + v if a strict majority of the

new values of its children are set to a same non-_L value
v; otherwise it is set to a default value vg.

T he decision value is the new value of the root.

Synchronous Byzantine Agreement Revisited 14

Illustration

e Example of node 123 of the EIG tree of p;: newwval(123)
will be set to T

val [] @12
cval [
123 val [0 newval ?

1234 1235 1236 e 1237

cval cval [cval 1 cval [cval [
val B val 1 va 1 val] val []
newval newal [newal 7 newa newval [

Synchronous Byzantine Agreement Revisited 15

Elements of the proof

e NO correct process suspects another correct process

o val(xk); = val(zk); and cval(xzk); = cval(zk); for i, j and
k correct processes

e newval(xk);, = val(xk); for i and k correct processes

o After t + 1 rounds:
* there is a common path covering of the EIG tree.

~ if there is a common path covering rooted at x, then
ﬁl]%hner x IS common or one of its ancestors is com-

Synchronous Byzantine Agreement Revisited 16

Complexity Analysis

e [he size of the main exchanged information per round
is O(n?) (who suspects who).

e The size of the echoed information per round is O(n3).

e Optimization: during the whole execution of the pro-
tocol, a correct process can suspect at most ¢t other
processes and will echo the suspicions of all the other
processes. Consequently, the total bit complexity of the

protocol is n?tlog(n).

Protocol n rounds comm.
[PSL] 80 |[3t+1| t+1 exp(n)
[GM] 93 [3t+1| t+1 O(n?)
Thisresult |3t+1| t+1 | O(n3log(n))

Synchronous Byzantine Agreement Revisited 17

