A first intermediate class with limit object

<u>Jaroslav Nešetřil</u> Patrice Ossona de Mendez

Charles University Praha, Czech Republic

LEA STRUCO

 $\begin{array}{c} {\rm CAMS,\ CNRS/EHESS} \\ {\rm Paris,\ France} \end{array}$

STRUCO Meeting on Distributed Computing and Graph Theory — Pont-à-Mousson — November 2013

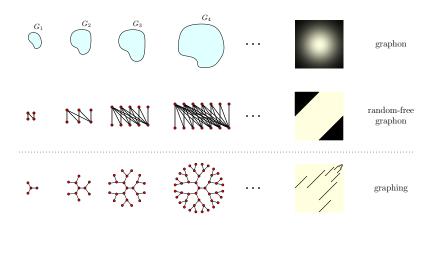
э

State	of t	he	art

State of the art

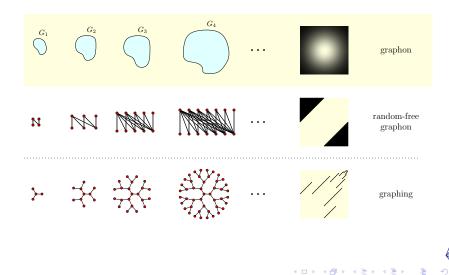
Small trees, and more

Limit objects

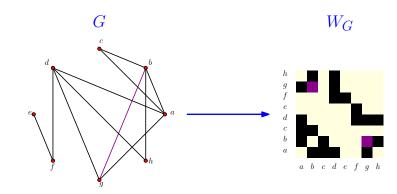


Small trees, and more

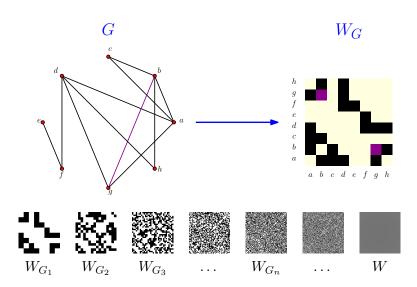
Limit objects: dense case



Graphons

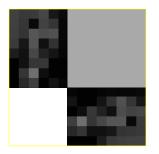


Graphons



æ

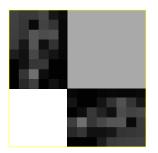
Szemerédi partitions



Regularity Lemma

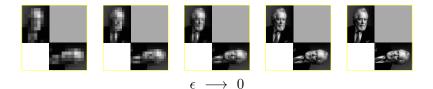
 $\begin{aligned} \forall V'_i \subseteq V_i \quad \forall V'_j \subseteq V_j \\ |V'_i| > \epsilon |V_i| \text{ and } |V'_j| > \epsilon |V_j| \\ & \downarrow \\ \left| \operatorname{dens}(V'_i, V'_j) - \operatorname{dens}(V_i, V_j) \right| < \epsilon \end{aligned}$

Szemerédi partitions

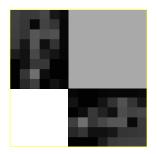


Regularity Lemma

 $\begin{aligned} \forall V'_i \subseteq V_i \quad \forall V'_j \subseteq V_j \\ |V'_i| > \epsilon |V_i| \text{ and } |V'_j| > \epsilon |V_j| \\ & \downarrow \\ & |\operatorname{dens}(V'_i, V'_j) - \operatorname{dens}(V_i, V_j)| < \epsilon \end{aligned}$



Szemerédi partitions



Regularity Lemma

 $\begin{aligned} \forall V'_i \subseteq V_i \quad \forall V'_j \subseteq V_j \\ |V'_i| > \epsilon |V_i| \text{ and } |V'_j| > \epsilon |V_j| \\ & \downarrow \\ |\operatorname{dens}(V'_i, V'_j) - \operatorname{dens}(V_i, V_j)| < \epsilon \end{aligned}$

State of the art	More statistics	Modelings	Small trees, and more
	Leon	orgongo	
	L-COIIV	regence	

• Convergence of δ_{\Box} or of *Lovász profile*

$$t(F,G_n) = \frac{\hom(F,G_n)}{|G_n|^{|F|}}$$

• Limit as a *graphon* (Lovász–Szegedy)

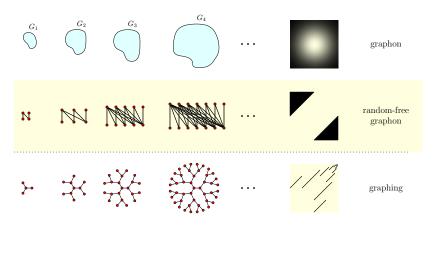
symmetric $W:[0,1]\times [0,1]\to [0,1]$

(up to weak-equivalence)

• Limit as an exchangeable random infinite graph (Aldous–Hoover–Kallenberg, Diaconis–Janson).

Small trees, and more

Limit objects: random-free case



3

Random-free graphons & Borel graphs

Definition

A graphon is *random-free* if it is a.e. $\{0, 1\}$ -valued.

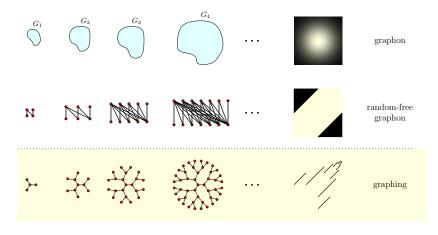
A *Borel graph* is a graph on a standard probability space, whose edge set is measurable.

Connections with ...

- Vapnik–Chervonenkis dimension (Lovász-Szegedy)
- δ_1 -metric (Pikhurko)
- entropy (Aldous, Janson, Hatami & Norine)
- class speed (Chatterjee, Varadhan)

Small trees, and more

Limit objects: bounded degree case



æ

・ロト ・個ト ・モト ・モト

Bounded degree graphs: BS-convergence

• Convergence of

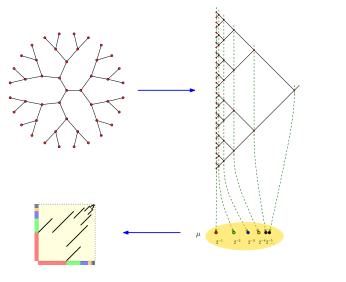
$$\frac{|\{v, B_d(G_n, v) \simeq (F, r)\}|}{|G_n|}.$$

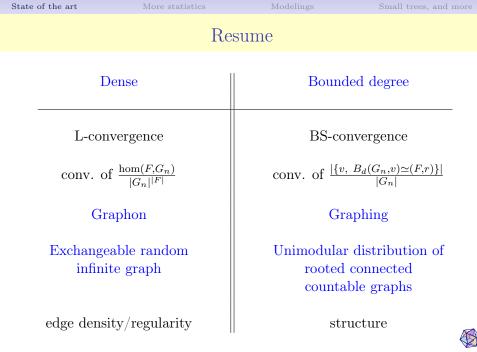
• Limit as a *graphing* = Borel graph satisfying the *Mass Transport Principle* (Aldous-Lyons, Elek)

$$\forall A, B \in \Sigma \qquad \int_A \mathrm{d}_B(x) \,\mathrm{d}\nu(x) = \int_B \mathrm{d}_A(x) \,\mathrm{d}\nu(x).$$

• Limit as a unimodular distribution on rooted connected countable graphs (Benjamini–Schramm).

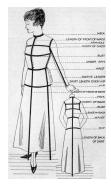
BS-convergence





・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

More statistics



Probabilistic approach of properties

Definition (Stone pairing)

Let ϕ be a first-order formula with p free variables and let G = (V, E) be a graph.

The *Stone pairing* of ϕ and *G* is

$$\langle \phi, G \rangle = \Pr(G \models \phi(X_1, \dots, X_p)),$$

for independently and uniformly distributed $X_i \in V$. That is:

$$\langle \phi, G \rangle = \frac{\left| \{ (v_1, \dots, v_p) \in V^p : G \models \phi(v_1, \dots, v_p) \} \right|}{|V|^p},$$

ъ

・ロト ・四ト ・ヨト ・ヨト

Structural Limits

Definition

A sequence (G_n) is FO-convergent if, for every $\phi \in FO$, the sequence $\langle \phi, G_1 \rangle, \ldots, \langle \phi, G_n \rangle, \ldots$ is convergent.

In other words, (G_n) is FO-convergent if, for every first-order formula $\phi \in$ FO, the probability that G_n satisfies ϕ for a random assignment of the free variables converges.

Structural Limits

Definition

Let X be a fragment of FO. A sequence (G_n) is X-convergent if, for every $\phi \in X$, the sequence $\langle \phi, G_1 \rangle, \ldots, \langle \phi, G_n \rangle, \ldots$ is convergent.

In other words, (G_n) is X-convergent if, for every first-order formula $\phi \in X$, the probability that G_n satisfies ϕ for a random assignment of the free variables converges.

State o	f the art	More statistics	Modelings	Small trees, and more
		Special Frag	gments	
	QF	Quantifier free formulas	L-limits	
_	FO ₀	Sentences	Elementary limit	5
_	$\mathrm{FO}^{\mathrm{local}}$	Local formulas	(BS-limits)	
_	FO	All first-order formulas	FO-limits	
			< • • > < @ > < 3	

Structural Limits

Boolean algebra $\mathcal{B}(X)$	Stone Space $S(\mathcal{B}(X))$
Formula ϕ	Continuous function f_{ϕ}
Vertices v_1, \ldots, v_p, \ldots	Type T of v_1, \ldots, v_p, \ldots
Graph G	statistics of types =probability measure μ_G
$\langle \phi, G \rangle$	$\int f_{\phi}(T) \mathrm{d}\mu_G(T)$
X-convergent (G_n)	weakly convergent μ_{G_n}
$\Gamma = \operatorname{Aut}(\mathcal{B}(X))$	Γ -invariant measure

State	of th	le art
-------	-------	--------

Modelings

Modelings

Definition

A *modeling* \mathbf{A} is a graph on a standard probability space s.t. every first-order definable set is measurable.

From "Manga Guide to Statistics", Shin Takahashi, 2008

$$G = (V, E) \mapsto I(G) = (V, E')$$
$$E' = \{(x, y) : G \models \theta(x, y)\}.$$

Examples

$$\begin{array}{rccc} x \not\sim y & \longrightarrow & I(G) = \overline{G} \\ (x \sim y) \lor (\exists z \ (x \sim z) \land (z \sim y)) & \longrightarrow & I(G) = G^2 \end{array}$$

$$G = (V, E) \mapsto I(G) = (V, E')$$
$$E' = \{(x, y) : G \models \theta(x, y)\}.$$

Properties

$\exists I^{\star}: \mathrm{FO} \to \mathrm{FO}, \quad \langle \phi, I(G) \rangle = \langle I^{\star}(\phi), G \rangle$

$$G = (V, E) \mapsto I(G) = (V, E')$$
$$E' = \{(x, y) : G \models \theta(x, y)\}.$$

Properties

 $\exists I^* : \mathrm{FO} \to \mathrm{FO}, \quad \langle \phi, I(G) \rangle = \langle I^*(\phi), G \rangle$ $G_n \text{ is FO-convergent} \implies I(G_n) \text{ is FO-convergent.}$

$$G = (V, E) \mapsto I(G) = (V, E')$$
$$E' = \{(x, y) : G \models \theta(x, y)\}.$$

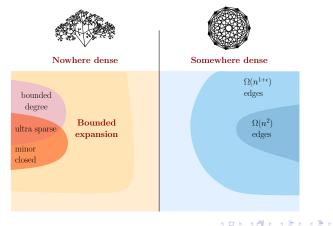
Properties

 $\exists I^{\star} : \mathrm{FO} \to \mathrm{FO}, \quad \langle \phi, I(G) \rangle = \langle I^{\star}(\phi), G \rangle$ $G_n \text{ is FO-convergent} \implies I(G_n) \text{ is FO-convergent.}$ $G_n \xrightarrow{\mathrm{FO}} \mathbf{A} \implies I(G_n) \xrightarrow{\mathrm{FO}} I(\mathbf{A}).$

Modelings as FO-limits?

Theorem (Nešetřil, POM 2013)

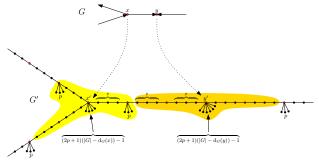
If a monotone class \mathcal{C} has modeling FO-limits then the class \mathcal{C} is nowhere dense.



ъ

State of the art	More statistics	Modelings	Small trees, and more
	Proof	(sketch)	

- Assume C is somewhere dense. There exists $p \ge 1$ such that $\operatorname{Sub}_p(K_n) \in C$ for all n;
- For an oriented graph G, define $G' \in \mathcal{C}$:



• \exists basic interpretation I, such that for every graph G, $I(G') \cong G[k(G)] \stackrel{\text{def}}{=} G^+$, where k(G) = (2p+1)|G|.

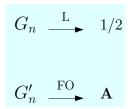
э

A D F A B F A B F A B F

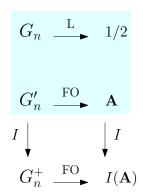
State	of t	he a	irt
-------	------	------	-----

$$\begin{array}{ccc} G_n & _ & 1/2 \\ & & \\ & & \\ \bullet \\ G'_n \in \mathcal{C} \end{array}$$

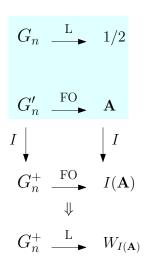
State	of t	he a	irt
-------	------	------	-----



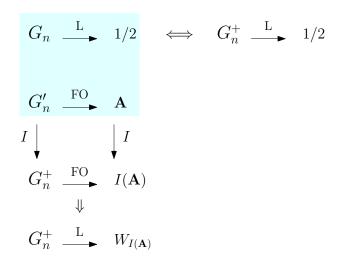
Small trees, and more



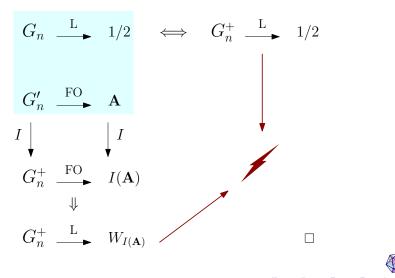
Small trees, and more



Proof (sketch)



イロト イロト イヨト イヨト 三日



Modelings as FO-limits?

Theorem (Nešetřil, POM 2013)

If a monotone class ${\mathcal C}$ has modeling FO-limits then the class ${\mathcal C}$ is nowhere dense.

Conjecture (Nešetřil, POM)

Every nowhere dense class has modeling FO-limits.

- true for bounded degree graphs (Nešetřil, POM 2012)
- true for colored bounded height trees (Nešetřil, POM 2013)
- true for bounded tree-depth graphs (Nešetřil, POM 2013)

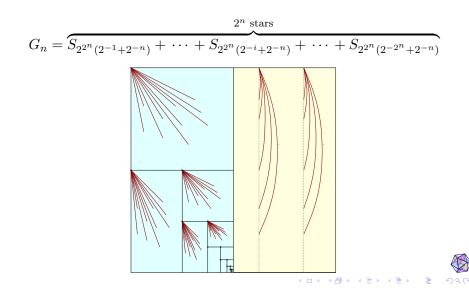
Small trees, and more

ヘロト ヘロト ヘヨト ヘヨト

Are star forests easy?

$$G_n = \overbrace{S_{2^{2^n}(2^{-1}+2^{-n})}^{2^n} + \dots + S_{2^{2^n}(2^{-i}+2^{-n})}^{2^n} + \dots + S_{2^{2^n}(2^{-2^n}+2^{-n})}^{2^n}}_{2^n}}^{2^n \text{ stars}}$$

Are star forests easy?



Small trees, and more

Rooted colored trees with height $\leq t$ (proof by induction on t)

1. Cut the tree into pieces via basic interpretation

- 1. Cut the tree into pieces via basic interpretation
- 2. Isolate big components and group small components into a residual tree (Comb Lemma)

- 1. Cut the tree into pieces via basic interpretation
- 2. Isolate big components and group small components into a residual tree (Comb Lemma)
- 3. Reduce to FO₁-convergence for residual trees

- 1. Cut the tree into pieces via basic interpretation
- 2. Isolate big components and group small components into a residual tree (Comb Lemma)
- 3. Reduce to FO_1 -convergence for residual trees
- 4. Consider the limit probability measure μ on $S(\mathcal{B}(\text{FO}_1))$

・ロト ・四ト ・ヨト ・ヨト

3

- 1. Cut the tree into pieces via basic interpretation
- 2. Isolate big components and group small components into a residual tree (Comb Lemma)
- 3. Reduce to FO_1 -convergence for residual trees
- 4. Consider the limit probability measure μ on $S(\mathcal{B}(\text{FO}_1))$
- 5. Pullback μ to a suitable universal measurable rooted tree and check that this actually defines a modeling FO-limit

- 1. Cut the tree into pieces via basic interpretation
- 2. Isolate big components and group small components into a residual tree (Comb Lemma)
- 3. Reduce to FO_1 -convergence for residual trees
- 4. Consider the limit probability measure μ on $S(\mathcal{B}(\text{FO}_1))$
- 5. Pullback μ to a suitable universal measurable rooted tree and check that this actually defines a modeling FO-limit
- 6. Use induction to handle big components and put everything together (Merging Lemma)

・ロア ・雪 ア ・ 田 ア

э

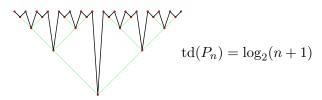
- 1. Cut the tree into pieces via basic interpretation
- 2. Isolate big components and group small components into a residual tree (Comb Lemma)
- 3. Reduce to FO_1 -convergence for residual trees
- 4. Consider the limit probability measure μ on $S(\mathcal{B}(\text{FO}_1))$
- 5. Pullback μ to a suitable universal measurable rooted tree and check that this actually defines a modeling FO-limit
- 6. Use induction to handle big components and put everything together (Merging Lemma)
- 7. Glue the components via basic interpretation

Tree-depth

The *tree-depth* td(G) of a graph G is the minimum height of a rooted forest Y s.t.

 $G \subseteq \text{Closure}(Y).$

・ロト ・聞ト ・ヨト ・ヨト



ъ

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Tree-depth at most t

- Let (G_n) be an FO-convergent sequence of graphs with tree-depth $\leq t$.
- There is a basic interpretation I and rooted colored trees Y_n with height $\leq t + 1$ such that $G_n = I(Y_n)$.
- By compactness, there is a subsequence $(Y_{f(n)})_{n \in \mathbb{N}}$, which is FO-convergent.
- Let $Y_{f(n)} \xrightarrow{\mathrm{FO}} \mathbf{A}$.
- Then $G_n \xrightarrow{\text{FO}} I(\mathbf{A})$.

Colored Trees

- Reduction (mod countable) to countably many essentially connected sequences and a residual sequence, by cuting the trees and taking subsequence;
- For a residual sequence, construction via Stone space;
- For an essentially connected sequence, inductive construction of a modeling limit.

Small trees, and more

Thank you for your attention.

