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Topological resolution of a class C
G Õ t = set of shallow topological minors at depth t:

H G

≤ 2t

C Õ t =
⋃
G∈C

G Õ t.

Topological resolution:

C ⊆ C Õ 0 ⊆ C Õ 1 ⊆ . . . ⊆ C Õ t ⊆ . . . ⊆ C Õ∞

time
//
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Taxonomy of Classes

A class C is nowhere dense if

∀t ∈ N : ω(C Õ t) <∞

. . . otherwise C is somewhere dense

C has bounded expansion if

∀t ∈ N : d̄(C Õ t) <∞

Remark: bounded expansion =⇒ nowhere dense.

Notation: ∇̃t(G) = 1
2 d̄(G Õ t) = max

{‖H‖
|H| : H ∈ G Õ t

}
.
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Other choices, other rooms?
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Low Tree-depth Decomposition
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Tree-depth

Definition

The tree-depth td(G) of a graph G is
the minimum height of a rooted forest
Y s.t.

G ⊆ Closure(Y ).

td(Pn) = log2(n+ 1)
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Low tree-depth decompositions

Chromatic numbers χp(G)

χp(G) is the minimum of colors such that any subset I of ≤ p
colors induce a subgraph GI so that td(GI) ≤ |I|.

χ(G) = χ1(G) ≤ χ2(G) ≤ · · · ≤ χp(G) ≤ · · · ≤ χ|G|(G) = td(G).

Stronger

(p+ 1)-centered coloring, s.t. in any connected subgraph:
• either ≥ p+ 1 distinct colors appear,
• or some color appears exactly once.
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Low tree-depth decompositions

Theorem (Nešetřil and POM; 2006, 2010)

∀p, sup
G∈C

χp(G) <∞ ⇐⇒ C has bounded expansion.

∀p, lim sup
G∈C

logχp(G)

log |G| = 0 ⇐⇒ C is nowhere dense.

(extends DeVos, Ding, Oporowski, Sanders, Reed, Seymour, Vertigan
on low tree-width decomposition of proper minor closed classes, 2004)

Remark
Similar results for (p+ 1)-centered coloring.
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Algorithmic Version

Procedure A

for k = 1 to 2p−1 + 1 do
Compute a fraternal augmentation.

end for
Compute depth p transitivity
Greedily color vertices according to the augmented graph

Theorem (Nešetřil and Ossona de Mendez 2006)

∀p ∈ N ∃ polynomial Pp (of degree about 22p) such that ∀G
Procedure A computes a (p+ 1)-centered coloring of G with
Np(G) ≤ Pp(∇̃2p−2+ 1

2
(G)) colors in time O(Np(G)n)-time,

where ∇̃t(G) = 1
2 d̄(G Õ t) .
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Model Checking

Theorem (Dvořák, Kráľ, and Thomas 2009; Grohe and
Kreutzer 2011)

First-order properties may be checked in
• O(n) time for G in a class with bounded expansion,
• n1+o(1) time for G in a class with locally bounded
expansion.

Problem
Can first-order properties be checked in O(nc) time for G in a
nowhere dense class?



Landscape Decomposition Distributed Computing Distributed Decomposition

Distributed Computing
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The LOCAL model

Definition (Peleg 2000)

Synchronous message-passing model with . . .

• fixed network = input graph of order n
• vertices: processors with unique id
• edges: communication links
• running time: # of rounds

+ every vertex knows n
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Orientation and Coloring of Degenerate Graphs

Theorem (Barenboim and Elkin 2008)

There are distributed procedures Partition and Arb-Color, such
that for G with arboricity a and a positive parameter ε,
0 < ε ≤ 2:
• Partition(a, ε) computes an acyclic orientation of G with
maximum outdegree ≤ (2 + ε)a in time O(log n).

• Arb-Color(a, ε) computes an coloring of G into
(b(2 + ε)ac+ 1) colors in time O(a log n);
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Orientation and Coloring of Degenerate Graphs

Basic ideas: let D = 2∇̃0(G) (= maximum average degree),

• Iteratively form parts V1, . . . , Vk by removing vertices
of degree ≤ (1 + ε)D;
Remark: ∆(G[Vi]) ≤ (1 + ε)D and k = O(log n);

• Parition each Vi into ≤ b(1 + ε)Dc+ 1 independent sets Sj
(by Kuhn and Wattenhofer);

• Orient vertices by lexicographic order of (i, j, Id(v)) where
v ∈ Vi ∩ Sj ;
Remark: acyclic orientation with ∆− ≤ (1 + ε)D.

• Greedily color with ≤ b(1 + ε)Dc+ 1 colors.

(Note that D < 2a(G).)
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Distributed Low Tree-depth Decomposition
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Procedure A

Orient the graph with indegree bounded by degeneracy
for k = 1 to 2p−1 + 1 do
Compute a fraternal augmentation
Orient the added edges with indegree bounded by
degeneracy

end for
Compute depth p transitivity arcs
Compute a coloring of the augmented graph.

Recall: degeneracy(G) = maxH⊆G δ(H) .

Problem
The graph is modified!
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Fraternal augmentation
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Fraternal augmentation (with routing)
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The Distributed Algorithm (sketch)

Procedure D

Orient the graph with indegree bounded by degeneracy
(within a constant factor)
for k = 1 to 2p−1 + 1 do
Compute the edges of the set of fraternal edges to be
added. These edges are routed as paths of length k + 1
Orient these edges with indegree bounded by degeneracy
(within a constant factor)

end for
Compute depth p transitivity paths
Compute a coloring of the augmented graph.
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Bounding the Congestion

N(i) =



0, if i = 1;(∆−
1

2

)
, if i = 2;∑i−1

j=2N(j)∆−i−j

+
∑(i−1)/2

j=1 ∆−j ∆−i−j , if i ≡ 1 (mod 2);∑i−1
j=2N(j)∆−i−j

+
∑i/2−1

j=1 ∆−j ∆−i−j +
(∆−

i/2

2

)
, if i ≡ 0 (mod 2).

∆−i ≤ (1 + ε)
(
N(i) + (N(i) + 1)2 ∇̃(i−1)/2(G)

)

where ∇̃t(G) = 1
2 d̄(G Õ t)

≤ fC(t) OK
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Distributed Low Tree-depth Decomposition
in a Bounded Expansion Class

Theorem (Nešetřil and Ossona de Mendez 2013)

For every graph G in a fixed bounded expansion class C and
positive parameters p ∈ N and ε, 0 < ε ≤ 2 the procedure
D(C, p, ε) computes a (p+ 1)-centered coloring with N(C, p, ε)
colors in time O(log n).

Corollary (Example )

There is a procedure such that for every graph G in a fixed
bounded expansion class C, the procedure computes in time
O(log n) a coloring of the vertices of G with f(C) colors, such
that any two vertices of G at distance 3 get different colors.
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Discussion

• What about non-sparse graphs?
• Stronger models of distributed
computation?
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Thank you for your attention.
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