Local Distributed Decision

Pierre Fraigniaud Amos Korman (David Peleg wimm

L.E.A. STRUCO Workshop, Pont-à-Mousson, Nov. 12-15, 2013

Outline

Distributed decision problems

Does randomization helps?

Nondeterminism

Power of oracles

Non classical ressources

Further works

Decide coloring

Computational model

$\mathcal{L O C A L}$ model

In each round during the execution of a distributed algorithm, every processor:

1. sends messages to its neighbors,
2. receives messages from its neighbors, and
3. computes, i.e., performs individual computations.

Input

An input configuration is a pair (G, x) where G is a connected graph, and every node $v \in V(G)$ is assigned as its local input a binary string $x(v) \in\{0,1\}^{*}$.

Output

The output of node v performing Algorithm \mathcal{A} running in G with input x and identity assignment Id:

$$
\text { out }_{\mathcal{A}}(G, \mathrm{x}, \mathrm{Id}, v)
$$

Languages

A distributed language is a decidable collection of configurations.

- Coloring $=$ $\{(G, x)$ s.t. $\forall v \in V(G), \forall w \in N(v), \mathrm{x}(v) \neq \mathrm{x}(w)\}$.
- At-Most-One-Selected $=\left\{(G, x)\right.$ s.t. $\left.\|x\|_{1} \leq 1\right\}$.
- Consensus $=$ $\left\{\left(G,\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right)\right.$ s.t. $\left.\exists u \in V(G), \forall v \in V(G), \mathrm{x}_{2}(v)=\mathrm{x}_{1}(u)\right\}$.
- MIS $=\{(G, x)$ s.t. $S=\{v \in V(G) \mid x(v)=1\}$ is a MIS $\}$.

Decision

Let \mathcal{L} be a distributed language.
Algorithm \mathcal{A} decides $\mathcal{L} \Longleftrightarrow$ for every configuration (G, x) :

- If $(G, x) \in \mathcal{L}$, then for every identity assignment Id, out $_{\mathcal{A}}(G, x$, Id, $v)=$ "yes" for every node $v \in V(G)$;
- If $(G, x) \notin \mathcal{L}$, then for every identity assignment Id, out $_{\mathcal{A}}(G, \mathrm{x}, \mathrm{Id}, v)=$ "no" for at least one node $v \in V(G)$.

Local decision

Definition

$\mathrm{LD}(t)$ is the class of all distributed languages that can be decided by a distributed algorithm that runs in at most t communication rounds.

$$
\mathrm{LD}=\cup_{t \geq 0} \mathrm{LD}(t)
$$

- Coloring $\in \operatorname{LD}$ and MIs $\in \operatorname{LD}$.
- AMOS, Consensus, and SpanningTree are not in LD.

Outline

Distributed decision problems

Does randomization helps?

Nondeterminism

Power of oracles

Non classical ressources

Further works

Related work

What can be computed locally?

Define LCL as LD $(O(1))$ involving

- solely graphs of constant maximum degree
- inputs taken from a set of constant size

Theorem (Naor and Stockmeyer [STOC '93])

If there exists a randomized algorithm that constructs a solution for a problem in LCL in $O(1)$ rounds, then there is also a deterministic algorithm constructing a solution for that problem in $O(1)$ rounds.

Proof uses Ramsey theory.
Not clearly extendable to languages in $\mathrm{LD}(O(1)) \backslash \mathrm{LCL}$.

$(\Delta+1)$-coloring

Arbitrary graphs

- can be randomly computed in expected \#rounds $O(\log n)$ (Alon, Babai, Itai [J. Alg. 1986]) (Luby [SIAM J. Comput. 1986])
- best known deterministic algorithm performs in $2^{O(\sqrt{\log n})}$ rounds (Panconesi, Srinivasan [J. Algorithms, 1996])

Bounded degree graphs

- Randomization does not help for 3-coloring the ring (Naor [SIAM Disc. Maths 1991])
- can be randomly computed in expected \#rounds $O(\log \Delta+\sqrt{\log n}) \quad$ (Schneider, Wattenhofer [PODC 2010])
- best known deterministic algorithm performs in $O\left(\Delta+\log ^{*} n\right)$ rounds
(Barenboim, Elkin [STOC 2009]) (Kuhn [SPAA 2009])

2-sided error Monte Carlo algorithms

Focus on distributed algorithms that use randomization but whose running time are deterministic.
(p, q)-decider

- If $(G, x) \in \mathcal{L}$ then, for every identity assignment Id, $\operatorname{Pr}\left[\right.$ out $_{\mathcal{A}}(G, \mathrm{x}, \mathrm{ld}, v)=$ "yes" for every node $\left.v \in V(G)\right] \geq p$
- If $(G, x) \notin \mathcal{L}$ then, for every identity assignment Id, $\operatorname{Pr}\left[\operatorname{out}_{\mathcal{A}}(G, x, \mathrm{ld}, v)=\right.$ "no" for at least one node $\left.v \in V(G)\right] \geq q$

Example: AMOS

Randomized algorithm

- every unmarked node says "yes" with probability 1 ;
- every marked node says "yes" with probability p.

Remarks:

- Runs in zero time;
- If the configuration has at most one marked node then correct with probability at least p.
- If there are at least $k \geq 2$ marked nodes, correct with probability at least $1-p^{k} \geq 1-p^{2}$
- Thus there exists a (p, q)-decider for $q+p^{2} \leq 1$.

Bounded-probability error local decision

Definition

$\operatorname{BPLD}(t, p, q)$ is the class of all distributed languages that have a randomized distributed (p, q)-decider running in time at most t.

Remark

For p and q such that $p^{2}+q \leq 1$, there exists a language $\mathcal{L} \in \operatorname{BPLD}(0, p, q)$, such that $\mathcal{L} \notin \operatorname{LD}(t)$, for any $t=o(n)$.

A sharp threshold for hereditary languages

Hereditary languages

A language \mathcal{L} is hereditary if it is closed by node deletion.

- Coloring and AMOS are hereditary languages.
- Every language $\{(G, \epsilon) \mid G \in \mathcal{G}\}$ where \mathcal{G} is hereditary is... hereditary. (Examples of hereditary graph families are planar graphs, interval graphs, forests, chordal graphs, cographs, perfect graphs, etc.)

Theorem (F., Korman, Peleg [FOCS 2011])

Let \mathcal{L} be an hereditary language and let t be a function of triples $(G, x$, Id $)$. If $\mathcal{L} \in B P L D(t, p, q)$ for constants $p, q \in(0,1]$ such that $p^{2}+q>1$, then $\mathcal{L} \in L D(O(t))$.

Outline

Distributed decision problems

Does randomization helps?

Nondeterminism

Power of oracles

Non classical ressources

Further works

Distributed certification

One motivation

Settings in which one must perform local verifications repeatedly.

- Self-stabilizing algorithms
- Construction algorithms that may fail
- Property testing

Definition

An algorithm \mathcal{A} verifies \mathcal{L} if and only if for every configuration (G, x), the following hold:

- If $(G, x) \in \mathcal{L}$, then there exists a certificate y such that, for every id-assignment Id, out ${ }_{\mathcal{A}}(G,(\mathrm{x}, \mathrm{y}), \mathrm{Id}, v)=$ "yes" for all $v \in V(G)$;
- If $(G, x) \notin \mathcal{L}$, then for every certificate y, and for every id-assignment Id, out $\mathcal{A}_{\mathcal{A}}(G,(x, y)$, Id,$v)=$ "no" for at least one node $v \in V(G)$.

Non-determinism helps

Definition

$\mathrm{NLD}(t)$ is the class of all distributed languages that can be verified in at most t communication rounds.

$$
\mathrm{NLD}=\cup_{t \geq 0} \mathrm{NLD}(t)
$$

Example

$$
\text { Tree }=\{(G, \epsilon) \mid G \text { is a tree }\} \in \operatorname{NLD}(1)
$$

Certificate given at node v is $\mathrm{y}(v)=\operatorname{dist}_{G}(v, \hat{v})$, where $\hat{v} \in V(G)$ is an arbitrary fixed node.

Verification procedure verifies the following:

- $\mathrm{y}(v)$ is a non-negative integer,
- if $\mathrm{y}(v)=0$, then $\mathrm{y}(w)=1$ for every neighbor w of v, and
- if $y(v)>0$, then there exists a neighbor w of v such that $\mathrm{y}(w)=\mathrm{y}(v)-1$, and, for all other neighbors w^{\prime} of v, we have $\mathrm{y}\left(w^{\prime}\right)=\mathrm{y}(v)+1$.

NLD-complete problem

Reduction

\mathcal{L}_{1} is locally reducible to \mathcal{L}_{2}, denoted by $\mathcal{L}_{1} \preceq \mathcal{L}_{2}$, if there exists a constant time local algorithm \mathcal{A} such that, for every configuration (G, x) and every id-assignment Id, \mathcal{A} produces out $(v) \in\{0,1\}^{*}$ as output at every node $v \in V(G)$ so that

$$
(G, x) \in \mathcal{L}_{1} \Longleftrightarrow(G, \text { out }) \in \mathcal{L}_{2}
$$

The language containment
$x(v)=(\mathcal{E}(v), \mathcal{S}(v))$ where:

- $\mathcal{E}(v)$ is an element
- $\mathcal{S}(v)$ is a finite collection of sets
$\{(G,(\mathcal{E}, \mathcal{S})) \mid \exists v \in V, \exists S \in \mathcal{S}(v)$ s.t. $S \supseteq\{\mathcal{E}(u) \mid u \in V\}\}$.
Theorem
Containment is NLD-complete.

Proof

Reduction

For every node v, set $\mathcal{E}(v)$ as the ball of radius t around v where t is the "running time" of a non-deterministic algorithm for \mathcal{L}.
Let width $(v)=2^{|\mathrm{Id}(v)|+|\mathrm{X}(v)|}$. Every node v

- constructs all possible input configurations $\left(G^{\prime}, x^{\prime}\right)$ on graphs with at most width (v) nodes, and,
- for each configuration (G^{\prime}, x^{\prime}), constructs one set S equal to the collection of every t-ball around every node of G^{\prime}.

At least one node v gets the actual configuration (G, x).
Hence the equivalence......
NLD membership
Cf. BPNLD

Combining non-determinism with randomization

$$
\begin{aligned}
\operatorname{BPNLD}(t) & =\cup_{p^{2}+q \leq 1} \operatorname{BPNLD}(t, p, q) \\
\operatorname{BPNLD} & =\cup_{t \geq 0} \operatorname{BPNLD}(t, p, q)
\end{aligned}
$$

Theorem
BPNLD contains all languages.
Proof
The certificate is a map of the graph, i.e., an isomorphic copy H of G, with nodes labeled from 1 to n.
Each node v is also given its label $\ell(v)$ in H.
The proof that nodes can probabilistically check $H \sim G$ relies on two facts:

- To be "cheated", a wrong map must be a lift of G.
- One can check whether H is a lift of G by having node(s) labeled 1 acting as in AMOS.

The "most difficult" decision problem

The problem Cover
$\{(\mathcal{G},(\mathcal{E}, \mathcal{S})) \mid \exists v \in V, \exists \mathcal{S} \in \mathcal{S}(v)$ s.t. $\mathcal{S}=\{\mathcal{E}(u) \mid u \in V\}\}$.
Theorem
Cover is BPNLD-complete.

Outline

Distributed decision problems

Does randomization helps?

Nondeterminism

Power of oracles

Non classical ressources

Further works

The oracle GraphSize

Numerous examples in the literature for which the knowledge of the size of the network is required to efficiently compute solutions.

GraphSize $=\{(G, k)$ s.t. $|V(G)|=k\}$.
Theorem
For every language \mathcal{L}, we have $\mathcal{L} \in N L D^{\text {GraphSize }}$.

Proof

As for BPNLD, the certificate is the map of G. Nodes cannot be "cheated" whenever they know how many they are.

Outline

Distributed decision problems

Does randomization helps?

Nondeterminism

Power of oracles

Non classical ressources

Further works

Decide whether $x=y$

Deterministically: impossible!
Randomly (private coin): probability of success $\frac{1}{2}$

CHSH Game (Clauser, Horne, Shimony and Holt [1969])

$$
a \oplus b=x \wedge y
$$

Deterministically: impossible!
Randomly (private coin): probability of success $\frac{1}{2}$

Shared randomness

$$
a \oplus b=x \wedge y
$$

Deterministically: impossible! Randomly: probability of success $\frac{1}{2}$ Shared randomness: probability of success $\frac{3}{4}$

Shared randomness

$$
a \oplus b=x \wedge y
$$

Deterministically: impossible! Randomly: probability of success $\frac{1}{2}$ Shared randomness: probability of success $\frac{3}{4}$

$$
\left\{\begin{array}{l}
a(0) \oplus b(0)=0 \\
a(1) \oplus b(0)=0 \\
a(0) \oplus b(1)=0 \\
a(1) \oplus b(1)=1
\end{array}\right.
$$

What does it mean to be "local"?

Hidden variable $\lambda \in \Lambda$:

$$
\operatorname{Pr}(a b \mid x y)=\sum_{\lambda} \operatorname{Pr}(a \mid x \lambda) \cdot \operatorname{Pr}(b \mid y \lambda) \cdot \operatorname{Pr}(\lambda)
$$

\Longrightarrow Bell's Inequalities
Physics experiments shows that Bell's inequalities can be violated!

Quantum effect

$$
a \oplus b=x \wedge y
$$

Deterministically: impossible!
Randomly: probability of success $\frac{1}{2}$
Shared randomness: probability of success $\frac{3}{4}$
Intricated particles (quantum bits):
probability of success (Tsilerson [1980]):

$$
\cos ^{2}\left(\frac{\pi}{8}\right) \simeq 0.85>\frac{3}{4}
$$

Global picture

PR-box (Popescu, Rohrlic [1994])

Deterministically: impossible!
Randomly: probability of success $\frac{1}{2}$
Shared randomness: probability of success $\frac{3}{4}$ Intricated particles (quantum bits): prob of success $\cos ^{2}\left(\frac{\pi}{8}\right)$

PR Box: probability of success 1

The PR box respects causality: it is non-signaling

$$
\begin{gathered}
\operatorname{Pr}(a b \mid x y)=\left\{\begin{array}{cl}
\frac{1}{2} & \text { if } a \oplus b=x \wedge y \\
0 & \text { otherwise }
\end{array}\right. \\
\operatorname{Pr}(a \mid x y)=\operatorname{Pr}(a, b=0 \mid x y)+\operatorname{Pr}(a, b=1 \mid x y)=\frac{1}{2}
\end{gathered}
$$

and

$$
\begin{aligned}
& \operatorname{Pr}(a \mid x \bar{y})=\operatorname{Pr}(a, b=0 \mid x \bar{y})+\operatorname{Pr}(a, b=1 \mid x \bar{y})=\frac{1}{2} \\
& \Rightarrow \operatorname{Pr}(a \mid x y)=\operatorname{Pr}(a \mid x) \text { and } \operatorname{Pr}(b \mid x y)=\operatorname{Pr}(b \mid y)
\end{aligned}
$$

Global picture (enhanced)

Importance of the xor-operator

A game between Alice and Bob is defined by a pair (δ, f) of boolean functions.

The objective of Alice and Bob playing game (δ, f) is, for every inputs x and y, to output values a and b satisfying

$$
\delta(a, b)=f(x, y)
$$

in absence of any communication between the two players.

Theorem (Arfaoui, F. [SIROCCO 2012])

Let (δ, f) be a 2-player game that is not equivalent to any XOR-game. Let p be the largest success probability for (δ, f) over all local boxes. Then every box solving (δ, f) with probabilistic guarantee $>p$ is signaling.

Outline

Distributed decision problems

Does randomization helps?

Nondeterminism

Power of oracles

Non classical ressources

Further works

Further works

- Connection to classical computational complexity theory (time and space).
- Complexity/computability issues: Deciding $\mathcal{L} \in \operatorname{LD}$? $\mathcal{L} \in$ NLD?
- Other interpretation functions (cf. Arfaoui, F., Pelc [SSS 2013])
- Connection with logics (FO, EMSO, ...)

Further works

- Connection to classical computational complexity theory (time and space).
- Complexity/computability issues: Deciding $\mathcal{L} \in \operatorname{LD}$? $\mathcal{L} \in$ NLD?
- Other interpretation functions (cf. Arfaoui, F., Pelc [SSS 2013])
- Connection with logics (FO, EMSO, ...)

Thank You!

