Independent sets in triangle-free planar graphs

Z. Dvořák ${ }^{1} \quad$ M. Mnich ${ }^{2}$
${ }^{1}$ CSI, Charles University, Prague
${ }^{2}$ Saarbrücken
STRUCO meeting, 2013

Independent sets in planar graphs

Theorem (AH; RSST)

Every planar graph is 4 -colorable.
Corollary
A planar graph G on n vertices has

$$
\alpha(G) \geq n / 4
$$

Tightness

Tightness

Larger independent sets

Largest independent set: NP-complete.

Problem

Decide whether a planar graph G on n vertices has an independent set of size at least

$$
\frac{n+k}{4}
$$

in time

$$
f(k) \operatorname{poly}(n) .
$$

Open even for $k=1$.

Difficulties

- Complicated structure of tight examples.
- No proof avoiding 4-color theorem.
- Albertson: $\alpha(G) \geq n / 4.5$
- Can be strengthened, but things get complicated.
- 4-colorings do not absorb local changes.

Triangle-free planar graphs

Theorem (Grötzsch)

Every triangle-free planar graph is 3-colorable.
Corollary
A triangle-free planar graph G on n vertices has

$$
\alpha(G) \geq n / 3
$$

Non-tightness

Theorem (Steinberg and Tovey)

A triangle-free planar graph G on n vertices has

$$
\alpha(G) \geq(n+1) / 3
$$

Proof.

- G contains a vertex v of degree at most three.
- G has a 3-coloring φ s.t. $(\forall u \in N(v)) \varphi(u)=1$
- Gimbel and Thomassen
- Let $I_{1}=\varphi^{-1}(1), I_{2}=\varphi^{-1}(2) \cup\{v\}, I_{3}=\varphi^{-1}(3) \cup\{v\}$
- $\left|I_{1}\right|+\left|I_{2}\right|+\left|I_{3}\right|=n+1$, hence

$$
\alpha(G) \geq \max \left(\left|I_{1}\right|,\left|I_{2}\right|,\left|I_{3}\right|\right) \geq \frac{n+1}{3} .
$$

Tightness

Lemma (Jones)

For every $n \equiv 2(\bmod 3)$, there exists a triangle-free planar graph G on n vertices with $\alpha(G)=(n+1) / 3$.

Tightness

Lemma (Jones)

For every $n \equiv 2(\bmod 3)$, there exists a triangle-free planar graph G on n vertices with $\alpha(G)=(n+1) / 3$.

Tightness

Lemma (Jones)

For every $n \equiv 2(\bmod 3)$, there exists a triangle-free planar graph G on n vertices with $\alpha(G)=(n+1) / 3$.

Tightness

Lemma (Jones)

For every $n \equiv 2(\bmod 3)$, there exists a triangle-free planar graph G on n vertices with $\alpha(G)=(n+1) / 3$.

Tightness

Lemma (Jones)

For every $n \equiv 2(\bmod 3)$, there exists a triangle-free planar graph G on n vertices with $\alpha(G)=(n+1) / 3$.

Tightness

Lemma (Jones)

For every $n \equiv 2(\bmod 3)$, there exists a triangle-free planar graph G on n vertices with $\alpha(G)=(n+1) / 3$.

Tightness

Lemma (Jones)

For every $n \equiv 2(\bmod 3)$, there exists a triangle-free planar graph G on n vertices with $\alpha(G)=(n+1) / 3$.

Tightness

Lemma (Jones)

For every $n \equiv 2(\bmod 3)$, there exists a triangle-free planar graph G on n vertices with $\alpha(G)=(n+1) / 3$.

Tightness

Lemma (Jones)

For every $n \equiv 2(\bmod 3)$, there exists a triangle-free planar graph G on n vertices with $\alpha(G)=(n+1) / 3$.

Results

Theorem

There exists an algorithm deciding whether a triangle-free planar graph G on n vertices satisfies

$$
\alpha(G) \geq \frac{n+k}{3}
$$

in time

$$
2^{O(\sqrt{k})} n
$$

Theorem
There exists $\varepsilon>0$ such that every planar graph of girth at least 5 on n vertices has

$$
\alpha(G) \geq \frac{n}{3-\varepsilon}
$$

Open problem

Problem

Does there exist $\varepsilon>0$ such that every planar graph of girth at least 5 has fractional chromatic number at most $3-\varepsilon$?

False for circular chromatic number.

Results

Theorem

There exists an algorithm deciding whether a triangle-free planar graph G on n vertices satisfies

$$
\alpha(G) \geq \frac{n+k}{3}
$$

in time

$$
2^{O(\sqrt{k})} n
$$

Theorem
There exists $\varepsilon>0$ such that every planar graph of girth at least 5 on n vertices has

$$
\alpha(G) \geq \frac{n}{3-\varepsilon}
$$

The main result

A subgraph H of a plane graph is nice if

- H has no separating 4 -cycles, and
- each face of H either
- is a face of G, or
- has length 4.

Theorem

There exists $\varepsilon>0$ such that every a plane triangle-free graph on n vertices containing a nice subgraph on p vertices has

$$
\alpha(G) \geq \frac{n+\varepsilon p}{3}
$$

The algorithm

Proposition

If a planar graph G has no nice subgraph with p vertices, then G has tree-width $O(\sqrt{p})$.

To decide whether G satisfies $\alpha(G) \geq \frac{n+k}{3}$:

- Approximate tree-width within a constant factor.
- If $\operatorname{tw}(G)=\Omega(\sqrt{k})$, then answer "yes".
- Otherwise, use dynamic programming.

The basic idea

- Find a large set of vertices $S \subseteq V(G)$ and a 3-coloring φ of G s.t. the neighborhood of each vertex of S is monochromatic.
- For $i \in\{1,2,3\}$, let
$I_{i}=\varphi^{-1}(i) \cup\{v \in S:$ neighbors of S do not have color $i\}$.
- $\left|I_{1}\right|+\left|I_{2}\right|+\left|I_{3}\right| \geq n+|S|$, hence $\alpha(G) \geq \frac{n+|S|}{3}$.

How to choose S ?

- Small degrees (say ≤ 4).
- The neighborhoods should not influence each other.
- The vertices in S should be pairwise far apart.
- Not always possible (e.g., if $G=K_{1, n-1}$).

Theorem (Atserias, Dawar and Kolaitis; NOdM)

For every d, m, there exists n such that for every planar graph G and every $R \subseteq V(G)$ with $|R| \geq n$, there exist $S \subseteq R$ and $X \subseteq V(G) \backslash S$ such that

- $|S|=m,|X| \leq 3$
- the distance between vertices of S in $G-X$ is at least d.

The basic idea, version 2

- Find a large $S \subseteq V(G)$, a small $X \subseteq V(G) \backslash S$ and a 3-coloring φ of $G-X$ s.t. the neighborhood of each vertex of S is monochromatic.
- For $i \in\{1,2,3\}$, let
$I_{i}=\varphi^{-1}(i) \cup\{v \in S:$ neighbors of S do not have color $i\}$.
- $\left|I_{1}\right|+\left|I_{2}\right|+\left|I_{3}\right| \geq n-|X|+|S|$, hence $\alpha(G) \geq \frac{n-|X|+|S|}{3}$.

Choosing S

Theorem (ADK; NOdM)

For every d, m, there exists n such that for every planar graph G and every $R \subseteq V(G)$ with $|R| \geq n$, there exist $S \subseteq R$ and $X \subseteq V(G) \backslash S$ with

- $|S|=m,|X| \leq 3$
- the distance between vertices of S in $G-X$ is at least d.
- We need $|S|=\Omega(|R|)$.
- This is false if $|X|=O(1)$, e.g. in $\sqrt{n} \cdot K_{1, \sqrt{n}}$

Choosing S, version 2

- For a small $\delta>0$, we can choose $|S|=\Omega(|R|)$ and $|X| \leq \delta|S|$.

Theorem (D., Mnich)

For every class \mathcal{G} with bounded expansion and every $\delta>0, d$, there exists $\varepsilon>0$ such that for every graph $G \in \mathcal{G}$ and $R \subseteq V(G)$, there exist $S \subseteq R$ and $X \subseteq V(G) \backslash S$ with

- $|S| \geq \varepsilon|R|,|X| \leq \delta|S|$, and
- the distance between vertices of S in $G-X$ is at least d.

Coloring

Theorem (D., Král', Thomas)

There exists $d \geq 3$ such that if G is a planar triangle-free graph without separating 4-cycles and vertices of $S \subseteq V(G)$ are pairwise at distance at least d, then G has a 3-coloring such that the neighborhood of each vertex of S is monochromatic.

- The coloring of the nice subgraph extends to the whole graph.
- Further complication: the extension can destroy monochromatic neighborhoods.
- We have a polynomial time (but not linear) algorithm to find the coloring.
- Nothing like this holds for 4-coloring.

Thank you for the attention.

Questions?

