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Abstract

It is well known that games with the parity winning condition admit positional
determinacy : the winner has always a positional (memoryless) strategy. This prop-
erty continues to hold if edges rather than vertices are labeled. We show that in this
latter case the converse is also true. That is, a winning condition over arbitrary set
of colors admits positional determinacy in all games if and only if it can be reduced
to a parity condition with some finite number of priorities.

1 Introduction

We consider games with perfect information of possibly infinite duration played
by two players, Eva and Adam. The arena of a game is a graph whose ver-
tices are positions (partitioned among the players), and edges specify possible
moves, so that a play is a maximal path in the arena. If it ends in a dead-
lock position, the player who should move, looses. If a play is infinite, the
winner is specified by a winning criterion. In classical setting (see, e.g.,[11]),
the vertices of an arena are colored in some set of colors A and the winning
plays, of Eva say, are specified by a set W C A“. A parity criterion of order
n involves the colors in {0, 1,...,n} (usually called ranks), and consists of all
sequences u with limsup,_ (u;) even. That is, Eva wins an infinite play if
the highest! rank repeating infinitely often is even, otherwise Adam is the
winner. A (vertex-labeled) parity game is a game with a parity condition of
some finite order.
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It is well-known that parity games admit positional determinacy: For any
position, one of the players can win the game using a positional (memoryless,
history—free) strategy.

Here the mere determinacy follows from a much more general theorem of
Martin [5] (1975), which states that all games with Borel conditions are de-
termined. Indeed, the parity conditions are on the level Ag in the Borel hi-
erarchy. Positional determinacy of these games was established in the early
1990ties, independently by Emerson and Jutla [2], A. W. Mostowski [7] and
McNaughton [6].

Recently, Griadel and Walukiewicz [4] (see also [3]) extended the result to
suitably defined parity games over infinite alphabet. As a special case they
showed the positional determinacy of a game where Eva must force some
rank to repeat infinitely often. It is interesting that the conditions considered
by Gréadel and Walukiewicz have higher Borel complexity than the parity
conditions (namely AY).

However, one can also find very simple winning conditions which guarantee
positional determinacy, without resemblance to parity condition. For instance
(a+b)*(ab)¥, in which case Eva has to force the two labels to alternate since
some moment on.

The positional determinacy is very helpful, in particular in the search for
efficient algorithms for game solving. Therefore it is natural to ask if there is
any characterization of this property, e.g. in language-theoretic terms.

A starting point of the present work is an observation that if edges rather than
vertices are labeled then the parity conditions (of finite order) still guarantee
positional determinacy, but the other examples mentioned above loose this
property. It suggests that in the edge-labeled case there is less positionally
determined games. We show that indeed, in this case, the parity games of
finite order are in a strong sense the only positionally determined games.

A similar result was previously shown by McNaughton [6] and Zielonka [11]
under an extra hypothesis that the alphabet is finite? and the winning condi-
tion is a Muller condition. Recall that a Muller condition is given by a family
F C p(A) and Eva wins a play if the set of colors occurring infinitely often
is in F. Strictly speaking, the setting of [6,11] was slightly different, as these
authors considered arenas with partial labeling of vertices and also formulated
the parity criterion slightly differently, however it it easy to see that games
with labeled edges can be reduced to that case.

2 Zielonka [11] removed an additional assumption of [6] that the arenas of games
are finite.



The result presented here is more general, as we allow an alphabet to be
infinite, and do not restrict ourselves to Muller conditions. We only make a
much weaker proviso that the result of a play does not depend on any initial
segment of the play. This assumption permits us to disregard an initial position
of the game.

2 Basic concepts

Let A be an alphabet of arbitrary cardinality and let W C A“. A game with
the winning criterion W can be presented by a tuple

(Ve ,Va, Move, W)

where Vi and V) are (disjoint) sets of positions of Eva and Adam, respectively,
and Move CV x A x V is the relation of possible moves, with V' = Vi U V4.
We view a triplet (p,a,q) € Move as an edge from p to ¢ labeled by a. Note
that there can be many edges between two vertices, labeled by different letters
in A. As we are interested in infinite plays, we will make a proviso that, for
any g € V, there are always some a and p such that (¢, a,p) € Move.

A play is therefore an infinite sequence of labeled edges; we represent it by a
sequence

™ = (p0700>p1>a17p2> s )

where (p;, a;, pit1) € Move, and we let a; = (ag,a1,as,...) be the w-word
induced by 7. Eva wins the play if a, € W, otherwise Adam is the winner.

A strategy for player X indicates a possible move, given an actual history of
the play. We can present it as a partial mapping S from (V U A)* to Move.
Whenever ~ is an initial segment of some play ending in a position of X, say
p € Vx, the mapping S maps it to some edge (p,a,q) € Move. A play 7 is
consistent with S if

(pi, aiapi—i-l) = S(PO, o, P1,Aa1,pP2, - - ~pz')

whenever p; € Vy. A strategy is winning for X from position p if any play
starting with py = p and consistent with S is won by X. In this case p is a
winning position of X (of course, p need not belong to Vy).

A strategy is positional if it does not depend on the whole history of the play
so far, but only on the last position which is an actual position of the play.
That is, a positional strategy is a (total) function S : Vx — Mowve which maps
p in Vx to some labeled edge (p,a,q) € Move. The consistency of a play =
with S now amounts to the condition (p;, a;, pi+1) = S(p;), whenever p; € Vy.



We say that a game as above is positionally determined if, for any position
p, there exists a winning positional strategy from this position for one of the
players.

Definition 1 A language W C A% is a generalized parity criterion (of order
n) if there exists a mapping h : A — {0,1,...,n}, such that v € W iff
limsup,_, . (h(u;)) is even.

Proposition 2 Any game with a generalized parity criterion is positionally
determined.

Proof. We will deduce it from the result in the classical, vertex-labeled case.
Recall that a vertex-labeled parity game with n priorities is described by a
tuple (Vg, Va4, Move, rank), where rank : V. — {0,1,...,n}. By definition,
Eva wins a play @ = (po,p1,...) iff limsup, . rank(p;) is even. Now, for
an edge-labeled game with generalized parity criterion as defined above, we
form a vertex-labeled game by replacing each edge (p,a,q) € Move by two
edges (D, Vpa,q) and (V(pa,q):q), Where v, 44 is a new vertex, and setting
rank(Vp.a,q)) = h(a) and rank(p) = rank(q) = 0. By positional determinacy
of classical parity games (see [11]?), for any position p of the original game,
one of the players has a positional winning strategy from this position in the
modified game. Now it is easy to see that the same strategy with obvious
modifications is also winning in the original game. O

Our goal here is to establish a converse to the above proposition. However,
since we are interested in infinite games, we will restrict considerations to
criteria which do not depend on finite initial segments of plays*.

Definition 3 The set W C A% is uniform if W = AW} in other words, for
any u € A¥ and v € A*, we have u e W <= vu € W.

The main result of the paper is the following.

Theorem 4 Suppose W C A% is uniform and any game with the winning cri-
terion W is positionally determined. Then W is a generalized parity condition
of some finite order n.

3 Basically, Zielonka [11] considers arenas with finite branching, but notes in a
footnote 2 that this assumption is inessential. Another proof, for arbitrary graphs,
can be found in [10].

4 Otherwise we would have many uninteresting criteria forcing positional determi-
nacy as, e.g., a(a + b)“.



From Theorem 4 and Proposition 2 it follows immediately that a uniform set
W guarantees the positional determinacy in all games if and only if it is a
generalized parity condition.

We end this section by an observation that, in a positionally determined game
with a uniform condition, the winning strategies can be global, i.e., indepen-
dent from starting positions.

Lemma 5 If W is uniform and a game (Vg,Va, Move, W) s positionally
determined then there are two positional strategies Sg : Vg — Move and
Sa:Vy— Move, for Eva and for Adam respectively, such that, for any posi-
tion p, one of them is winning from p.

Proof. For an Eva’s positional strategy S, let w(S) be the set of all posi-
tions p, such that S is winning from p. By uniformity, S is also winning from
any position reachable from any p € w(.5), if Eva plays according to S. Con-
sequently, if another positional strategy S’ coincides with S over w(S) then
w(S) Cw(S').

Define now a preorder over positional strategies for Eva in the following way:
S1 C Sy if w(S1) € w(Sy) and the strategies S; and Sy coincide over w(Sy).
For any set L of positional strategies totally ordered by C, we can construct
a positional strategy S* which is an upper bound for L w.r.t. C. Namely, we
let SE(p) = S(p), whenever p € w(S), for some S € L; elsewhere S’ is defined
arbitrarily.

It follows by Zorn’s lemma that there exists a positional strategy S maximal
for C. Assume now that some position p not in w(Sg) is winning for Eva using
some positional strategy, say S. Then the new strategy S’ defined by

.« JSelq) if g€ w(Sk)
) = {S(q) otherwise

is winning for all positions in w(Sg)U{p} and do coincide with Sg over w(SEg).
This contradicts the maximality of Sg. Hence we have constructed a strategy
which allows Eva to win from every position which was winning with some
positional strategy.

Constructing by symmetry a similar strategy for Adam and applying posi-
tional determinacy yields directly the result.



3 Proof of Theorem 4

We fix an alphabet A and a set W C A“; we assume that W is uniform and
any game with a winning criterion W is positionally determined.

For L C A%, we let Ly be the set {u € AT | u¥ € L}. Since this set is defined as
the inverse image of L by the mapping u +— u*, for its complement L = A¥—L,
we have (L), = A* — Ly. We denote the last set by Ly.

We will often use the fact that inversing the roles of Eva and Adam does not
change the argument; we will refer to this as to the principle of symmetry. In
particular this amounts in exchanging W with W, and consequently also W}
with W.

Lemma 6 For any u,v € A", uv € Wy if and only if vu € W;.

Proof. Let uv be an element of W;. By definition of W; we have (uv)Y € W
or equivalently u(vu)® € W. By uniformity we obtain (vu)* € W. This proves
vu € Wy. The other implication follows by inverting the role of v and v. O

Lemma 7 We have W;* C W.

Proof. Suppose to the contrary w € W;* — W. Consider a game where all
positions belong to Adam, and there is a distinguished position such that, for
all u € Wy, there is a loop from this position to itself labeled by w:

Wy

Adam

Then Adam wins this game by playing the successive parts of w. By assump-
tion, Adam also wins with a positional strategy, that is by playing always the
same word u € W;. Thus u* ¢ W and consequently u ¢ W}, a contradic-
tion. O

Corollary 8 For any two words u,v € Wy, uv € W;.

Proof. As u € Wy and v € W}, according to the Lemma 7, (uv)* € W and
thus uwv € Wy. O



Lemma 9 For any L, L' C A" we have

Vel JueLuweW, 4ff JueLVvel wel;.

Proof. (<) Obvious.

(=) Let us consider the following game G.

Adam

L/

Let us suppose that Vo € L'.3u € L.uv € Wy (*). According to Lemmas 6
and 7, Eva wins the game G by playing after each move v € L’ of Adam
the corresponding u € L obtained from (*). Eva wins also with a positional
strategy, which means by playing always the same word v € L. Adam can
then choose to play systematically any word w € L’. As he always looses, we
conclude that uv € Wy. O

Lemma 10 Fora € A and B C A such that aB C Wy, there is n > 0 such
that a" Bt C Wj.

Proof. Let us first show (*) that for any v € BT thereis u € a™ such that uv €
W;. By induction on the length of v. If v = b for some b € B, then the property
holds with u = a. Let v = bv’ for some b € B. By induction hypothesis, there
exists u’ € A such that v'v' € W}. Furthermore by hypothesis ab € W}, hence
also ba € W, by Lemma 6. Hence, by Corollary 8, uw'v'ba € Wy. By Lemma 6
it follows that (au')v € W}, which is the claim for v, hence (*) is satisfied.

Now the result follows from Lemma 9 with L =a™ and L' = BT. O

Lemma 11 Fora € ANW; and B C A such that aB C Wy, aB* C W;.

Proof. Let £ = {n > 1 | a"B* C W;}. According to Lemma 10, E is not
empty.

For n € E and any v € B, a € W; and a"u € W}, thus a"tu € W
(Corollary 8). Consequently n + 1 € E. According to this, there is some
integer k > 1, such that £ ={k+n:n < w}.

We will show that & = 1. Suppose to the contrary that & > 1 and let p
be k —1. We have p € E but 2p € E. As p ¢ E, there is some u € BT such
that aPu € W;. By Lemma 6, ua? € W; also holds. Then, by Corollary 8,



aPuua®? € W;. It follows by Lemma 6 again that a®’uu € Wy and thus 2p € F,
a contradiction.

Since k =1, aB™ C W}. As furthermore a € W}, one obtains aB* C W;. O

Let Apbe{a€A|aeW;}and Aybe A—Ap={a€A|aeW;} Forac
Apg, let g(a) be {b€ Ay | ab € W;}. For any a,a’ € Ag one defines a T o’ by

aCd iff  gla) Cg(d).

We define ~ the equivalence relation associated to C, that is ~=C N C~1
The relation C is the strict version of C, meaning C=C — ~. Equivalently,
a C a’ holds for a, a’ in A if and only if there exists b € A 4 such that ab € Wf
and a'b € Wj.

Lemma 12 The relation C s a total preorder.

Proof. By definition, C is a preorder.

Let us suppose that there are two elements a and a’ of Ag incomparable for C.
This means that there is b € g(a) — g(a’) and V' € g(a’) — g(a).

We have ab € Wy and @'t/ € W} and thus aba’t’ € Wy (Corollary 8). Simi-
larly b'a € W} and ba’ € Wyand thus aba’t' € W; (Corollary 8 and symmetric
version of Lemma 6), a contradiction. O

Lemma 13 The relation ~ is of finite index.

Proof. As the equivalences classes of ~ are totally ordered by C (Lemma 12),
it is sufficient to show that there exists no infinite strictly monotonic sequence
of elements of Ag.

Let us suppose that there is an infinite sequence a3 C ay T .... Let b; be
for all 7+ € N such that a;b; € Wf and a;11b; € Wy. From Lemma 7 and
hypothesis b;a;11 € Wy, we have bjashy - -- € W, and thus aibiay--- € W (by
uniformity). However, as for all 4, a;b; € W}, from the symmetric version of
Lemma 7, a1biasy - -- € W. There is a contradiction.

For infinite decreasing sequences the same kind of argument can be applied. O

Lemma 14 There exists an integer n and 2n subsets of A By,...,Bs,, such
that :

(1) the B;’s form a partition of A,



(2) for any k €
(3) for any k €

(4) for any k €
(5) for any k €

n]; BQk‘ g VVf;

n]; BQk—l g Wf7

n] and [ S 2]{3, B2kBl Q M/}, L
n] and 1 S 2k — 1, B2k’—lBl g M/}

Proof. According to Lemma 13, there is a finite number p of equivalences
classes of ~, and those equivalence classes are totally ordered by C. Let C; C
.-+ L Oy be those equivalence classes. We set n = p + 1 and define (B;)ic[2n]
as follows.

By =g(Cy),
for any k € [p], By, = Cy,
forany k € {2,...,p},  Bax-1 = 9g(Ck) — 9(Cy-1),
Bopi1 = A —g(Cy),
Bopyo =10.

By definition, { By : k € [p+1]} is a partition of Ag and {Box—; : k € [p+1]}
is a partition of A 4. This establishes points 7, 2 and 3.

Ad 4. Let us consider k € [p] and | < 2k. If [ is even, then By, C W}
and B; € Wy and thus by Corollary 8, By, B; € Wy, If | is odd, then by
definition B; C ¢(By41), and thus B; C g(Bsay) since Bj11 = Bag. By definition
of g, we have By, B; C W;. Finally, for k = p+ 1, By, = () and thus for any I,
Bop By € Wy.

Ad 5. Let k € [n] and | < 2k—1.1f [ is odd, then both Byy_; C W} and B; C W;
and thus according to the symmetric version of Corollary 8, Bo,_1B; C Wf
Suppose [ is even, hence necessarily k& > 1, and % < k — 1. We have by
definition, B; = C%, hence B; C Cy_1. Moreover, for b € Bog_1, b & g(Ck_1);

hence, for any a € By, b € g(a). Consequently ab € W;. O

Theorem 4 follows immediately from the following.

Lemma 15 W is a generalized parity condition.

Proof. Let Bj,...,By, be in Lemma 14. Define h(a) = i, whenever a €
B;. We need to show that v € W iff limsup,_ . (h(u;)) is even. Let | =
limsup,_, . (h(u;)); by uniformity we can assume that [ is also maximum
of h(u;). Set Ay = U, B;. Hence u can be decomposed into finite words
u = wWy. .., where w; € BjA;. Now, if [ is even then by Lemma 14 and
Corollary 8, w; € W;. Hence, by Lemma 7, u € W. If [ is odd then it follows
by symmetric argument that v € W. O



Finally, let us comment on the assumptions on W needed in Theorem 4.

It can be seen from the proof that it would be enough to require that any game
with criterion W and countable number of positions is positionally determined.
However we cannot restrict considerations to finite games, as the following
example shows.

Let A be {a,b} and p be the mapping from A* to the set of integers defined
by p(e) =0, p(au) = p(u) + 1 and p(bu) = p(u) — 1. Let us now consider as
accepting condition the set of words w € A% such that {p(u) | v € A*, v C w}
admits an upper bound (C being the prefix relation). This winning condition
is not a parity condition (in fact, it is not even w-regular). However, one can
show that on every finite game with this accepting condition, the winner has a
positional strategy. In fact, this kind of accepting condition is closely related to
the mean—payoff games which are positionally determined [9,1] (see also [8]).

It turns out that we cannot even restrict the assumption of Theorem 4 to games
with finite out—degree. Indeed, Gradel and Walukiewicz [4] showed that the
following condition over alphabet w guarantees the positional determinacy of
vertex—labeled games: Adam wins whenever some rank repeats infinitely often
and the minimal such rank is odd. We claim that any edge-labeled game with
this condition is positionally determined provided that each position has finite
out—degree. Indeed, for any such game we can construct a vertex-labeled game
similarly as in the proof of Proposition 2. For each position p replace each edge
(p,a,q) € Move by two edges (p, V(p,a,q)) and (V(p,a,q), @), Where v, 4 4) is a new
vertex, and set 7ank(v(paq) = a and rank(p) = max{b : (p,b,q') € Move}.
Then it is easy to see that a positional winning strategy for either player can
be transferred from the modified game to the original, edge—labeled game. A
similar reduction is possible under the assumption of finite in-degree.

Nevertheless, we believe that there should exist some natural characterizations
of the positional determinacy over finite and finitely branching games; it is the
subject of further research.
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