## Synchronous Byzantine Agreement Revisited: Work in Progress

## Achour MOSTEFAOUI

## in collaboration with **Darek KOWALSKI**

Achour.Mostefaoui@univ-nantes.fr

LINA, Université de Nantes, France

- A set  $\Pi$  of n processes  $\{p_1, \ldots, p_n\}$
- A bound on message transfer delays (message-passing)
- A bound on the time for a process to execute a computation step
- Some processes may exhibit a **Byzantine** behavior
- A process is *correct* in a run if it does not turn Byzantine Otherwise it is *faulty*
- At most t processes are faulty

Each process  $p_i$  proposes a value v taken from a set V ( $|V| \ge 2$ ) of proposable values.

Goal : Make processes decide a same value

- Termination: Every correct process eventually decides some value.
- •Agreement: No two correct processes decide on different values.
- Validity: If all correct processes propose the same initial value v, then v is the only possible decision value.

- Resilience: There exists a solution to the BA problem only if n > 3t (Pease, Shostack and Lamport, 1980).
- Time complexity: Any correct BA algorithm requires at least t + 1 rounds in the worst case if t processes may be faulty (Fischer and Lynch, 1982).
- Bit complexity: No upper bound is known. The only known bit complexity result is  $\Omega(n^2)$  (Dolev and Reischuck, 1985).

| Protocol       | n               | rounds  | comm.                              |
|----------------|-----------------|---------|------------------------------------|
| [PSL] 80       | 3t + 1          | t+1     | $\exp(n)$ vs $\Omega(n^2)$         |
| [DFFLS,TPS] 82 | 3t + 1          | 2t+c    | poly(n)                            |
| [C] 85         | 4t + 1          | t + t/d | $O(n^d)$                           |
| [DRS,BD] 86    | $\Omega(t^2)$   | t+1     | poly(n)                            |
| [BDDS] 87      | 3t + 1          | t + t/d | $O(n^d)$                           |
| [MW] 88        | 6t + 1          | t+1     | poly(n)                            |
| [BGP1] 89      | 4t + 1          | t+1     | poly(n)                            |
| [BG2] 91       | $(3+\epsilon)t$ | t+1     | $poly(n).O(2^{1/\epsilon})$        |
| [GM] 93        | 3t + 1          | t+1     | <i>O</i> ( <i>n</i> <sup>9</sup> ) |

... and nothing since!

- The first proposed solution (Pease, Shostack and Lamport in 1980).
- Meets lower bounds for time complexity and resilience.
- Very simple as reformulated by Bar-Noy et al. in 1987 using a data structure: EIG tree.

\* Exponential Information Gathering tree structure

- Many proposed solutions rely on the same structure.
- Some parts of the tree are cut to reduce the communication bit complexity due to the inherent redundancy of the tree structure.
  - \* Very complex solutions

• Each process manages an EIG tree data structure



- Each process manages an EIG tree with t + 2 levels
- Each node x of the tree:

\* is labelled with a sequence of process ids \* is associated with two values val(x) and newval(x)

- val(x) is set during the successive rounds  $val(ijk\ell)$  is a fourth hand value received from  $p_\ell$
- newval(x) is set during the decision phase

\* Leaf nodes: newval(x) is set to val(x)

- $\star$  Internal nodes: newval(x) is set to a strict majority of the newval of its child nodes or to a default value otherwise
- The decision value is the new value of the root  $\lambda$

- $val(xk)_i = val(xk)_j$  for *i*, *j* and *k* correct processes
- $newval(xk)_i = val(xk)_i$  for i and k correct processes

Definition 1: A subset C of the nodes of a rooted tree is a *path covering* if each path of the tree contains at least one node in C.

**Definition 2:** A node is x common if for all correct processes i and j:  $newval(x)_i = newval(x)_j$ 

• After t + 1 rounds:

 $\star$  there is a common path covering of the EIG tree.

 $\star$  if there is a common path covering rooted at x, then x is common.

- Each process manages an EIG tree with t + 2 levels
- Each node x of the tree:
  - $\star$  is labelled with a sequence of process ids
  - $\star$  is associated with three values val(x), cval(x) and newval(x)
- val(x) and cval(x) are set during the successive rounds
- newval(x) is set during the decision phase
- Processes no more exchange first, second, third ... hand values.
  - \* They exchange information on suspicions.
  - \* For this purpose they use a confirmation mechanism to detect cheating processes

- Confirmation mechanism (Srikanth and Toueg, 1987 for asynchronous systems)
  - \* A sent value is echoed during the next round
  - \* If it is not echoed enough times (n-t) the sender is Byzantine
- The echoes are not themselves echoed
- Each process maintains a list of uncovered Byzantine processes
- Each message has two fileds: main data and echo

- Round 1: Processes exchange proposed values (there is no suspicion information available). These values are stored in val(x) for each node x.
- Round 2: Processes exchange second hand values (there is still no suspicion information available). These values are stored in cval(x) for each node x.
- During round 2, each process starts detecting cheating processes.
- Round 3: Processes exchange suspicion values and echo the echos of round 2.
- Starting from round 4: Processes exchange suspicion values and echo the suspicion information received during the previous round.

- When all the rounds are over, the processes set val(x) and cval(x) variables for the rounds greater than 1.
- The only used values are ⊥ (suspect) and ⊤ (do not suspect)
  - \* For  $x = yk\ell$ :  $val(x) \leftarrow \top$  if  $p_{\ell}$  never reported by round t that it suspects  $p_k$ ; otherwise,  $val(x) \leftarrow \bot$ .
  - \* For  $x = yjk\ell$ :  $cval(x) \leftarrow \top$  if  $p_{\ell}$  never reported by round t+1 that  $p_k$  reported that it suspects  $p_j$  (secondhand information); otherwise,  $cval(x) \leftarrow \bot$ .

- Leaf nodes:  $newval(x) \leftarrow val(x)$  that is  $(\perp \text{ or } \top)$
- Internal nodes (x = yj):

\* Let  $T = \{z \mid z \text{ child of } x \ (z = xk) \land newval(z) = \top\}$ . T is the set of child nodes the label of which ends with the id k of a process that does not suspect  $p_j$ 

- \*  $newval(x) \leftarrow v$  if a strict majority of the cval of the children of x that belong to T are set to a same value  $v, \perp$  otherwise.
- The root  $\lambda$ :  $newval(\lambda) \leftarrow v$  if a strict majority of the new values of its children are set to a same non- $\perp$  value v; otherwise it is set to a default value  $v_0$ . The decision value is the new value of the root.

## Illustration

• Example of node 123 of the EIG tree of  $p_i$ : newval(123) will be set to  $\top$ 



- No correct process suspects another correct process
- $val(xk)_i = val(xk)_j$  and  $cval(xk)_i = cval(xk)_j$  for i, j and k correct processes
- $newval(xk)_i = val(xk)_i$  for *i* and *k* correct processes
- After t + 1 rounds:
  - $\star$  there is a common path covering of the EIG tree.
  - $\star$  if there is a common path covering rooted at x, then either x is common or one of its ancestors is common.

- The size of the main exchanged information per round is  $O(n^2)$  (who suspects who).
- The size of the echoed information per round is  $O(n^3)$ .
- Optimization: during the whole execution of the protocol, a correct process can suspect at most t other processes and will echo the suspicions of all the other processes. Consequently, the total bit complexity of the protocol is  $n^2 t \log(n)$ .

| Protocol    | n      | rounds | comm.            |
|-------------|--------|--------|------------------|
| [PSL] 80    | 3t + 1 | t+1    | $\exp(n)$        |
| [GM] 93     | 3t + 1 | t+1    | $O(n^9)$         |
| This result | 3t + 1 | t+1    | $O(n^3 \log(n))$ |