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Computational model

LOCAL model
In each round during the execution of a distributed algorithm,
every processor:

1. sends messages to its neighbors,
2. receives messages from its neighbors, and
3. computes, i.e., performs individual computations.

Input
An input configuration is a pair (G, x) where G is a connected
graph, and every node v ∈ V (G) is assigned as its local input a
binary string x(v) ∈ {0,1}∗.

Output
The output of node v performing Algorithm A running in G with
input x and identity assignment Id:

outA(G, x, Id, v)
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Languages

A distributed language is a decidable collection of
configurations.

I Coloring =
{(G, x) s.t. ∀v ∈ V (G),∀w ∈ N(v), x(v) 6= x(w)}.

I At-Most-One-Selected = {(G, x) s.t. ‖ x ‖1 ≤ 1}.

I Consensus =
{(G, (x1, x2)) s.t. ∃u ∈ V (G), ∀v ∈ V (G), x2(v) = x1(u)}.

I MIS = {(G, x) s.t. S = {v ∈ V (G) | x(v) = 1} is a MIS}.
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Decision

Let L be a distributed language.

Algorithm A decides L ⇐⇒ for every configuration (G, x):

I If (G, x) ∈ L, then for every identity assignment Id,
outA(G, x, Id, v) = “yes” for every node v ∈ V (G);

I If (G, x) /∈ L, then for every identity assignment Id,
outA(G, x, Id, v) =“no” for at least one node v ∈ V (G).
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Local decision

Definition
LD(t) is the class of all distributed languages that can be
decided by a distributed algorithm that runs in at most t
communication rounds.

LD = ∪t≥0LD(t)

I Coloring ∈ LD and MIS ∈ LD.
I AMOS, Consensus, and SpanningTree are not in LD.
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Related work

What can be computed locally?
Define LCL as LD(O(1)) involving

I solely graphs of constant maximum degree
I inputs taken from a set of constant size

Theorem (Naor and Stockmeyer [STOC ’93])
If there exists a randomized algorithm that constructs a solution
for a problem in LCL in O(1) rounds, then there is also a
deterministic algorithm constructing a solution for that problem
in O(1) rounds.

Proof uses Ramsey theory.

Not clearly extendable to languages in LD(O(1)) \ LCL.
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(∆ + 1)-coloring

Arbitrary graphs

I can be randomly computed in expected #rounds O(log n)
(Alon, Babai, Itai [J. Alg. 1986]) (Luby [SIAM J. Comput. 1986])

I best known deterministic algorithm performs in 2O(
√

log n)

rounds (Panconesi, Srinivasan [J. Algorithms, 1996])

Bounded degree graphs

I Randomization does not help for 3-coloring the ring
(Naor [SIAM Disc. Maths 1991])

I can be randomly computed in expected #rounds
O(log ∆ +

√
log n) (Schneider, Wattenhofer [PODC 2010])

I best known deterministic algorithm performs in
O(∆ + log∗ n) rounds
(Barenboim, Elkin [STOC 2009]) (Kuhn [SPAA 2009])
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2-sided error Monte Carlo algorithms

Focus on distributed algorithms that use randomization but
whose running time are deterministic.

(p,q)-decider

I If (G, x) ∈ L then, for every identity assignment Id,
Pr[outA(G, x, Id, v) =“yes” for every node v ∈ V (G)]≥ p

I If (G, x) /∈ L then, for every identity assignment Id,
Pr[outA(G, x, Id, v) =“no” for at least one node v ∈ V (G)]≥ q
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Example: AMOS

Randomized algorithm

I every unmarked node says “yes” with probability 1;
I every marked node says “yes” with probability p.

Remarks:

I Runs in zero time;
I If the configuration has at most one marked node then

correct with probability at least p.
I If there are at least k ≥ 2 marked nodes, correct with

probability at least 1− pk ≥ 1− p2

I Thus there exists a (p,q)-decider for q + p2 ≤ 1.
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Bounded-probability error local decision

Definition
BPLD(t ,p,q) is the class of all distributed languages that have
a randomized distributed (p,q)-decider running in time at
most t .

Remark
For p and q such that p2 + q ≤ 1, there exists a language
L ∈ BPLD(0,p,q), such that L /∈ LD(t), for any t = o(n).
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A sharp threshold for hereditary languages

Hereditary languages
A language L is hereditary if it is closed by node deletion.

I Coloring and AMOS are hereditary languages.
I Every language {(G, ε) | G ∈ G} where G is hereditary is...

hereditary. (Examples of hereditary graph families are
planar graphs, interval graphs, forests, chordal graphs,
cographs, perfect graphs, etc.)

Theorem (F., Korman, Peleg [FOCS 2011])
Let L be an hereditary language and let t be a function of
triples (G, x, Id). If L ∈ BPLD(t ,p,q) for constants p,q ∈ (0,1]
such that p2 + q > 1, then L ∈ LD(O(t)).
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Distributed certification

One motivation
Settings in which one must perform local verifications
repeatedly.

I Self-stabilizing algorithms
I Construction algorithms that may fail
I Property testing

Definition
An algorithm A verifies L if and only if for every configuration
(G, x), the following hold:

I If (G, x) ∈ L, then there exists a certificate y such that,
for every id-assignment Id, outA(G, (x, y), Id, v) =“yes”
for all v ∈ V (G);

I If (G, x) /∈ L, then for every certificate y, and for every
id-assignment Id, outA(G, (x, y), Id, v) =“no” for at
least one node v ∈ V (G).
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Non-determinism helps

Definition
NLD(t) is the class of all distributed languages that can be
verified in at most t communication rounds.

NLD = ∪t≥0NLD(t)

Example
Tree = {(G, ε) | G is a tree} ∈ NLD(1).

Certificate given at node v is y(v) = distG(v , v̂), where
v̂ ∈ V (G) is an arbitrary fixed node.

Verification procedure verifies the following:
I y(v) is a non-negative integer,
I if y(v) = 0, then y(w) = 1 for every neighbor w of v , and
I if y(v) > 0, then there exists a neighbor w of v such that

y(w) = y(v)− 1, and, for all other neighbors w ′ of v , we
have y(w ′) = y(v) + 1.
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NLD-complete problem

Reduction
L1 is locally reducible to L2, denoted by L1 � L2, if there exists
a constant time local algorithm A such that, for every
configuration (G, x) and every id-assignment Id, A produces
out(v) ∈ {0,1}∗ as output at every node v ∈ V (G) so that

(G, x) ∈ L1 ⇐⇒ (G,out) ∈ L2 .

The language Containment

x(v) = (E(v),S(v)) where:
I E(v) is an element
I S(v) is a finite collection of sets
{(G, (E ,S)) | ∃v ∈ V , ∃S ∈ S(v) s.t. S ⊇ {E(u) | u ∈ V}}.

Theorem
Containment is NLD-complete.
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Proof

Reduction
For every node v , set E(v) as the ball of radius t around v
where t is the “running time” of a non-deterministic algorithm
for L.

Let width(v) = 2|Id(v)|+|x(v)|. Every node v
I constructs all possible input configurations (G′, x′) on

graphs with at most width(v) nodes, and,
I for each configuration (G′, x′), constructs one set S equal

to the collection of every t-ball around every node of G′.

At least one node v gets the actual configuration (G, x).

Hence the equivalence......

NLD membership
Cf. BPNLD
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Combining non-determinism with randomization

BPNLD(t) = ∪p2+q≤1BPNLD(t ,p,q)

BPNLD = ∪t≥0BPNLD(t ,p,q)

Theorem
BPNLD contains all languages.

Proof
The certificate is a map of the graph, i.e., an isomorphic copy H
of G, with nodes labeled from 1 to n.
Each node v is also given its label `(v) in H.
The proof that nodes can probabilistically check H ∼ G relies
on two facts:

I To be “cheated”, a wrong map must be a lift of G.
I One can check whether H is a lift of G by having node(s)

labeled 1 acting as in AMOS.
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The “most difficult” decision problem

The problem Cover

{(G, (E ,S)) | ∃v ∈ V , ∃S ∈ S(v) s.t. S = {E(u) | u ∈ V}}.

Theorem
Cover is BPNLD-complete.
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The oracle GraphSize

Numerous examples in the literature for which the knowledge of
the size of the network is required to efficiently compute
solutions.

GraphSize = {(G, k) s.t. |V (G)| = k}.

Theorem
For every language L, we have L ∈ NLDGraphSize.

Proof
As for BPNLD, the certificate is the map of G.
Nodes cannot be “cheated” whenever they know how many
they are.
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Decide whether x = y

ALICE BOB

x y

a b

a ∧ b = x ⊕ y

Deterministically: impossible !
Randomly (private coin): probability of success 1

2
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CHSH Game (Clauser, Horne, Shimony and Holt [1969])

ALICE BOB

x y

a b

a⊕ b = x ∧ y

Deterministically: impossible !
Randomly (private coin): probability of success 1

2
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Shared randomness

ALICE BOB

x y

a b

a⊕ b = x ∧ y

Deterministically: impossible !
Randomly: probability of success 1

2
Shared randomness: probability of success 3

4


a(0) ⊕ b(0) = 0
a(1) ⊕ b(0) = 0
a(0) ⊕ b(1) = 0
a(1) ⊕ b(1) = 1
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What does it mean to be “local”?

Hidden variable λ ∈ Λ:

Pr(ab | xy) =
∑
λ

Pr(a | xλ) · Pr(b | yλ) · Pr(λ)

=⇒ Bell’s Inequalities

Physics experiments shows that Bell’s inequalities can be
violated!
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Quantum effect

a⊕ b = x ∧ y

Deterministically: impossible !
Randomly: probability of success 1

2

Shared randomness: probability of success 3
4

Intricated particles (quantum bits):

probability of success (Tsilerson [1980]):

cos2
(π

8

)
' 0.85 >

3
4
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Global picture

LOCAL

Quantum
Physics

Bell's Inequalities
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PR-box (Popescu, Rohrlic [1994])

ALICE BOB

x y

a b

Pr(ab | xy) =

{ 1
2 if a⊕ b = x ∧ y
0 otherwise

Deterministically: impossible !
Randomly: probability of success 1

2

Shared randomness: probability of success 3
4

Intricated particles (quantum bits): prob of success cos2(π8 )

PR Box: probability of success 1
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The PR box respects causality: it is non-signaling

Pr(ab | xy) =

{ 1
2 if a⊕ b = x ∧ y
0 otherwise

Pr(a | xy) = Pr(a,b = 0 | xy) + Pr(a,b = 1 | xy) =
1
2

and

Pr(a | xȳ) = Pr(a,b = 0 | xȳ) + Pr(a,b = 1 | xȳ) =
1
2

⇒ Pr(a | xy) = Pr(a | x) and Pr(b | xy) = Pr(b | y)
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Global picture (enhanced)

LOCAL

Quantum
Physics

Bell's Inequalities

Non-signaling
Polytope
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Importance of the xor-operator

A game between Alice and Bob is defined by a pair (δ, f ) of
boolean functions.

The objective of Alice and Bob playing game (δ, f ) is, for every
inputs x and y , to output values a and b satisfying

δ(a,b) = f (x , y)

in absence of any communication between the two players.

Theorem (Arfaoui, F. [SIROCCO 2012])
Let (δ, f ) be a 2-player game that is not equivalent to any
XOR-game. Let p be the largest success probability for (δ, f )
over all local boxes. Then every box solving (δ, f ) with
probabilistic guarantee > p is signaling.
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Further works

I Connection to classical computational complexity theory
(time and space).

I Complexity/computability issues: Deciding L ∈ LD?
L ∈ NLD?

I Other interpretation functions
(cf. Arfaoui, F., Pelc [SSS 2013])

I Connection with logics (FO, EMSO, . . . )

Thank You!
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