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Multi-Message Broadcast 
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• a.k.a. gossip, token dissemination, … 
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Multi-Message Broadcast 
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Communication Assumptions 
 

• For simplicity: synchronous model 
 

• In each round: 
Each node can send a message to each neighbor 
 

 

 

 

 

 

 

 

 
• Message size: 𝑶(𝐥𝐨𝐠𝒏) bits, 𝑶(𝟏) broadcast messages 

– a.k.a. CONGEST model       [Peleg 2000] 
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Multi-Message Broadcast 
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Goal: (Globally) broadcast 𝑁 messages 
 

 

 

 
 

Which message should be forwarded to neighbors? 

• It doesn’t matter… 
 

 

 

• 𝐷: diameter 

• Optimal pipelining on a path of length 𝑑 gives 𝑂(𝑑 + 𝑁) 

– 𝑫+𝑵 is asymptotically optimal in general 

 

• What about networks with better connectivity? 
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Broadcasting Multiple Messages 

Strategy: In each round, each node forwards an 
                 “unforwarded” message to its neighbors 

Total time for 𝑵 broadcasts ≤ 𝑫+𝑵 [Topkis ‘85] 
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Two natural variants… 

 

Edge-Capacitated Model 

• Message size 𝑂(log 𝑛) 

• Nodes can send different messages to different neighbors 

• Classic CONGEST model 

 

Node-Capacitated Model 

• Message size 𝑂 log 𝑛  

• Have to send the same message to all neighbors 

• Communication by local broadcasts 
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Communication Model 
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Basic assumption: 

• store-and-forward algorithms 

 

Each message 𝑴: 

• Edges on which 𝑀 is forwarded induce a spanning tree! 

 

Throughput (𝑵 messages): 

• 𝑁 spanning trees, one for each message 

• Optimize throughput:  

– try to use each edge as few times as possible 
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Multi-Broadcast with Edge Capacities 
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Spanning Tree Packing: set of edge-disjoint spanning trees 

 

 
• sp. tree packing of size 𝑠  ⟺   𝑠 edge-disjoint sp. trees 

 

Proof sketch: 

• Each spanning tree gets ≈ 𝑁 𝑠  messages 

• Spanning trees don’t interfere with each other 

• Use pipelining on each spanning tree 
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Packing Spanning Trees 

Spanning tree packing of size 𝑠   ⟹   throughput Ω(𝑠) 
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𝑮 has edge connectivity 𝝀: 
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Edge Connectivity 

min. cut 

Thm: 𝐺 has ≤ 𝜆 edge-disjoint spanning trees.  

Thm: 𝐺 has ≥ 𝜆 2  edge-disjoint spanning trees. 
                                                       [Tutte ’61, Nash-Williams ‘61]  

𝝀 edges 
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𝑮 has edge connectivity 𝝀: 

 

 

 

 

 

 

 

 

• This is tight: 
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Edge Connectivity 

min. cut 

Thm: 𝐺 has ≤ 𝜆 edge-disjoint spanning trees.  

Thm: 𝐺 has ≥ 𝜆 2  edge-disjoint spanning trees. 
                                                       [Tutte ’61, Nash-Williams ‘61]  

𝝀 edges 
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Nodes 𝑺𝑴 forward message 𝑴 

 

 

 
 

Every other node needs to get the message: 
 

• 𝑺𝑴 is a dominating set 
 

One source  ⟹  nodes in 𝑆𝑀 are connected to each other 
 

• 𝑺𝑴 is a connected dominating set (CDS) 
 

One CDS for each message 𝑀 

• Use each node in as few CDSs as possible 
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Vertex-Capacitated Networks? 



STRUCO Meeting, November 2013 Fabian Kuhn 

CDS packing of size 𝒄 

• 𝑐 vertex-disjoint connected dominating sets 
 

Fractional CDS packing of size 𝒄 

• CDSs 𝑆1, … , 𝑆𝑡 and weights 𝜆1, … , 𝜆𝑡 such that 
 

 𝜆𝑖

𝑡

𝑖=1

= 𝑐, ∀𝑣 ∈ 𝑉 𝐺 :  𝜆𝑖
𝑖:𝑣∈𝑆𝑖

≤ 1 
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Packing Connected Dominating Sets 
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Proof sketch:  
 

• Distribute msg. among CDSs (according to weight) 

– Time-share between CDSs according to weight 
 

• Use pipelining on each CDS (optimal throughput) 

 

• Throughput  Ω(𝑐): 

– Tracking routes gives CDS for each message 

– Each nodes used at most 𝑂(𝑁 𝑐 ) times 

– CDS 𝑆 used by ℓ messages ⟹ weight of 𝑆 is Θ(ℓ𝑐 𝑁 ) 
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CDS Packings and Throughput 

Fractional CDS packing of size 𝒄   ⟺   throughput 𝛀(𝒄) 

Some Intuition 
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𝑮 has vertex connectivity 𝒌: 

 

 

 

 
• Vertex cut 𝐶 ⊆ 𝑉 𝐺  

– Each msg. needs to be forwarded by some node in 𝐶 
 

throughput ≤ 𝑘 

 

 
 

• Can we find a (fractional) CDS packing of size Ω(𝑘)? 
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Vertex Connectivity 

𝑘 = 5 

𝑁 messages 

Thm: Size of largest fractional CDS packing ≤ 𝑘  
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• Joint work with Mohsen Ghaffari and Keren Censor-Hillel 
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CDS Packing Results 

Thm: There is a family of graphs with vertex connectivity 𝑘 
           and maximum fractional CDS packing size 𝑂(𝑘 log 𝑛 ). 

Thm: Every graph with vertex connectivity 𝑘 ≥ 1 has a 
           fractional CDS packing of size Ω(1 + 𝑘 log𝑛 ). 

Thm: Every graph with vertex connectivity 𝑘 ≥ 1 has a 
           CDS packing of size Ω(1 + 𝑘 log5 𝑛 ). 
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CDS results/techniques lead to other interesting results 

 

 

 
 

• Proof idea: Fractional CDS packing construction can also be 
applied to sampled sub-graph. 

 
 
 

• Tight up to factor 𝑂 log 𝑛 . 

 

• No non-trivial results of this kind where known before! 
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Vertex Sampling Results 

Thm: If each node of a 𝑘-vertex connected graph is indep. 
           sampled with probability 𝑝, the vertex connectivity of 
           the induced sub-graph is Ω(𝑘𝑝2 log3 𝑛 ). 

Thm: When sampling with prob. 𝑝 = 𝛾 ⋅ log (𝑛) 𝑘 , the 
           induced sub-graph is connected w.h.p.  
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Graph 𝑮 is 𝝀-edge connected: 
 

• 𝑯: sub-graph induced when independently sampling each 
edge with probability 𝑝 = Ω log 𝑛 𝜆 . 

 

• 𝐻 is a connected graph, w.h.p.       [Lomonosov and Poleskii ‘71] 

 

• The edge connectivity of 𝐻 is Ω(𝜆𝑝), w.h.p.           [Karger ‘94] 

 

• Both results are tight 
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Edge Sampling 
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• A cut with value 𝛼𝜆 in 𝐺 has expected value 𝑝 ⋅ 𝛼𝜆 in 𝐻 

 

 

 

 
 

• Chernoff bound: the probability that the value is far by a 

factor ≥ (1 + 𝜀) is 𝑒−Θ(𝜀
2𝑝𝛼𝜆) 

 

• Union bound: values of all cuts are close to expectation 

 

• Main tool: number of edge cuts of size ≤ 𝛼𝜆 is 𝑂 𝑛2𝛼  
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Cuts After Sampling 

𝑝 

𝑝 

𝑝 
𝑝 
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𝑮 is 𝝀-edge connected: 
 

• Number of edges cuts of size ≤ 𝛼𝜆 is 𝑂 𝑛2𝛼         [Karger ‘94] 

• Number of min. edge cuts is 𝑂 𝑛2  

 

𝑮 is 𝒌-vertex connected: 
 

• Number of min. vertex cuts can be Θ 2𝑘 𝑛 𝑘 2 . 
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Number of Cuts 

Our results: Tools for analyzing vertex connectivity 
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Proof Sketch: 
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Vertex Sampling Proof 

𝑯 ⊆ 𝑮: Sub-graph with nodes sampled independently with 

probability 𝒑 ≥ 𝜷 𝐥𝐨𝐠 (𝒏) 𝒌   ⟹ 𝑯 connected, w.h.p. 
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Proof Sketch: 

 

Virtual graph 𝑮′ with 
 

𝑳 = 𝚯(𝐥𝐨𝐠 𝒏) layers 

 

 

 

Edge between copies of same node or of neigboring nodes  
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Vertex Sampling Proof 

𝑯 ⊆ 𝑮: Sub-graph with nodes sampled independently with 

probability 𝒑 ≥ 𝜷 𝐥𝐨𝐠 (𝒏) 𝒌   ⟹ 𝑯 connected, w.h.p. 
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Proof Sketch: 

 

Virtual graph 𝑮′ with 
 

𝑳 = 𝚯(𝐥𝐨𝐠 𝒏) layers 

 

 

 

Edge between copies of same node or of neigboring nodes  
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Vertex Sampling Proof 

𝑯 ⊆ 𝑮: Sub-graph with nodes sampled independently with 

probability 𝒑 ≥ 𝜷 𝐥𝐨𝐠 (𝒏) 𝒌   ⟹ 𝑯 connected, w.h.p. 
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Node set 𝑾′ ⊆ 𝑽′ is projected to 𝑾 ⊆ 𝑽: 
 

𝑤 ∈ 𝑊  ⟺  𝑊′ contains a copy of 𝑤 
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Virtual Graph 

𝑾′ connected 

𝑾′ dominating 

𝑾 connected 

𝑾 dominating 

⟺ 

⟺ 
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• Sample virtual nodes with probability 
 

𝒒 = 𝟏 − 𝟏 − 𝒑 𝟏 𝑳 ≈
𝒑

𝑳
 

 

• Sample real node 𝑣 iff 𝑣 is in the projection of the sampled 
virtual nodes (at least one copy of 𝑣 sampled in 𝐺′) 

•  

Happens with probability 𝟏 − 𝟏 − 𝒒 𝑳 = 𝒑 

 

• Show that sampling in 𝑮′ gives a CDS 
 

Idea: sample layer by layer and study progress 

24 

Coupling Argument 
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Claim: After sampling 𝐿 2  layers, the sampled nodes form 
dominating set. 

 

Proof Sketch: 

• Sampling probability in 𝐺 after 𝐿 2 = Θ(log 𝑛) layers is 
 

Θ log𝑛

𝑘
 

 

• Domination follows directly because every node in 𝐺 has 
degree ≥ 𝑘 
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Domination 
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Recall Menger’s theorem: 

• In a 𝑘-vertex connected graph 𝐺 = (𝑉, 𝐸), any two nodes 
are connected by 𝑘 internally vertex-disjoint paths 
 

Assume: 𝐺 is 𝑘-vertex connected, 𝑆 ⊆ 𝑉 is a dominating set 
 

Components of 𝑮[𝑺]: 
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Connectivity 

𝒖 

𝒗 
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Assume: 𝐺 = (𝑉, 𝐸), 𝑆 ⊆ 𝑉 a dominating set 
 

Definition: For a component 𝐶 of 𝐺[𝑆], a connector path is a 
path with ≤ 2 internal nodes connecting 𝐶 to another 
component 𝐶′ of 𝐺[𝑆]. 

 

 

 

 

 
Menger & Domination of 𝑺: 

• 𝐺 𝑘-vertex connected  ⟹  there are ≥ 𝑘 such paths! 
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Connector Paths 

𝑪′ 

𝑪′′′ 
𝑪 

𝑪′′ 
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Consider a layer ℓ > 𝑳 𝟐  

• Nodes 𝑆<ℓ sampled by layers < ℓ form a dominating set 
 

Sampling of layer ℓ: 

• Virtual nodes sampled with probability  

𝑞 ≈
𝑝

𝐿
=
1

𝐿
⋅
𝛽 log 𝑛

𝑘
= Θ

1

𝑘
 

 

Component of 𝑮 𝑺<ℓ : 
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Connectivity 

𝑪 

• ≥ 𝑘 connector paths 
 

• each of them sampled with 
prob Ω(1 𝑘 ) in layer ℓ 
 

• 𝐶 connected to another 
component with const. prob. 
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Fast Merging: 
 

• On each layer ℓ > 𝐿 2 , each component is connected to at 
least one other component with at least constant prob. 
 

• With at least constant probability, the number of 
connected components of the induced sub-graph is 
reduced by a constant factor 

 

• After 𝑂(log 𝑛) layers, we have connectivity, w.h.p. 

– Initially, #components is 𝑂(𝑛) 
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Connectivity 
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• Sampling directly gives CDS packing of size Ω 𝑘 log 𝑛  
 

From size 𝛀 𝒌  to 𝛀 𝒌 … 

• also based on virtual graph and layering 

• construct all the CDSs at the same time 

• carefully choose / assign connector paths 
– make progress for all CDSs (reduce overall # of components) 

• Gives fractional CDS packing  
– different virtual copies of the same node in 𝐺 can go to 

different CDSs 

– Each node is in at most 𝑂 log 𝑛  CDSs 
 

• CDS packing: 
Use random layers of real nodes instead of virtual nodes 
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(Fractional) CDS Packing 
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• Algorithm works in the CONGEST model with 

– Messages of size 𝑂(log 𝑛) 

– Capacities at nodes (comm. by local broadcast) 

 

Lower bound 

• If 𝑘 is not known, Ω 𝐷 + 𝑛 𝑘  rounds needed 

• Proof based on techniques from [Das Sarma et al. ‘12] 
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Distributed Construction 

(Fractional) CDS packings of the same quality can be 
computed in a distributed way in time 𝑂 (𝐷 + 𝑛). 
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Classic Locality Decompositions 

• Decompose graph into clusters of small diameter 

• Preserve locality, cluster graph sparse, low chrom. #, … 

– e.g., [Awerbuch,Goldberg,Luby,Plotkin ’89], [Awerbuch,Peleg ‘90], [Linial,Saks ’93] 

– leads to efficient algorithms in the LOCAL model 

 

(Fractional) CDS and Spanning Tree Packings 

• Decompose nodes / edges of a graph 𝐺 into components 

• Components are connected and they “span” 𝐺 
 

• Also useful as a generic tool to build distributed alg.? 

– if we want to exploit the inherent parallelism in networks 

– for CONGEST algorithms… 
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Network/Graph Decompositions 
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• Time to construct fractional CDS packing: 𝑂 (𝑚) 

• Fastest known non-trivial approximation of vertex conn. 

• Best known algorithms: 

– compute 𝑘 exactly [Gabow ‘00]: 𝑂 𝑛2𝑘 +min 𝑛𝑘3.5, 𝑛1.75𝑘2  

– 2-approximation [Henzinger ’97]: 𝑂 min 𝑛2.5, 𝑛2𝑘  

 

• Distributed algorithm: 𝑂 min
𝑛

𝑘
, 𝐷 + 𝑛  
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Approximating Vertex Connectivity 

Fractional CDS packing construction gives 𝑶(𝐥𝐨𝐠𝒏)-
approximation of the vertex connectivity 𝑘 of 𝐺. 
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• Close the log / polylog gaps! 

 

• CDS packings as a useful primitive (e.g., for distr. alg.)? 

 

• Other applications of the techniques in distr. algorithms? 

 

• Other uses of the layering / virtual graph idea? 

– In particular, when dealing with graph connectivity… 

– Idea also appears in the context of edge sampling in [Alon ‘95] 
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Open Problems 
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Thanks for your attention! 

Questions, Comments? 


