Unambiguity in Automata Theory

Thomas Colcombet

CNRs, Université Paris 7 - Paris Diderot
thomas.colcombet@liafa.univ-paris-diderot.fr

Abstract. Determinism of devices is a key aspect throughout all of
computer science, simply because of considerations of efficiency of the
implementation. One possible way (among others) to relax this notion
is to consider unambiguous machines: non-deterministic machines that
have at most one accepting run on each input.

In this paper, we will investigate the nature of unambiguity in automata
theory, presenting the cases of standard finite words up to infinite trees,
as well as data-words and tropical automata. Our goal is to show how
this notion of unambiguity is so far not well understood, and how em-
barrassing open questions remain open.

1 Introduction

In many areas of computer science, the relationship between deterministic and
non-deterministic devices is extensively studied. This is in particular the case
in complexity theory, and also in automata theory. The notion of unambiguous
devices, i.e., non-deterministic devices that have at most one accepting execution
for each accepted input, is a natural intermediate class that is potentially more
expressive (or succinct) than deterministic devices, while behaviorally easier to
handle than general non-deterministic machines.

One specificity of this class is that it is a semantic one: a priori, nobody knows
whether a given Turing machine is unambiguous or not. This is undecidable, and
even providing a witness of unambiguity is not possible.

Even for weaker complexity classes, such as logspace, the status of the unam-
biguous machines is not settled. Indeed, unambiguous logspace (UL) is located
somewhere between deterministic logspace (L) and non-deterministic logspace
NL. Since L and NL are not known to be separated, the separation of UL with
respect to either L or NL is also open. This class UL is also interesting, since it is
known to contain planar reachability, while the main complete problem for NL
is general reachability in a directed-graph. Interestingly, Allender and Reinhardt
have shown that in non-uniform complexity classes (i.e., in the presence of ad-
vice), logspace and non-deterministic logspace coincide [35].

In the world of automata, the picture is better understood. As a first key dif-
ference, unambiguity becomes easily decidable, and furthermore, it is possible to
compute and work with witnesses of unambiguity. Nevertheless, many questions
related to unambiguity are embarrassingly open and surprisingly complicated.

In fact, the subject of unambiguity related to automata is so wide that it
would require a much larger and ambitious presentation in itself. The reader



interested in pursuing these subjects further will find a lot of material in [15,36],
and in surveys such as [17] for standard word automata.

Many subjects involving unambiguity cannot even be mentioned in this pa-
per. This includes unambiguous non-finite state machines (such as pushdown au-
tomata, see e.g., [17,31] or less standard forms of automata such as constrained
automaton in [6]) or unambiguous regular expressions. Even the theory of codes
is in essence a study of unambiguity. There are also some intermediate forms of
restricted ambiguity, such as m-ambiguity or polynomial ambiguity (when the
number of accepting runs are bounded by m, or by a polynomial in the length
of the input) [24], as well as restricted syntactic variants of unambiguous au-
tomata ([25] among others). The unambiguous polynomial closure of a family
of languages has also been characterized [32]. Other algorithmic questions have
also be addressed, such as the inference of automata [12]. Unambiguity is also a
very important and a well studied subject in connection with transducers since
unambiguous transducers are very close to functional ones (transducers which,
instead of a relation, recognize a function) [39,2,43] . Unambiguity can also be
considered in the analysis of rational subsets of monoids in the absolute [3]. Un-
ambiguity can also be studied for extended notions of words, and in particular
infinite words. Over infinite words of length w, a very important notion of un-
ambiguous automata is the one of prophetic automata [9] (a semantic version of
determinism from right to left). Also, on infinite words of unrestricted langth,
and even for more general classes of automata, compiling temporal logics yields
unambiguous automata [13]. None of these topics will be addressed in this paper.

This paper does not intend to make any exhaustive survey of the large body
of works related to unambiguity. It rather offers a tour, visiting several arbitrarily
chosen topics, involving significantly different situations. This tour starts with
standard non-deterministic word automata and their unambiguous subclasses.
Several complexity arguments are elegant and worth knowing in this context,
such as the use of communication complexity, and the counting principle for de-
ciding universality in polynomial time. We continue with tropical automata. This
specific kind of weighted automata computes functions from words to integers.
We will see that some elementary problems are undecidable for such automata,
and that unambiguous automata are a subclass that appears naturally and has
good decidability properties. The description then proceeds with the infinite tree
case, in which the story is completely different. There, unambiguity is related
to the problem of existence of choice functions. We will finish with a study of
register automata, where unambiguity turns out to be a very important subclass.
Recent unpublished results obtained with Puppis and Skrcypczak sustain this
idea.

In this paper, we will consider the case of finite-state automata (Section 2),
of tropical automata (Section 3), of automata over infinite trees (Section 4) and
of automata over data words (Section 5). In the first three situations, we will see
that difficult questions remain open. The last case will report on recent unpub-
lished work in which a constructive understanding of the notion of unambiguity
yields new results.



2 Unambiguous word automata

In this section, we consider unambiguous automata over finite words. Let us first
briefly recall some standard notation.

In this section, we adopt the standard terminology concerning (finite-state)
non-deterministic automata. A non-deterministic automaton A reading words
over the alphabet A has a finite set of states @Q, a set of initial states I, a set
of final states F, and a transition relation A C Q x A x A. A run p over the
input word ag - - - a, of the automaton is a sequence of transitions of the form
(qo,a1,q1)(q1,a2,92) - -+ (@n—1,An, Gn) € A*. Tt is accepting if furthermore gy € T
and g, € F. If an accepting run exists over an input word u, then u is accepted.
The language recognized by the automaton is the set of accepted words. It is
denoted L(A). Languages recognized by an automaton are called regular. An
automaton is deterministic if for all states p and all letters a € A there exists at
most one state r such that (p, a,r) is a transition. An automaton is unambiguous
if for all input words there exists at most one accepting run over it.

One of the first results we learn in an automata course is the inherent expo-
nential blowup of determinization.

Theorem 1 ([34,27,28,29]). Non-deterministic word automata of size n can
be transformed into deterministic and complete automata of size at most 2™ for
the same language. This bound is tight.

The witness automaton for the lower bound is very natural: it checks that the
n-th letter from the end is a b (over the alphabet a,b):

a,b

)

S0 ) @b@b@ @_b,@

However, though this example is non-deterministic, if we reverse the orien-
tation of its edges (yielding the mirror automaton), we obtain a deterministic
automaton. This implies that it has at most one accepting run over each input:
it is unambiguous. It happens also, as a consequence, that it is very easy to
complement it: One adds a new state 1 with self loops labelled a, b, and linked
to 1 by an a transition. Then, it is sufficient to complement the set of initial
states for complementing the accepted language.

This example shows that the class of unambiguous automata is potentially an
interesting compromise between succinctness (these can be exponentially smaller
than deterministic automata) and tractability of fundamental problems.

Theorem 2 ([22,23,24]). Unambiguous automata can be exponentially more
succinct than deterministic automata. Non-deterministic automata can be expo-
nentially more succinct than unambiguous ones.



Remark 1. Deciding if a non-deterministic word automaton 4 is unambiguous
is doable in polynomial time. The principle is as follows: consider the product of
the automaton A with itself. Over a given input, an accepting run of this new
automaton can be seen as the pair of two accepting runs of A over this input. It
is easy to slightly modify this automaton in such a way that it accepts an input
if and only if the input is accepted by two distinct accepting runs of A (this can
be achieved, e.g., by adding one extra bit to each state storing whether the two
runs have differed so far). This new automaton has quadratic size in the original
one. It accepts an input if and only if the original automaton is ambiguous. Thus,
the non-deterministic automaton 4 is unambiguous if and only if the language
recognized by this new automaton is empty. This can be tested in polynomial
time (NL more precisely).

Using variations around these ideas, we can show that unambiguity is decid-
able for all the classes of automata considered in this paper (tropical automata,
infinite tree automata as well as register automata).

There is at least one strong evidence that unambiguous automata are inher-
ently simpler than general non-deterministic automata. This is the complexity
of the equivalence, containment, and universality problems. In general, given
two non-deterministic automata recognizing the languages K, L respectively, the
problem of equivalence “K = L7, of containment “K C L7’ and of universal-
ity “K = A*7” are known to be PSPACE-complete. This is not the case for
unambiguous automata, as shown in the following theorem.

Theorem 3 ([41,40]). The problems of universality and equivalence of unam-
biguous automata as well as containment of a non-deterministic automaton in
an unambiguous automaton are solvable in polynomial time.

We shall see in this section a complete proof of this result, which is a good excuse
for introducing several important techniques.

Of course, knowing this complexity result, and since universality amounts to
checking the emptiness of the complement, one might think that another proof
of this result could be as follows: complement the unambiguous automaton with
a polynomial blowup of states, and then test for emptiness in polynomial time.
However, the question of whether unambiguous automata can be complemented
with a polynomial blowup in the number of states is an open problem.

Conjecture 1. It is possible to complement unambiguous automata of size n into
unambiguous automata of size polynomial in n.

In fact, even whether we can complement an unambiguous automaton into a
non-deterministic automaton of polynomial size is open. We lack techniques for
addressing this question. In particular, how can we prove a lower bound on the
size of an unambiguous automaton for a given language?

Communication complexity and the rank technique [37,23,24] There is a nice
technique for proving lower bounds on the size of an unambiguous automaton for
a language, based on communication complexity. Consider a language L C A*.



Define the communication relation Com(L) C A* x A* to be the set of ordered
pairs (u, v) such that uv € L. A subset of A* x A* is called a rectangle if it is of the
form M x N for M, N C A*. A non-deterministic decomposition of R C A* x A*
is a finite union of rectangles, and its complexity is the number of rectangles
involved in the union. An unambiguous decomposition is a non-deterministic
decomposition into disjoint rectangles. The non-deterministic complexity of R
(resp., unambiguous complexity) is the minimal complexity nd-comp(R) (resp.,
unamb-comp(R)) of a non-deterministic decomposition (resp., unambiguous de-
composition) of R.

It is easy to show that a language L accepted by a non-deterministic au-
tomaton with n states is such that nd-comp(Com(L)) < n. Indeed, define L;,
to be the language recognized by the automaton when the set of final states
is set to {¢}, and L4 p to be the language recognized by the automaton when
the set of initial states is set to be {q}. Clearly, for all words u,v, uv € L if
and only if there exists a state ¢ such that v € Ly, and v € Ly p. This means
that Com(L) = UgeqLy 4 X Ly . We have found a non-deterministic decompo-
sition for Com(L) of complexity n.

Pushing further, a language L accepted by an unambiguous automaton of
size n is such that unamb-comp(Com(L)) < n. Indeed, consider the non-deter-
ministic decomposition Com(L) = UgeqLz,q X Lg r as in the non-deterministic
case, and assume it would be ambiguous. This would mean that there are two
distinct states p,q such that Ly, N Ly, # 0 and L, p N Ly p # 0. Let u be a
word in the first intersection, and v be a word in the second. Then the word uv
is accepted by two distinct runs: one that reaches state p after reading u, and
the other that reaches state ¢ at the same position. This contradicts the unam-
biguity assumption. Thus, Ugeq L1 ¢ X Lg F is an unambiguous decomposition of
complexity n.

Linear algebra offers an elegant way to bound the unambiguous complexity
of a relation from below. Indeed, we can identify a relation R C E x F with its
characteristic matriz: rows are indexed by E and columns by F', and the entry
indexed by words z,y is 1 if (z,y) € R and 0 otherwise.

Lemma 1. rank(R) < unamb-comp(R).

Proof. A union of disjoint rectangles can be understood as the sum of the char-
acteristic matrices representing them. Since the rank of a matrix that “contains
only one rectangle” is 1 (or 0 if the rectangle is empty), and rank is subadditive,
the rank of a matrix is smaller than its unambiguous complexity. O

From this we can derive an upper bound on non-universality witnesses.

Lemma 2 ([37]). Any shortest witness of non-universality for an unambiguous
automaton with n states has length at most n.

Proof. Let A be an unambiguous automaton, and let ajas - - - a, € L(A) be the
shortest witness of non-universality (if it exists). Consider the matrix N obtained



from Com(L(A)) by restricting the rows to vg = €,v1 = a1,v2 = a1a2,...,0, =
ay - - - ay, and the columns to wo = a1 -+ ap, Wy =ag " Ap,..., W, = €.

Since vyw; = u & L(A) for all i = 0...n, the diagonal of this matrix consists
only of 0’s. However, for all 0 < i < j < n, we have |v;w;| < n. Hence the “upper
right” part of the matrix consists solely of ones. We claim that this matrix has
rank at least n. Indeed, that (1) — N (where (1) is the matrix using with 1’s
on all its entries) is lower triangular with a diagonal of 1. Thus (1) — N has
rank n + 1. Since (1) has rank 1, we obtain that the rank of N is at least n by
subadditivity.

It follows that an unambiguous automaton for L(.A), and thus in particular
A has at least n states. O

Of course, from Lemma 2, one immediately gets a CoNP procedure for deciding
whether an unambiguous automaton is universal. However, it is possible to do
better, and prove Theorem 3.

Proof (of Theorem 3). For each letter of the alphabet a, consider the matrix
n(a) € N®*@ that describes the transition relation of an unambiguous automa-
ton A: the entry p, g of n(a) is 1 if there is a transition labelled @ in A from state p
to state ¢, and 0 otherwise. Let us extend 7 into a morphism from A* to N>
using the standard matrix multiplication: 7(e) = Idg, and n(ua) = n(u)n(a). It
is easy to prove by induction that the entry p, ¢ of n(u) is the number of runs
from state p to state ¢ over the word u. Let also I, F' be the characteristic vectors
of the initial and final states of A respectively. Thus, ‘In(u)F is the number of
accepting runs of A over the word u (x).
Now let us count the number of accepted words up to length n. Define

B(n) = Z In(u)F .

u€A*, |u|<n

From (%), B, is the number of accepting runs over words up to length n. Since
furthermore the automaton A is unambiguous, B, is also the number of accepted
words up to length n.

Let us show that this quantity can be computed in time polynomial in n.

Indeed, define for all m = 0,...,n the matrices:
E, = Z n(u), and F,, = Z n(u) .
u€A*, |ul=m u€A*, |u|<m

These are such that Fy = Idg, 1 = ) ,c,n(a), and for all m > 1, F,, =
Fn_-1+ E, and E,,+1 = E,,FE;. These equations can be used to compute F,
in polynomial time (and the numbers in the matrices have a linear number of
digits). Thus By41 = 'IF,,1F is computable in polynomial time.

To conclude, an algorithm that decides universality is as follows: compute
B,, and check that it equals the number of words of length at most n (i.e.,
(JA|"*t — 1)/(|A| — 1)). This procedure succeeds if an only if all words are
accepted up to length n, which in turns holds (by Lemma 2) if and only if A is
universal. ad



What we have seen in this proof is that it is reasonable to conjecture that
unambiguous automata are closed under complement with polynomial blowup.
Indeed, this is consistent with (1) the complexity of universality, and (2) the size
of witnesses of non-universality. In fact, we can also report on another related
conjecture:

Congecture 2. Given two regular languages K, L of empty intersection, there is
an unambiguous automaton of polynomial size that recognizing U that separates
them, i.e., such that K CU and UN L = 0.

In particular, this would imply that all regular languages L can be turned into
an unambiguous automaton of size polynomial in the size of a non-deterministic
automaton for L and a non-deterministic automaton for LS.

We will indeed see later that the separation of classes of non-deterministic
automata is often related to unambiguous automata (cf. Theorem 5 and 13).

3 Unambiguous tropical automata

We pursue our investigation of unambiguity in the world of automata theory
with the more exotic context of tropical automata. Tropical automata belong to
the wider class of weighted automata as introduced by Schiitzenberger [38]. We
are interested here in min-plus and max-plus automata.

Min-plus and maz-plus automata are non-deterministic automata that have
their transitions labelled with integers (reals would not make a difference) called
weights. Given an accepting run of such an automaton, its weight is the sum of
the weights of the transitions seen along the run. The semantic of a min-plus
automaton is to recognize the function:

[A] A" = ZU {40}

min
{+oo if there are no accepting runs of A over wu,
u

min {weight(p) | p accepting run of A over u} otherwise.

Dually, the semantic of a max-plus automaton is to recognize the function:

[A] A* 5 ZU {00}

max

—oo if there are no accepting runs of A over u,
u
max {weight(p) | p accepting run of A over u} otherwise.

These two notions are formally dual in the following sense: Define —A to
be the automaton A in which the weights of all transitions are the opposed
weight, then [—A], . = —[A] .- There are several other ways to define the
functions recognized by such automata, in particular using a matrix presentation.
These automata appear in many applications. By tropical automata we refer
indistinctly to either max-plus automata or min-plus automata.

A non-deterministic automaton A can be viewed as a min-plus automaton

with all its transitions labelled with weight 0. In this case, it recognizes the



function [A],,;, which maps a word to 0 if it belongs to L(A), and to 400
otherwise. Symmetrically, a non-deterministic automaton can be viewed as max-
plus automaton that recognizes the function which maps a word to 0 if it belongs
to L(A), and to —oo otherwise.

Example 1. The following tropical automaton uses its non-determinism for choos-
ing a segment of consecutive a’s surrounded by two b’s, and computing its length.

a,b:0 a,b:0

a:l
_)Ci}) b:0 & b:0 él)_)

If this automaton is a min-plus automaton, then it maps every word of the
form a™ba™b---bay to min(ny,...,nE_1) if & > 2, and +oo otherwise. If this
automaton is a max-plus automaton, then it maps every word of the form
a™ba™b---bap to max(ny,...,ng_1) if k > 2, and —oo otherwise.

In the world of tropical automata, things are not as nice as for classical finite-
state automata, in the sense that undecidability results occur immediately. The
central result in this direction is the one of Krob.

Theorem 4 (Krob [21], and [1,14] for simple proofs). Given a min-plus
automaton recognizing a function f, it is undecidable whether f < 0. Given a
mazx-plus automaton recognizing a function f, it is undecidable whether f > 0.

In particular, this means that f < g is undecidable for f, g recognized by tropical
automata. In fact, this is not completely true: there is one case when this question
is decidable, when f is recognized by a max-plus automaton and g by a min-plus
automaton, while all other combinations are undecidable by the above theorem.

A tropical automaton is unambiguous if the underlying non-deterministic
automaton is unambiguous. For instance, in the above example, the automaton is
ambiguous. A more careful analysis would show that no unambiguous automata
could recognize these functions.

The class of unambiguous tropical automata is interesting since in the defini-
tion of [-] ;, and [-],,.., the min and the max range over at most one accepting
run. Hence, as long as we identify +00 and —oo, [-],;, and [-] .. coincide. For
this reason, we allow ourselves to simply mention unambiguous tropical automata
without further mentioning whether these are min-plus or max-plus.

Theorem 5 ([26]). Functions that are both recognized by min-plus automata
and max-plus automata are recognized by unambiguous tropical automata.

Very informally, if we interpret max-plus automata as a form of complement of
min-plus automata, then we can see unambiguous tropical automata as automata
that correspond to be both non-deterministic and of non-deterministic comple-
ment. We will see a similar phenomenon in the context of register automata in
Section 5.

A natural question arises: can we decide whether an automaton is equivalent
to an unambiguous one? Some first results were obtained in [20]. The best known
result is the following:



Theorem 6 ([19]). There is an algorithm which, given a polynomially am-
biguous® tropical automaton decides whether there is an unambiguous tropical
automaton recognizing the same function.

Quite naturally, the most important question in this context is to lift the
polynomial ambiguity assumption.

Question 1. Can we decide, given a tropical automaton whether it is equivalent
to an unambiguous one?

4 Unambiguous infinite tree automata

Another situation where the notion of unambiguity is worth noticing is the con-
text of infinite trees. To keep the presentation light, we expect the reader to know
the notion of non-deterministic automaton over infinite trees. An introduction
can, for instance, be found in [42].

Let us start by recalling some definitions. An infinite tree labelled by the
alphabet A is a map from {0,1}* to A. The elements of {0,1}* are nodes. The
node ¢ is the root of the infinite tree. Given a node u, u0 is its left child and ul its
right child. The transitive closure of the child relation is the descendant relation.
A branch is a maximal set of nodes totally ordered under the descendant relation.
In this section, languages are sets of infinite trees. An infinite tree automaton
has a finite set of states @, a set of initial states I C @), and a set of transitions
ACQRXAXQXxQ. A run of an automaton over an infinite tree ¢ is an infinite
tree p labelled by @ such that (p(u),t(u), p(u0), p(ul)) € A for all nodes u. The
run is accepting if p(e) € I, and for all branches B the set of states assumed
on infinitely many nodes by p belongs to a given set M C 29, called the Muller
acceptance condition?. If there is an accepting run of the automaton over some
input infinite tree, then the infinite tree is accepted. The set of infinite trees
accepted is the language recognized by the automaton.

The central result concerning infinite tree automata is without any question
Rabin’s theorem stating that infinite tree automata have effectively the same
expressive power as monadic second-order logic over infinite trees, and that, as
a consequence, this monadic second-order logic is decidable over infinite trees.
This logical aspect is certainly far beyond the topic of this paper, but the main
lemma in the proof is very relevant:

Lemma 3 (Rabin main lemma [33]). Infinite tree automata are effectively
closed under complement.

Once more, for this class of automata, the unambiguity notion is natural. An
unambiguous infinite tree automaton is an infinite tree automaton such that
for all input infinite trees, there is at most one accepting run. To start with,

1 An automaton is polynomially ambiguous if the number of accepting runs over an
input is bounded by a polynomial in the length of the input.
2 Other choices are possible, but these distinctions do not make any difference here.



there are languages which are recognized by infinite tree automata, but by no
unambiguous infinite tree automata, and there are languages that are recognized
by unambiguous infinite tree automata, and by no deterministic automata?.
However, the status of unambiguous automata is very different here than in
simpler contexts. In particular, it is not clear whether all regular languages can
be recognized by unambiguous automata.

A first answer has been given by Niwinski and Walukiewicz:

Theorem 7 ([30]). Consider the language “there is a node labelled by the letter
a”. If this language is recognized by an unambiguous infinite tree automaton, then
there exists a regular choice function.

Informally, a choice function is a language that implements the notion of “choice”,
i.e., given a non-empty set, it selects a unique element in it. One way to formalize
this is as follows: consider the alphabet a,b,a® (a stands for the set in which
choice has to be performed, and a is the chosen node). A language C of a, b, a®-
labelled infinite trees is a choice function if:

— All infinite trees in C' contain exactly one occurrence of the letter a®,

— For all a, b-labelled infinite tree ¢ containing at least one occurrence of the
letter a, there exists one and only one a-labelled node x such that t[z <+ a°]
is accepted, where t[z < a€] is the infinite tree ¢ in which the label of the
node x is changed into a®.

A regular choice function is a choice function which is recognized by an infinite
tree automaton. The existence of a regular choice function has been first studied
in [16], where the non-existence of such function is established. However, there is
a known unrecoverable hole in the proof. The result was established by Carayol
and Loding using much simpler automata-theoretic arguments.

Theorem 8 ([7]). There does not exist any reqular choice function over infinite
trees.

These results were finally published together.

Theorem 9 ([8]). The language of infinite trees “there is a node labelled by the
letter a” is reqular, but intrinsically ambiguous; i.e., there exists no unambiguous
automaton for this language.

As it is the case for tropical automata, deciding if a language can be recognized
unambiguously is an open problem.

Question 2. Given a infinite tree automaton, can we decide whether its recog-
nized language can be recognized by an unambiguous automaton?

3 In the context of trees, two forms of determinism for automata are possible: top-down
determinism, i.e., from root to leaves, and bottom-up determinism, i.e., from leaves
to root. The former (considered here) is known to be strictly weaker than general
automata, even over finite trees. The later does not make real sense over infinite
trees, since there may be no leaves.



However, if we come back to simpler classes of models, namely finite words,
infinite words of length w or finite trees, it is very easy to have a regular choice
function, and also to transform any automaton into an equivalent one that is
unambiguous. Nevertheless, there is still an unclear situation. Call tamed (or
scattered, or thin) an infinite tree that has countably many branches (the def-
inition of an infinite tree needs to be slightly generalized for that, and has to
allow leaves). This class is very important, and such infinite trees are signifi-
cantly simpler than general ones (in particular automata are simpler). To some
extend, tamed infinite trees can be understood as the joint extension of infinite
words and finite trees.

Question 3. Can we separate unambiguous automata from general automata
over tamed trees? Does there exist an automaton, unambiguous over tamed
trees that recognizes the language “there is a node labelled by a”? Does there
exist a regular choice function over tamed trees?

Let us conclude with another, intriguing, relation linking unambiguity over
infinite trees and the existence of regular choice functions over tamed trees.

Theorem 10 ([4]). Under the assumption that there are no reqular choice func-
tions over tamed trees, there is an algorithm which decides whether a regular

language of infinite trees is bi-unambiguous®.

5 Unambiguous register automata

In this last section, we concentrate our attention to data languages. Once more
the questions raised are of a slightly different nature. More positively, this is an
instance of a situation where new results can be obtained thanks to a careful
analysis of the nature of unambiguity. This section will mainly be a report on
recent unpublished results obtained in collaboration with Gabriele Puppis and
Michal Skrzypczak, in particular establishing conjectures raised in [10].

Originally, register automata were introduced by Kaminski and Francez [18]
and were the subject of much attention. There are various ways to introduce
this model, including the very interesting “atom approach” [5]. We adopt here a
more model-theoretic presentation.

Let us fix ourselves an infinite set of data values . We are only allowed
to compare such values using equalities, and as a consequence, the exact set
D does not really matter. Depending on the context, data values can be the
identifiers in a database, simply numbers, the agent in a concurrent system,
and so on... Data words are words over D, i.e., elements of D*. It is also often
convenient to consider slightly richer data words which are elements of (A x D)*.
This distinction has essentially no impact in what follows. Sets of data words
are named data languages.

A (non-deterministic) register automaton has states, initial states, final states
and transitions as a non-deterministic finite automaton, and furthermore:

4 A language of infinite trees is bi-unambiguous if it is accepted by a unambiguous
infinite tree automaton as well as its complement.



— there is a finite set of registers r, s, ..., with values ranging in D, and;
— transitions are equipped of guards that are boolean combinations of proper-
ties of the form
e r = s’ for r, s registers, signifying that the value of the register r before
the transition should be the same as the value of the register s after the
transition,
e 1 = d for r a register, signifying that the value assumed by the register r
before the transition is equal to the data read during the transition,
e d = s’ is defined similarly.

This description should give a fairly good intuition of what is going on. A run
of a register automaton is a sequence of configurations consisting of a state and
a valuation of the registers, that respect the transitions and the guards. A run
is accepting if it starts in an initial state and ends in a final state. It should
be clear what an unambiguous register automaton is: an unambiguous register
automaton is a register automaton such that on every input there is at most one
accepting run.
Let us proceed with an example.

Ezxample 2. Consider the following register automaton. We use two registers, r, s,
and all transitions are assumed to preserve the values of these counters. Thus
we only write on the transitions whether r and s should be equal or not-equal
to the read data value.

r#d
T#dr#ds#dr#d
_ =d =d _
OO D

Note first that this register automaton is non-deterministic: at the very be-
ginning, we do not know the values of the registers (these have to be non-
deterministically guessed in some sense). But even without this problem, it is
hard to know when in state 2, whether the run should stay in state 2, or proceed
with state 3.

In fact, at the same time that we describe the behavior of this automaton,
we will see that it is unambiguous. Let us recall that in this register automaton,
the values of the registers do not change along the run (we do not know these
values a priori). While processing an input, this automaton has to take the as
first transition the one from state 1 to state 2. Since this transition is guarded
by r = d, it enforces the value of register r to be the first data value occurring
in the input data word. Nox note that all transitions with both extremities
among states 2, 3,4 have r # d in their guard, and this enforces that the data
value read to be different from the value of r. Note furthermore that the only
transition that exits state 4 (and go to state 5) enforces r = d in its guard. Hence,
necessarily, the transition from 4 to 5 has to be taken the first time the value of r
is seen again in the data word. This means that this position is unambiguously




determined. This means also that the moment the transition from 3 to 4 is used
is also unambiguously determined (just one step before). Since furthermore the
transition from 3 to 4 has guard s = d, the value of register s also has to be
unambiguously determined. Overall, this means that, if there is an accepting run
over some data word, then the values of r and s are uniquely determined: the
value of r is the first data value in the input data word, and the value of s is the
data value that occurs just before the second occurrence of the first data value.
Once these values fixed, it is easy to see that this automaton is unambiguous,
and the language it accepts can be described as follows:

U @\ {r}) s\ {r, s} srD" .
r,s €D

r#s

It should also be clear that such a language cannot be determinized. Indeed,
while reading an input word from left to right, it is not possible to know what
the value of s should be as long as the second occurrence of the first data value is
not met. Hence, a deterministic device should memorize all possible data values
seen up to that moment. A similar argument prevents to determinize it from
right to left.

When working with register automata, the undecidability is again close. The
essential results are as follows.

Theorem 11 ([18]). The languages recognized by register automata are effec-
tively closed under union and intersection, and emptiness is decidable. The uni-
versality problem for register automata is undecidable.

In [10], some conjectures were raised concerning the class of unambiguous
register automata. These conjectures are now all established®. Let us briefly
present these results.

Theorem 12 ([11]). Unambiguous register automata are effectively closed un-

der complement, and hence universality, containment and equivalence are decid-
able.

However, in fact, using the same techniques, we obtain a separation result.

Theorem 13 ([11]). Given two languages of data words K, L recognized by
register automata of empty intersection, there exists a language of data words U
recognized by an unambiguous register automaton that separates K and L, i.e.,
KCUandUNL=0.

In particular, a language of data words is recognized by an unambiguous reg-
ister automaton if and only if both itself and its complement are recognized by
register automata.

5 Strictly speaking, Conjecture 6 is wrong, but has a corrected version.



6 Conclusion

In this paper, we have tried to present the notion of unambiguity following a
rather non-standard path, in particular considering models that are usually not
studied together. Along this presentation, we have seen several difficult open
questions concerning unambiguous devices. These questions are natural, and
show that unambiguity is still quite poorly understood. We have also seen sev-
eral results that show that unambiguity arises sometimes from characterization
reasons: (1) unambiguous tropical automata correspond to functions that are
recognized by both min-plus and max-plus automata, and (2) unambiguous reg-
ister automata correspond to languages that are both recognized as well as their
complement by non-deterministic register automata. We believe that this char-
acterization is more than a mere coincidence, and corresponds to the intrinsic
nature of unambiguity.
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