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Abstract

In this paper, we highlight two q-series identities arising from the the “five
guidelines” approach enumerating lecture hall partitions and give direct, q-
series proofs. This requires two new finite corollaries of a q-analog of Gauss’s
second theorem. In fact, the method reveals stronger results about lecture hall
partitions and anti-lecture hall compositions that are only partially explained
combinatorially.

1 Introduction

The lecture hall partitions, Ln are sequences λ = (λ1, . . . , λn) satisfying the constraints

λ1

n
≥ λ2

n − 1
≥ · · · ≥ λn−1

2
≥ λn

1
≥ 0.

In [2], Bousquet-Mélou and Eriksson proved the following surprising result.

The Lecture Hall Theorem [2]:

Ln(q) ,
∑
λ∈Ln

q|λ| =
1

(q; q2)n

(1)

1Research supported in part by NSF grant DMS-0200047
2Research supported in part by NSF grants DMS-03000 34 and INT-0230800
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with (a; q)n =
∏n−1

i=0 (1−aqi). Continuing this work, the anti-lecture hall compositions,
An, were defined as the sequences λ = (λ1, . . . , λ2) satisfying

λ1

1
≥ λ2

2
≥ . . . ≥ λn

n
≥ 0.

In contrast to the lecture hall partitions, these sequences need not be weakly decreas-
ing.

The Anti-Lecture Hall Theorem [5]:

An(q) ,
∑
λ∈An

q|λ| =
(−q; q)n

(q2; q)n

. (2)

Truncated versions of both of these families were introduced in [6] as Ln,k and An,k.
The truncated lecture hall partitions, Ln,k, are the sequences (λ1, . . . , λk) satisfying

λ1

n
≥ λ2

n − 1
≥ . . . ≥ λk

n − k + 1
> 0 (3)

(note the strict inequality); the truncated anti-lecture hall compositions, An,k, are
those sequences (λ1, . . . , λk) satisfying

λ1

n − k + 1
≥ λ2

n − k + 2
≥ . . . ≥ λk

n
≥ 0. (4)

For fixed k, as n → ∞, Ln,k approaches the set of partitions into k distinct positive
parts and An,k approaches the set of ordinary partitions into at most k parts. The
generating functions were computed in [6] as

Ln,k(q) = q(
k+1
2 )

[
n
k

]
q

(−qn−k+1; q)k

(q2n−k+1; q)k

, (5)

An,k(q) =

[
n
k

]
q

(−qn−k+1; q)k

(q2(n−k+1); q)k

. (6)

Three different approaches to the enumeration of Ln,k and An,k have led to three
different pairs of recurrences satisfied by (5) and (6) [3, 4, 6]. The resulting q-series
identities are interesting in themselves.

In Section 2, we derive two new corollaries of the q-analog of Gauss’s second 2F1

summation. In Sections 3 and 4, we highlight one pair of q-series identities, arising
from the “five guidelines” approach to lecture hall partitions in [3], and give direct
proofs using the corollaries in Section 2. In Section 5, we provide combinatorial proofs
of the identities via sign-reversing involutions. Significantly, the q-Gauss approach
reveals new results about lecture hall partitions and anti-lecture hall compositions
that we have not been able to prove combinatorially.
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2 The q-analog of Gauss’s second theorem and im-

plications

From [1], p. 526, eq. (1.8) (cf. [7], p. 355, eq. (II.11)):

∞∑
n=0

(a)n(b)nq
(n+1

2 )

(q)n(qab; q2)n

=
(−q)∞(aq; q2)∞(bq; q2)∞

(qab; q2)∞
. (7)

Corollary 1

N∑
n=0

(q−N)n(b)nq
(n+1

2 )

(q)n(q1−Nb; q2)n

=

{
0 if N is odd
b−ν(q;q2)ν

(q/b;q2)ν
if N = 2ν.

Proof. Set a = q−N in (7) and recall Euler’s identity (−q)∞ = 1/(q; q2)∞. Simplifi-
cation yields the desired result. ¤

Corollary 2

N∑
n=0

(q−N)n(b)nq
n

(q)n(q1−Nb; q2)n

=

{
0 if N is odd
(q;q2)ν

(q/b;q2)ν
if N = 2ν.

Proof. Replace q by 1/q and b by 1/b in Corollary 1 and then simplify the result. ¤

3 The “truncated lecture hall” identity

Combining (5) with the recurrence for Ln,k(q) derived in [3] gives Theorem 1 below.
In this section we give a direct proof.

Theorem 1 Given

Ln,k = q(
k+1
2 )

[
n
k

]
q

(−qn−k+1; q)k

(q2n−k+1; q)k

=
q(

k+1
2 )(q)2n−k

(q)k(q2; q2)n−k(q; q2)n

.

Then

Ln,k =
∑
j≥1

(−1)j−1 qj

(q)j

· 1 − qk(n−k+j)+(k−j+1
2 )

1 − q(
n+1

2 )−(n−k+1
2 )

Ln,k−j. (8)
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Proof. In light of the fact that

k(n − k) +

(
k + 1

2

)
=

(
n + 1

2

)
−

(
n − k + 1

2

)
,

we see that we may rewrite the desired identity as

0 =
∑
j≥0

(−1)j−1 qj

(q)j

· 1 − qk(n−k+j)+(k−j+1
2 )

1 − q(
n+1

2 )−(n−k+1
2 )

Ln,k−j.

Simplifying, we find that the result we wish to prove is equivalent to

∑
j≥0

(−1)jqj

(q)j

Ln,k−j =
∑
j≥0

(−1)jqk(n−k+j)+(k−j+1
2 )+jLn,k−j

(q)j

. (9)

We first evaluate the left-hand side of (9).

∑
j≥0

(−1)jqj

(q)j

Ln,k−j =
∑
j≥0

(−1)jqj

(q)j

q(
j−k
2 )(q)2n−k+j

(q)k−j(q2; q2)n−k+j(q; q2)n

=
(q)2n−k

(q)k(q2; q2)n−k(q; q2)n

k∑
j=0

(−1)jqkj−(j
2)(q−k)jq

j+(j−k
2 )(q2n−k+1)j

(q)j(q2n−2k+2; q2)j

=
(q)2n−kq

(k+1
2 )

(q)k(q2; q2)n−k(q; q2)n

k∑
j=0

(q−k)j(q
2n−k+1)jq

j

(q)j(q2n−2k+2; q2)j

=

{
0 if k is odd

(q)2n−2νq(
2ν+1

2 )(q;q2)ν

(q)2ν(q2;q2)n−2ν(q;q2)n(q2ν−2n;q2)ν
if k = 2ν

(by Corollary 2)

=

{
0 if k is odd
(q;q2)n−ν(q2;q2)n−ν(−1)νqν(2n−ν+2)(q;q2)ν

(q2;q2)ν(q;q2)ν(q;q2)n(q2;q2)n−ν
if k = 2ν

=

{
0 if k is odd

(−1)νqν(2n−ν+2)

(q2;q2)ν(q2n−2ν+1;q2)ν
if k = 2ν.
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Second, we evaluate the right-hand side of (9).

∑
j≥0

(−1)jqk(n−k+j)+(k−j+1
2 )+j

(q)j

Ln,k−j

= qk(n−k)+(k+1
2 )

∑
j≥0

(−1)jq(
j+1
2 )

(q)j

q(
j−k
2 )(q)2n−k+j

(q)k−j(q2; q2)n−k+j(q; q2)n

=
qk(n−k)+k(k+1)

(q)k(q2; q2)n−k(q; q2)n

∑
j≥0

(q−k)j(q
2n−k+1)jq

(j+1
2 )

(q)j(q2n−2k+2; q2)j

(following the same steps as before)

=

{
0 if k is odd
qk(n−k)+k(k+1)−ν(2n−2ν+1)(q)2n−2ν(q;q2)ν

(q)2ν(q2;q2)n−2ν(q;q2)n(q2ν−2n;q2)ν
if k = 2ν

(by Corollary 1)

=

{
0 if k is odd

(q)2n−2νq(
2ν+1

2 )(q;q2)ν

(q)2ν(q2;q2)n−2ν(q;q2)n(q2ν−2n;q2)ν
if k = 2ν

=

{
0 if k is odd

(−1)νqν(2n−ν+2)

(q2;q2)ν(q2n−2ν+1;q2)ν
if k = 2ν.

Thus both sides of (9) are equal to the same expression and consequently (9) is proved.

¤

Question 1: Is the fact that both sides of (9) are equal to the last expression above of
combinatorial significance or interest? This assertion is stronger than the “truncated
lecture hall” identity which only requires that the two sides of (9) are equal.

4 The truncated anti-lecture hall identity

The “five guidelines” method used in [3] to derive a recurrence for An(q) can be
applied to An,k(q). Combining the resulting recurrence with (6) gives rise to the
identity of Theorem 2 below, which we now prove directly.
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Theorem 2

An,k =
∑
j≥1

(−1)j−1

(q; q)j

q(
j
2) − q(

n+1
2 )−(n−k+1

2 )

1 − q(
n+1

2 )−(n−k+1
2 )

An−j,k−j

where

An,k =

[
n
k

]
(−qn−k+1; q)k

(q2(n−k+1); q)k

.

Proof. We note that the desired identity may be rewritten as

∑
j≥0

(−1)j

(q; q)j

q(
j
2) − q(

n+1
2 )−(n−k+1

2 )

1 − q(
n+1

2 )−(n−k+1
2 )

An−j,k−j = 0.

We may assume n ≥ k ≥ 0; otherwise the identity becomes 0 = 0. Hence our desired
theorem reduces to the equivalent assertion that for n ≥ k ≥ 0,

∑
j≥0

(−1)jq(
j
2)

(q; q)j

An−j,k−j = q(
n+1

2 )−(n−k+1
2 )

∑
j≥0

(−1)jAn−j,k−j

(q; q)j

. (10)

As we shall show, each side is equal to{
0 if k is odd

qν(2n−2ν+1)

(q2;q2)ν(q2n−4ν+3;q2)ν
if k = 2ν.

We begin with the left-hand side of (10).

∑
j≥0

(−1)jq(
j
2)

(q; q)j

An−j,k−j

=
k∑

j=0

(−1)jq(
j
2)(q2; q2)n−j(q; q)2n−2k+1

(q; q)j(q; q)k−j(q2; q2)n−k(q; q)2n−k+1−j

=
(q; q)2n−2k+1

(q; q)2n−k+1

[
n
k

]
q2

(−q; q)k

k∑
j=0

(q−k; q)j(q
−2n+k−1; q)jq

(j+1
2 )

(q; q)j(q−2n; q2)j

=
(q; q)2n−2k+1

(q; q)2n−k+1

[
n
k

]
q2

(−q; q)k

{
0 if k is odd
q(−ν)(−2n+2ν−1)(q;q2)ν

(q2n−2ν+2;q2)ν
if k = 2ν

(by Corollary 1)

=

{
0 if k is odd

qν(2n−2ν+1)

(q2;q2)ν(q2n−4ν+3;q2)ν
if k = 2ν,
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as desired.

Now we move to the right-hand side of (10).

q(
n+1

2 )−(n−k+1
2 )

∑
j≥0

(−1)jAn−j,k−j

(q; q)j

= qk(2n−k+1)/2

k∑
j=0

(−1)j(q2; q2)n−j(q; q)2n−2k+1

(q; q)j(q; q)k−j(q2; q2)n−k(q; q)2n−k+1−j

=
qk(2n−k+1)/2(q; q)2n−2k+1

(q; q)2n−k+1

[
n
k

]
q2

(−q; q)k

k∑
j=0

q−k; q)j(q
−2n+k−1; q)jq

j

(q; q)j(q−2n; q2)j

=
qk(2n−k+1)/2(q; q)2n−2k+1

(q; q)2n−k+1

[
n
k

]
q2

(−q; q)k

{
0 if k is odd

(q;q2)ν

(q2n−2ν+2;q2)ν
if k = 2ν

(by Corollary 2)

=

{
0 if k is odd

qν(2n−2ν+1)

(q2;q2)ν(q2n−4ν+3;q2)ν
if k = 2ν,

as desired. Thus both sides of (10) are equal to the same expression and consequently
(10) is proved. ¤
Question 2: First of all, the questions raised about the other identity are completely
relevant concerning the truncated anti-lecture hall identity. In addition, note that
when k is odd,

An,k =
∑
j≥1

(−1)j+1q(
j
2)

(q; q)j

An−j,n−j,

and when k is even, say k = 2ν,

An,k =
∑
j≥1

(−1)j+1q(
j
2)

(q; q)j

An−j,n−j +
qν(2n−2ν+1)

(q2; q2)ν(q2n−4ν+3; q2)ν

.

Is there any direct combinatorial explanation of formulas like these?

What is most striking in the proofs of both identities is the fact that we use
two instances of the same q-analog in each case. Furthermore, the two instances in
question in each case are obtained from each other by replacing all the variables in
question by their reciprocals. This would strongly suggest that there might well be
straightforward elegant proofs of (9) and (10) combinatorially. We show in the next
section that this is the case, although the combinatorial proofs do not explain the
reciprocity.
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5 Combinatorial proofs

In this section we give combinatorial proofs of eqs. (9) and (10). First note from the
definition (4) of An,k that since

(λ1, . . . , λk) ∈ An,k ↔ (λ1 + n − k + 1, λ2 + n − k + 2, . . . , λk + n) ∈ An,k,

∑
{λ∈An,k| λk≥n}

q|λ| = q(
n+1

2 )−(n−k+1
2 )An,k. (11)

Similarly, from the definition (3) of Ln,k, (λ1, . . . , λk) ∈ Ln,k if and only if (λ1+n, λ2+
n − 1, . . . , λk + n − k + 1) ∈ Ln,k and λk > 0. So,

∑
{λ∈Ln,k| λk>n−k+1}

q|λ| = q(
n+1

2 )−(n−k+1
2 )Ln,k. (12)

Lemma 1 If (λ1, . . . , λk) ∈ Ln,k, then (λ1, . . . , λk, a) ∈ Ln,k+1, as long as

0 < a < n − k + 1 < λk or 0 < a < λk ≤ n − k + 1.

Proof. Show that either condition implies that

λk

n − k + 1
≥ a

n − k
> 0.

The strict inequality follows since a > 0. For the other inequality, if 0 < a <
n − k + 1 < λk, then

λk(n − k) − a(n − k + 1) > (n − k + 1)(n − k − a) ≥ 0.

If 0 < a < λk ≤ n − k + 1, then since λk ≥ a + 1 and a ≤ n − k,

λk(n − k) − a(n − k + 1) ≥ (a + 1)(n − k) − a(n − k + 1) = n − k − a ≥ 0.

¤

Lemma 2 If (λ1, . . . , λk) ∈ An,k and λk < n then λk−1 ≥ λk.

Proof. By definition of An,k, λk−1/(n−1) ≥ λk/n. If λk−1 < λk, we have λk(n−1) ≤
nλk−1 ≤ n(λk − 1), and therefore λk ≥ n. ¤
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Now, we interpret identity (9). The set Ln,k is empty when n < k and it contains
only the empty partition when k = 0 and (9) holds in these cases. Thus, assume
n ≥ k ≥ 1.

Let Pj be the set of partitions into j positive parts. Since Pj has generating
function qj/(q)j, the left-hand side of (9) counts the elements of the set ∪j≥0(Pj ×
Ln,k−j), weighted by sign. The sign of a pair (µ, λ) ∈ Pj × Ln,k−j is (−1)j.

For λ = (λ1, . . . , λk), denote by s(λ) the last entry of the sequence, that is,
s(λ) = λk. The right-hand side of (9) can be rewritten as

∑
j≥0

(−1)jqk(n−k+j)+(k−j+1
2 )+jLn,k−j

(q)j

=
∑
j≥0

(−1)j q
j(n−k+j+1)

(q)j

q(
n+1

2 )−(n−(k−j)+1
2 )Ln,k−j.

Note that the factor
qj(n−k+j+1)

(q)j

is the generating function for partitions µ ∈ Pj such that s(µ) ≥ n − k + j + 1. By
(12), the factor

q(
n+1

2 )−(n−(k−j)+1
2 )Ln,k−j

is the generating function for partitions λ in Ln,k−j such that s(λ) > n − k + j + 1.
So, the right-hand side of (9) is counting only those pairs (µ, λ) ∈ ∪j≥0(Pj × Ln,k−j)
such that s(µ) ≥ n − k + j + 1 and s(λ) > n − k + j + 1, weighted by sign. Let

Bj = {(µ, λ) ∈ Pj × Ln,k−j | s(µ) < n − k + j + 1 or s(λ) ≤ n − k + j + 1}.

(If j > k, Bj is empty.) To prove (9), it suffices to define a sign-reversing involution
G on ∪jBj with no fixed points. To simplify the notation, define s(π) = ∞ if π is the
empty partition.

The involution G:

• If 0 < s(µ) < s(λ) then G(µ, λ) = ((µ1, . . . , µj−1), (λ1, . . . , λk−j, µj));

• If 0 < s(λ) ≤ s(µ) G(µ, λ) = ((µ1, . . . , µj, λk−j), (λ1, . . . , λk−j−1)).

Proposition 1 G is a sign-reversing involution on ∪jBj proving (9).

Proof. Let 0 ≤ j ≤ k and let (µ, λ) ∈ Bj. Let (µ′, λ′) = G((µ, λ)). We show that
(µ′, λ′) ∈ Bj−1 ∪ Bj+1 (reversing the sign) and that G((µ′, λ′)) = (µ, λ).

9



Case 1.1: 0 < s(µ) < s(λ). In this case, s(µ) 6= ∞, so j ≥ 1 and

(µ′, λ′) = ((µ1, . . . , µj−1), (λ1, . . . , λk−j, µj)).

If k = j, then since (µ, λ) ∈ Bj, s(µ) < n − k + j + 1 = n + 1. Thus s(λ′) = µj ≤ n
and (µ′, λ′) = ((µ1, . . . , µj−1), (µj)) ∈ Bj−1.

Otherwise, 1 < j < k and 0 < µj < λk−j. If λk−j > n − k + j + 1, then
0 < µj < n − k + j + 1. Otherwise, µj < λk−j ≤ n − k + j + 1. In either case, by
Lemma 1, (λ1, . . . , λk−j, µj) ∈ Ln,k−j+1. Also, in either case, s(λ′) = µj ≤ n − k + j
thus (µ′, λ′) ∈ Bj−1.

In Case 1.1, either s(µ′) = ∞ or s(µ′) = µj−1. Either way, since µ ∈ Pj, s(µ′) ≥
s(λ′) = µj and therefore G((µ′, λ′)) = (µ, λ).

Case 1.2: 0 < s(λ) ≤ s(µ). In this case, since k > 0, it must be that k − j > 0 and

(µ′, λ′) = ((µ1, . . . , µj, λk−j), (λ1, . . . , λk−j−1)).

If j = 0, then since (µ, λ) ∈ Bj, it must be that λk = λk−j ≤ n − k + 1 and therefore
(µ′, λ′) = ((λk), (λ1, . . . , λk−1) ∈ B1.

Otherwise, 0 < λk−j ≤ µj. Then (µ1, . . . , µj, λk−j) ∈ Pj+1 and (λ1, . . . , λk−j−1) ∈
Ln,k−j−1. Since (µ, λ) ∈ Bj, either λk−j ≥ n− k + j + 1 or λk−j ≤ µj < n− k + j + 1.
In either case, λk−j < n − k + j + 2, so (µ′, λ′) ∈ Bj+1.

In Case 1.2, either s(λ′) = ∞ or s(λ′) = µj−1. Either way, since λ ∈ Ln,k−j,
s(λ′) ≥ s(µ′) = λk−j and therefore G((µ′, λ′)) = (µ, λ). ¤

The combinatorial proof of (10) is similar. Again, we assume n ≥ k ≥ 1, since
otherwise the identity is true. Let Dj be the set of partitions µ into j nonnegative
distinct parts (µ1 > µ2 > . . . > µj−1 > µj ≥ 0). Since Dj has generating function

q(
j
2)/(q)j, the left-hand side of (10) counts the elements of the set ∪j≥0(Dj×An−j,k−j),

weighted by sign.

The right-hand side of (10) can be rewritten as

q(
n+1

2 )−(n−k+1
2 )

∑
j

(−1)j

(q)j

An−j,k−j =
∑

j

(−1)j q
(n+1

2 )−(n−j+1
2 )

(q)j

q(
n−j+1

2 )−(n−k+1
2 )An−j,k−j.

The factor
q(

n+1
2 )−(n−j+1

2 )

(q)j

is the generating functions for partitions µ ∈ Dj such that s(µ) > n− j. By (11), the
factor

q(
n−j+1

2 )−(n−k+1
2 )An−j,k−j

10



is the generating function of compositions λ in An−j,k−j such that s(λ) ≥ n − j.
So, the right-hand side of (10) is counting only those pairs (µ, λ) ∈ ∪j≥0(Dj×An−j,k−j)
such that s(µ) > n − k + j + 1 and s(λ) ≥ n − k + j + 1, weighted by (−1)j.

Therefore to prove Equation (10), it suffices to define a sign-reversing involution
F , with no fixed points, on the set ∪jAj where

Aj = {(µ, λ) ∈ Dj × An−j,k−j| s(µ) ≤ n − j or s(λ) < n − j}
and the sign of an element of Aj is (−1)j.

The involution F :

• If s(µ) ≤ s(λ) then F (µ, λ) = ((µ1, . . . , µj−1), (λ1, . . . , λk−j, µj));

• If s(λ) < s(µ) F (µ, λ) = ((µ1, . . . , µj, λk−j), (λ1, . . . , λk−j−1)).

Proposition 2 F is a sign-reversing involution on ∪jAj proving (10).

Proof. Let 0 ≤ j ≤ k and let (µ, λ) ∈ Aj. Let (µ′, λ′) = F ((µ, λ)). We show that
(µ′, λ′) ∈ Aj−1 ∪ Aj+1 (reversing the sign) and that F ((µ′, λ′)) = (µ, λ).

Case 2.1: s(µ) ≤ s(λ). Since k ≥ 1, µ and λ cannot both be empty, so s(µ) 6= ∞,
and j ≥ 1 and

(µ′, λ′) = ((µ1, . . . , µj−1), (λ1, . . . , λk−j, µj)).

Then µ′ ∈ Dj−1 and λ′ ∈ An−j+1,k−j+1, since either λ is empty or λk−j = s(λ) ≥
s(µ) = µj.

Since (µ, λ) ∈ Aj, either s(µ) ≤ n − j or s(µ) ≤ s(λ) < n − j. In either case,

s(λ′) = µj = s(µ) < n − j + 1

and thus (µ′, λ′) ∈ Aj−1.

To show that s(λ′) < s(µ′), if j = 1, then s(µ′) = ∞, whereas s(λ′) = µj;
otherwise s(λ′) = µj < µj−1 = s(µ′), since µ ∈ Dj. Thus, F ((µ′, λ′)) = (µ, λ).

Case 2.2: s(λ) < s(µ). In this case, λ cannot be empty so 0 ≤ j < k and

(µ′, λ′) = ((µ1, . . . , µj, λk−j), (λ1, . . . , λk−j−1)).

Then λ′ ∈ An−j−1,k−j−1 and µ′ ∈ Dj+1, since either µ is empty or µj = s(µ) > s(λ) =
λk−j. Furthermore, since (µ, λ) ∈ Bj, we have s(λ) < n − j or s(λ) < s(µ) ≤ n − j.
In either case, s(µ′) = λk−j = s(λ) ≤ n − j − 1 and thus (µ′, λ′) ∈ Aj+1.

Finally, we need to show that s(µ′) ≤ s(λ′) so that F ((µ′, λ′)) = (µ, λ). This is
clearly true if k − j = 1. Otherwise, since λk−j < n− j, by Lemma 2, s(µ′) = λk−j ≤
λk−j−1 = s(λ′). ¤

11



References

[1] George E. Andrews. On the q-analog of Kummer’s theorem and applications.
Duke Math. J., 40:525–528, 1973.

[2] Mireille Bousquet-Mélou and Kimmo Eriksson. Lecture hall partitions. Ramanu-
jan J., 1(1):101–111, 1997.

[3] Sylvie Corteel, Sunyoung Lee, and Carla D. Savage. Five guidelines for partition
analysis with applications to lecture hall-type theorems. Integers. to appear,
special volume of the Proceedings of the Integers Conference 2005 in honor of
Ron Graham, math.CO/0605738.

[4] Sylvie Corteel, Sunyoung Lee, and Carla D. Savage. Enumeration of sequences
constrained by the ratio of consecutive parts. Sém. Lothar. Combin., 54A:Art.
B54Aa, 12 pp. (electronic), 2005/06.

[5] Sylvie Corteel and Carla D. Savage. Anti-lecture hall compositions. Discrete
Math., 263(1-3):275–280, 2003.

[6] Sylvie Corteel and Carla D. Savage. Lecture hall theorems, q-series and truncated
objects. J. Combin. Theory Ser. A, 108(2):217–245, 2004.

[7] George Gasper and Mizan Rahman. Basic hypergeometric series, volume 35 of
Encyclopedia of Mathematics and its Applications. Cambridge University Press,
Cambridge, 1990. With a foreword by Richard Askey.

12


