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Szemerédi partitions

Regularity Lemma

∀V ′
i ⊆ Vi ∀V ′

j ⊆ Vj
|V ′
i | > ε|Vi| and |V ′

j | > ε|Vj |
⇓

∣∣dens(V ′
i , V

′
j )− dens(Vi, Vj)

∣∣ < ε

ε −→ 0
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L-convergence

• Convergence of δ� or of Lovász profile

t(F,Gn) =
hom(F,Gn)

|Gn||F | .

• Limit as a graphon (Lovász–Szegedy)

symmetric W : [0, 1]× [0, 1]→ [0, 1]

(up to weak-equivalence)
• Limit as an exchangeable random infinite graph
(Aldous–Hoover–Kallenberg, Diaconis–Janson).
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Random-free graphons & Borel graphs

Definition
A graphon is random-free if it is a.e. {0, 1}-valued.
A Borel graph is a graph on a standard probability space, whose
edge set is measurable.

Connections with . . .
• Vapnik–Chervonenkis dimension (Lovász-Szegedy)
• δ1-metric (Pikhurko)
• entropy (Aldous, Janson, Hatami & Norine)
• class speed (Chatterjee, Varadhan)
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Limit objects: bounded degree case
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Bounded degree graphs: BS-convergence

• Convergence of

|{v,Bd(Gn, v) ' (F, r)}|
|Gn|

.

• Limit as a graphing = Borel graph satisfying the
Mass Transport Principle (Aldous–Lyons, Elek)

∀A,B ∈ Σ

∫

A
dB(x) dν(x) =

∫

B
dA(x) dν(x).

• Limit as a unimodular distribution on rooted connected
countable graphs (Benjamini–Schramm).
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BS-convergence

2−1 2−2 2−3 2−42−5. . .

µ
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Resume

Dense Bounded degree

L-convergence BS-convergence

conv. of hom(F,Gn)

|Gn||F |
conv. of |{v, Bd(Gn,v)'(F,r)}|

|Gn|

Graphon Graphing

Exchangeable random Unimodular distribution of
infinite graph rooted connected

countable graphs

edge density/regularity structure
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More statistics
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Probabilistic approach of properties

Definition (Stone pairing)

Let φ be a first-order formula with p free variables and let
G = (V,E) be a graph.

The Stone pairing of φ and G is

〈φ,G〉 = Pr(G |= φ(X1, . . . , Xp)),

for independently and uniformly distributed Xi ∈ V .
That is:

〈φ,G〉 =

∣∣{(v1, . . . , vp) ∈ V p : G |= φ(v1, . . . , vp)}
∣∣

|V |p ,
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Structural Limits

Definition

Let X be a fragment of FO.

A sequence (Gn) is FO-convergent if, for every φ ∈ FO, the
sequence 〈φ,G1〉, . . . , 〈φ,Gn〉, . . . is convergent.

In other words, (Gn) is FO-convergent if, for every first-order
formula φ ∈ FO, the probability that Gn satisfies φ for a random
assignment of the free variables converges.
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Special Fragments

QF Quantifier free formulas L-limits

FO0 Sentences Elementary limits

FOlocal Local formulas (BS-limits)

FO All first-order formulas FO-limits
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Structural Limits

Boolean algebra B(X) Stone Space S(B(X))

Formula φ Continuous function fφ

Vertices v1, . . . , vp, . . . Type T of v1, . . . , vp, . . .

Graph G statistics of types
=probability measure µG

〈φ,G〉
∫
fφ(T ) dµG(T )

X-convergent (Gn) weakly convergent µGn

Γ = Aut(B(X)) Γ-invariant measure
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Modelings
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Modelings

Definition
A modeling A is a graph on a standard probability space s.t.
every first-order definable set is measurable.
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Basic interpretations

G = (V,E) 7→ I(G) = (V,E′)

E′ = {(x, y) : G |= θ(x, y)}.

Examples

x 6∼ y −→ I(G) = G

(x ∼ y) ∨ (∃z (x ∼ z) ∧ (z ∼ y)) −→ I(G) = G2
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Basic interpretations
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E′ = {(x, y) : G |= θ(x, y)}.

Properties

∃I? : FO→ FO, 〈φ, I(G)〉 = 〈I?(φ), G〉

Gn is FO-convergent =⇒ I(Gn) is FO-convergent.

Gn
FO−−→ A =⇒ I(Gn)

FO−−→ I(A).
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Modelings as FO-limits?

Theorem (Nešetřil, POM 2013)

If a monotone class C has modeling FO-limits then the
class C is nowhere dense.

Bounded

expansion

bounded

degree

minor

closed

ultra sparse

Ω(n1+ε)

edges

Ω(n2)

edges

Nowhere dense Somewhere dense
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Proof (sketch)

• Assume C is somewhere dense. There exists p ≥ 1 such that
Subp(Kn) ∈ C for all n;

• For an oriented graph G, define G′ ∈ C:

p

p

G

p

p

x y

x′ y′

︷ ︸︸ ︷
(2p+ 1)(|G| − dG(x))− 1

︷ ︸︸ ︷
(2p+ 1)(|G| − dG(y))− 1

p︷ ︸︸ ︷ p︷ ︸︸ ︷ p︷ ︸︸ ︷G′

• ∃ basic interpretation I, such that for every graph G,
I(G′) ∼= G[k(G)]

def
= G+, where k(G) = (2p+ 1)|G|.
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Modelings as FO-limits?

Theorem (Nešetřil, POM 2013)

If a monotone class C has modeling FO-limits then the class C is
nowhere dense.

Conjecture (Nešetřil, POM)

Every nowhere dense class has modeling FO-limits.

• true for bounded degree graphs (Nešetřil, POM 2012)
• true for colored bounded height trees (Nešetřil, POM 2013)
• true for bounded tree-depth graphs (Nešetřil, POM 2013)
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Small trees, and more
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Are star forests easy?

Gn =

2n stars︷ ︸︸ ︷
S22n (2−1+2−n) + · · · + S22n (2−i+2−n) + · · · + S22n (2−2n+2−n)
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Rooted colored trees with height ≤ t
(proof by induction on t)

1. Cut the tree into pieces via basic interpretation

2. Isolate big components and group small components into a
residual tree (Comb Lemma)

3. Reduce to FO1-convergence for residual trees
4. Consider the limit probability measure µ on S(B(FO1))

5. Pullback µ to a suitable universal measurable rooted tree
and check that this actually defines a modeling FO-limit

6. Use induction to handle big components and put everything
together (Merging Lemma)

7. Glue the components via basic interpretation



State of the art More statistics Modelings Small trees, and more

Rooted colored trees with height ≤ t
(proof by induction on t)

1. Cut the tree into pieces via basic interpretation
2. Isolate big components and group small components into a

residual tree (Comb Lemma)

3. Reduce to FO1-convergence for residual trees
4. Consider the limit probability measure µ on S(B(FO1))

5. Pullback µ to a suitable universal measurable rooted tree
and check that this actually defines a modeling FO-limit

6. Use induction to handle big components and put everything
together (Merging Lemma)

7. Glue the components via basic interpretation



State of the art More statistics Modelings Small trees, and more

Rooted colored trees with height ≤ t
(proof by induction on t)

1. Cut the tree into pieces via basic interpretation
2. Isolate big components and group small components into a

residual tree (Comb Lemma)
3. Reduce to FO1-convergence for residual trees

4. Consider the limit probability measure µ on S(B(FO1))

5. Pullback µ to a suitable universal measurable rooted tree
and check that this actually defines a modeling FO-limit

6. Use induction to handle big components and put everything
together (Merging Lemma)

7. Glue the components via basic interpretation



State of the art More statistics Modelings Small trees, and more

Rooted colored trees with height ≤ t
(proof by induction on t)

1. Cut the tree into pieces via basic interpretation
2. Isolate big components and group small components into a

residual tree (Comb Lemma)
3. Reduce to FO1-convergence for residual trees
4. Consider the limit probability measure µ on S(B(FO1))

5. Pullback µ to a suitable universal measurable rooted tree
and check that this actually defines a modeling FO-limit

6. Use induction to handle big components and put everything
together (Merging Lemma)

7. Glue the components via basic interpretation



State of the art More statistics Modelings Small trees, and more

Rooted colored trees with height ≤ t
(proof by induction on t)

1. Cut the tree into pieces via basic interpretation
2. Isolate big components and group small components into a

residual tree (Comb Lemma)
3. Reduce to FO1-convergence for residual trees
4. Consider the limit probability measure µ on S(B(FO1))

5. Pullback µ to a suitable universal measurable rooted tree
and check that this actually defines a modeling FO-limit

6. Use induction to handle big components and put everything
together (Merging Lemma)

7. Glue the components via basic interpretation



State of the art More statistics Modelings Small trees, and more

Rooted colored trees with height ≤ t
(proof by induction on t)

1. Cut the tree into pieces via basic interpretation
2. Isolate big components and group small components into a

residual tree (Comb Lemma)
3. Reduce to FO1-convergence for residual trees
4. Consider the limit probability measure µ on S(B(FO1))

5. Pullback µ to a suitable universal measurable rooted tree
and check that this actually defines a modeling FO-limit

6. Use induction to handle big components and put everything
together (Merging Lemma)

7. Glue the components via basic interpretation



State of the art More statistics Modelings Small trees, and more

Rooted colored trees with height ≤ t
(proof by induction on t)

1. Cut the tree into pieces via basic interpretation
2. Isolate big components and group small components into a

residual tree (Comb Lemma)
3. Reduce to FO1-convergence for residual trees
4. Consider the limit probability measure µ on S(B(FO1))

5. Pullback µ to a suitable universal measurable rooted tree
and check that this actually defines a modeling FO-limit

6. Use induction to handle big components and put everything
together (Merging Lemma)

7. Glue the components via basic interpretation



State of the art More statistics Modelings Small trees, and more

Tree-depth

Definition

The tree-depth td(G) of a graph G is
the minimum height of a rooted forest
Y s.t.

G ⊆ Closure(Y ).

td(Pn) = log2(n+ 1)
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Tree-depth at most t

• Let (Gn) be an FO-convergent sequence of graphs with
tree-depth ≤ t.

• There is a basic interpretation I and rooted colored trees
Yn with height ≤ t+ 1 such that Gn = I(Yn).

• By compactness, there is a subsequence (Yf(n))n∈N, which is
FO-convergent.

• Let Yf(n)
FO−−→ A.

• Then Gn
FO−−→ I(A).
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Colored Trees

• Reduction (mod countable) to countably many essentially
connected sequences and a residual sequence, by cuting the
trees and taking subsequence;

• For a residual sequence, construction via Stone space;
• For an essentially connected sequence, inductive
construction of a modeling limit.
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Thank you for your
attention.
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