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Definitions

weighted graph = pair (G , p) where

G is a graph;

p : V (G )→ N weight function.

k-colouring of (G , p): C : V (G )→ P({1, . . . , k}) such that

|C (v)| = p(v) for all v ∈ V (G );

C (u) ∩ C (v) = ∅ for all e ∈ E (G ).

chromatic number of (G , p):

χ(G , p) = min{k | (G , p) admits a k-colouring}
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Clique number and chromatic number

clique number of (G , p):

ω(G , p) = max{p(C ) | C clique of G}, where p(C ) =
∑
v∈C

p(v)

.

ω(G , p) ≤ χ(G , p)
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Bipartite graphs

Proposition: If G is bipartite, then ω(G , p) = χ(G , p).
Proof: Assign to v

{1, 2, . . . , p(v)} if v is in A,

{ω(G , p), . . . , ω(G , p)− p(v) + 1} if v is in B. �

Linear-time algorithm finding optimal colouring of a weighted
bipartite graph:

Compute ω(G , p).
ω(G , p) = max

{
maxv∈V (G) p(v) ; maxuv∈E(G) p(u) + p(v)

}
Assign as above.

BUT NOT DISTRIBUTED
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Bipartite graphs: 1-local algorithm

k-local algorithm: to choose its colours each vertex knows only:

the vertices at distance at most k from it (and their weights) .

some precomputed fixed information independent from the
weights.

For each a ∈ A, assign {1, 2, . . . , p(a)} to a.

For each vertex b ∈ B,
Compute ω1(b) = maxbv∈E(G)(p(b) + p(v));
Assign {ω1(b), . . . , ω1(b)− p(b) + 1} to b.
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Odd cycles

Proposition: χ(C2`+1, k) =

⌈
(2`+ 1)k

`

⌉
If ` ≥ 2, then ω(C2`+1, k) = 2k .
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Hexagonal graphs

hexagonal graph: induced subgraph of the triangular lattice TL.
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Colouring weighted hexagonal graphs

H hexagonal graph.
χ(H) ≤ χ(TL) ≤ 3, so

χ(H, p) ≤ 3 max{p(v) | v ∈ V (H)} ≤ 3ω(H, p)

Theorem (McDiarmid and Reed): χ(H, p) ≤ 4ω(H,p)+1
3

Deciding whether χ(H, p) = 3 or 4 is NP-complete.

Theorem (McDiarmid and Reed): There is a constant C s. t.

χ(H, p) ≤ 9

8
ω(H, p) + C
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Induced C9 in the triangular lattice

χ(C9, k) =

⌈
9k

4

⌉
ω(C9, k) = 2k
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Proof of χ(H , p) ≤ 4ω(H,p)+1
3

Set k =
⌊
ω(H,p)+1

3

⌋
. 3-colouring of TL: cT .

1. We use 3k colours: (i , j) for i = 1, 2, 3 and j = 1, . . . , k .

Assign to v the colours corresponding to its lattice colour
(cT (v), 1), . . . , (cT (v),min{k, p(v)}).

m(v) := max{min{k , p(u)} | u ∈ N(v) and cT (u) =
cT (v) + 1}
r(v) = min{p(v)− k , k −m(v)}.
If r(v) ≥ 0, then assign to v the unused colours on its right,
leftup, and leftdown neighbours

(cT (v) + 1, k − r(v) + 1), . . . , (cT (v) + 1, k).

2. U set of vertices whose demand is not yet fulfilled. For u ∈ U,
p′(u) = p(u)− 2k + m(u).
Colour (TL[U], p′) using ω(TL[U], p′) ≤ ω(H, p)− 2k colours.
Possible because TL[U] is acyclic.
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Proving TL[U] is acyclic

Claim: Every vertex v has at most one neighbour to its right.

p(u) ≥ k + 1 for all u ∈ U, ⇒ TL[U] is triangle-free.

> k

m(u) > k

> 2k −m(u)
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First distributed algorithms for hexagonal graphs

Janssen et al. ’00: k-local algorithms adapted from global
algorithms.

0-local: 3-competitive (fixed assignment according to cT )

1-local: 3/2-competitive derived from Janssen et al. ’99

2-local: 17/12-competitive derived from Nayaranan and Schende ’97

4-local: 4/3-competitive derived from Nayaranan and Schende ’97

α-competitive: using at most α · χ(H, p) + β colours for all (H, p)
and some fixed β.
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1-local 3/2-competitive algorithm

Idea: Decomposing TL into 3 bipartite graphs (according to cT ).

ω1(v) = ω(H[N[v ]], p) = max. weighted clique in the
neighbourhood of v .

Algorithm: For each v

compute ω1(v). Set s = dω1(v)/2e.
For i = 1, 2, 3, set Si = {i , 3 + i , . . . , 3s + i − 3}.
if cT (v) = i , then assign to v , the dp(v)/2e first colours of Si
and the bp(v)/2c colours of Si+1.

Validity: u, v adjacent, cT (u) = i − 1 and cT (v) = i .
p(u) + p(v) ≤ min{ω1(u), ω1(v)}.
Number of colours of Si at u or v ≤ min{ω1(u)/2, ω1(v)/2}.
No colours is assigned to both u and v .
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Better distributed algorithms for hexagonal graphs

0-local: 3-competitive (fixed assignment according to cT )

1-local: 13/9-competitive Chin, Zhang and Zhu. ’13
17/12-competitive Witowski ’09
7/5-competitive Witowski and Žerovnik. ’10
33/24-competitive Witowski and Žerovnik. ’13

2-local: 4/3-competitive Šparl and Žerovnik. ’04

4-local: 4/3-competitive derived from Nayaranan and Schende ’97
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Triangle-free hexagonal graphs
H triangle-free hexagonal graph.

Proposition (H.): χ(H, 2) ≤ 5

5-colouring of (H, 2) ≡ homomorphism
of H into the Petersen graph P.

Proof: By induction.

Consider the highest 3-vertex of H and the thread T going up.
A colouring of (H − Ṫ , 2) can be extended to (H, 2).

If length(T ) = 3, by sym-
metry.
If length(T ) ≥ 4, because
two vertices are joined by a
walk of any length at least 4
in P.
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Triangle-free hexagonal graphs

H triangle-free hexagonal graph.

Corollary: χ(H, p) ≤ 5
4ω(G , p) + 3.

Proof:

0. U := V (H), S := ∅, q = p.

1. S := S ∪ {u ∈ U : q(u) = 1}; U := U \ {u ∈ U : q(u) = 1};
2. If U 6= ∅, take 5 new colours.

a. Assign these colours to the set I of isolated vertices of TL[U];
for all u ∈ I , q(u) := max{0, q(u)− 5}.

b. Assign two of these colours to each vertex of U \ I according
to a 5-colouring of (TL[U \ I ], 2).
for all u ∈ U, q(u) := q(u)− 2.

c. Go to 1.

3. Assign to all vertices of S a new colour according to cT .
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Different types of vertices in triangle-free hexagonal graphs

left corners

right corners

flat vertices
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Triangle-free hexagonal graphs: distributed algorithm

1. Colour the left corners.

If cT (v) = 1, then C (v) = {1, 2}.
If cT (v) = 2, then C (v) = {2, 3}.
If cT (v) = 3, then C (v) = {1, 5}.

2. Extend to the rest of the graph.
Union of tristars.

On each direction of TL, every fifth vertex is special.
Cut tristars along special vertices.
Colour each piece separately in a distributed way.

=⇒ 8-local algorithm.

Can be improved to 2-local. (Šparl, Žerovnik)
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k-local 17/12-competitive algorithm for hexagonal graphs

Fisrt phase: ≡ 1-local version of first phase of McDiarmid-Reed.
For each vertex v .

Compute w1(v). Set k = dw1(v)/3e.
Assign to v the colours corresponding to its lattice colour

(cT (v), 1), . . . , (cT (v),min{k , p(v)}).

m(v) := max{min{k , p(u)} | u ∈ N(v) and cT (u) =
cT (v) + 1}; r(v) = min{p(v)− k , k −m(v)}.
If r(v) ≥ 0, then assign to v

(cT (v) + 1, k − r(v) + 1), . . . , (cT (v) + 1, k).

2nd phase: k-local 5/4-comp. algo. for triangle-free graph on
(TL[U], p′).

Uses ω(G , p) + 5
4ω(TL[U], p′) + β ≤ 17

12ω(G , p) + β′.
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Triangle-free hexagonal graphs

H triangle-free hexagonal graph.

Theorem (H.): χ(H, 3) ≤ 7

Corollary: χ(H, p) ≤ 7
6ω(G , p) + 5.

k-good: ∃ f : V → {1, . . . , k} s.t. every odd cycle has a vertex
assigned i for all 1 ≤ i ≤ k .

Lemma: If H is k + 1-good, then χ(H, k) ≤ 2k + 2.

Proof: For each 1 ≤ i ≤ k + 1, colour G − f −1(i) with 2 colours.
Each vertex receives (at least) k colours. �

Sudeep & Vishwanathan: triangle-free hexagonal ⇒ 7-good.

Conjecture: triangle-free hexagonal ⇒ 9-good.
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Triangle-free hexagonal graphs are 5-good

Lemma: ( Sudeep & Vishwanathan)
Every odd cycle contains a flat vertex v s.t. cT (v) = i for all
1 ≤ i ≤ 3.

5-good labelling f :

If v is flat, then f (v) = cT (v).

If v is right corner, then f (v) = 4.

If v is left corner, then f (v) = 5.
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Triangle-free hexagonal graphs are 7-good

Lemma: ( Sudeep & Vishwanathan)
There is a partition (R1,R2) of the right corners s.t. every odd
cycle intersects Ri , i = 1, 2.

7-good labelling f :

If v is flat, then f (v) = cT (v).

If v ∈ Ri , then f (v) = 3 + i .

If v ∈ Li , then f (v) = 5 + i .
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Next problem to solve on hexagonal graphs

Proving χ(H, p) ≤ αω(H, p) + β for α < 4/3.

McDiarmid-Reed Conjecture: α = 9/8

Finding an α-competitive distributed algorithm for colouring
hexagonal graphs for α < 4/3.

Proving χ(H, p) ≤ αω(H, p) + β for α < 7/6, when H is
triangle-free.

Finding a 7/6-competitive distributed algorithm for colouring
triangle-free hexagonal graphs.
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