Colouring weighted hexagonal graphs

Frédéric Havet

Definitions

weighted graph $=\operatorname{pair}(G, p)$ where

- G is a graph;
- $p: V(G) \rightarrow \mathbb{N}$ weight function.
k-colouring of $(G, p): C: V(G) \rightarrow \mathcal{P}(\{1, \ldots, k\})$ such that
- $|C(v)|=p(v)$ for all $v \in V(G)$;
- $C(u) \cap C(v)=\emptyset$ for all $e \in E(G)$.
chromatic number of (G, p) :

$$
\chi(G, p)=\min \{k \mid(G, p) \text { admits a } k \text {-colouring }\}
$$

Clique number and chromatic number

clique number of (G, p) :

$$
\omega(G, p)=\max \{p(C) \mid C \text { clique of } G\}, \text { where } p(C)=\sum_{v \in C} p(v)
$$

$$
\omega(G, p) \leq \chi(G, p)
$$

Bipartite graphs

Proposition: If G is bipartite, then $\omega(G, p)=\chi(G, p)$.
Proof: Assign to v

- $\{1,2, \ldots, p(v)\}$ if v is in A,
- $\{\omega(G, p), \ldots, \omega(G, p)-p(v)+1\}$ if v is in B.

Linear-time algorithm finding optimal colouring of a weighted bipartite graph:

- Compute $\omega(G, p)$.

$$
\omega(G, p)=\max \left\{\max _{v \in V(G)} p(v) ; \max _{u v \in E(G)} p(u)+p(v)\right\}
$$

- Assign as above.

BUT NOT DISTRIBUTED

Bipartite graphs: 1-local algorithm

k-local algorithm: to choose its colours each vertex knows only:

- the vertices at distance at most k from it (and their weights).
- some precomputed fixed information independent from the weights.
- For each $a \in A$, assign $\{1,2, \ldots, p(a)\}$ to a.
- For each vertex $b \in B$,

Compute $\omega_{1}(b)=\max _{b v \in E(G)}(p(b)+p(v))$;
Assign $\left\{\omega_{1}(b), \ldots, \omega_{1}(b)-p(b)+1\right\}$ to b.

Odd cycles

Proposition:

$$
\chi\left(C_{2 \ell+1}, \mathbf{k}\right)=\left\lceil\frac{(2 \ell+1) k}{\ell}\right\rceil
$$

If $\ell \geq 2$, then $\omega\left(C_{2 \ell+1}, \mathbf{k}\right)=2 k$.

Hexagonal graphs

hexagonal graph: induced subgraph of the triangular lattice $T L$.

Colouring weighted hexagonal graphs

H hexagonal graph.
$\chi(H) \leq \chi(T L) \leq 3$, so

$$
\chi(H, p) \leq 3 \max \{p(v) \mid v \in V(H)\} \leq 3 \omega(H, p)
$$

Theorem (McDiarmid and Reed): $\chi(H, p) \leq \frac{4 \omega(H, p)+1}{3}$
Deciding whether $\chi(H, p)=3$ or 4 is NP-complete.

Theorem (McDiarmid and Reed): There is a constant C s. t.

$$
\chi(H, p) \leq \frac{9}{8} \omega(H, p)+C
$$

Induced C_{9} in the triangular lattice

$$
\begin{gathered}
\chi\left(C_{9}, \mathbf{k}\right)=\left\lceil\frac{9 k}{4}\right\rceil \\
\omega\left(C_{9}, \mathbf{k}\right)=2 k
\end{gathered}
$$

Proof of $\chi(H, p) \leq \frac{4 \omega(H, p)+1}{3}$
Set $k=\left\lfloor\frac{\omega(H, p)+1}{3}\right\rfloor$. 3-colouring of $T L: c_{T}$.

1. We use $3 k$ colours: (i, j) for $i=1,2,3$ and $j=1, \ldots, k$.

- Assign to v the colours corresponding to its lattice colour

$$
\left(c_{T}(v), 1\right), \ldots,\left(c_{T}(v), \min \{k, p(v)\}\right) .
$$

- $m(v):=\max \left\{\min \{k, p(u)\} \mid u \in N(v)\right.$ and $c_{T}(u)=$ $\left.c_{T}(v)+1\right\}$ $r(v)=\min \{p(v)-k, k-m(v)\}$. If $r(v) \geq 0$, then assign to v the unused colours on its right, leftup, and leftdown neighbours

$$
\left(c_{T}(v)+1, k-r(v)+1\right), \ldots,\left(c_{T}(v)+1, k\right)
$$

2. U set of vertices whose demand is not yet fulfilled. For $u \in U$, $p^{\prime}(u)=p(u)-2 k+m(u)$.
Colour (TL[U], p^{\prime}) using $\omega\left(T L[U], p^{\prime}\right) \leq \omega(H, p)-2 k$ colours. Possible because $T L[U]$ is acyclic.

Proving $T L[U]$ is acyclic

Claim: Every vertex v has at most one neighbour to its right.

- $p(u) \geq k+1$ for all $u \in U, \Rightarrow T L[U]$ is triangle-free.
-

First distributed algorithms for hexagonal graphs

Janssen et al. '00: k-local algorithms adapted from global algorithms.

0-local: 3-competitive (fixed assignment according to c_{T})
1-local: 3/2-competitive derived from Janssen et al. '99

2-local: 17/12-competitive derived from Nayaranan and Schende '97

4-local: 4/3-competitive derived from Nayaranan and Schende '97
α-competitive: using at most $\alpha \cdot \chi(H, p)+\beta$ colours for all (H, p) and some fixed β.

1-local 3/2-competitive algorithm

Idea: Decomposing $T L$ into 3 bipartite graphs (according to c_{T}).
$\omega_{1}(v)=\omega(H[N[v]], p)=$ max. weighted clique in the neighbourhood of v.

Algorithm: For each v

- compute $\omega_{1}(v)$. Set $s=\left\lceil\omega_{1}(v) / 2\right\rceil$. For $i=1,2,3$, set $S_{i}=\{i, 3+i, \ldots, 3 s+i-3\}$.
- if $c_{T}(v)=i$, then assign to v, the $\lceil p(v) / 2\rceil$ first colours of S_{i} and the $\lfloor p(v) / 2\rfloor$ colours of S_{i+1}.

Validity: u, v adjacent, $c_{T}(u)=i-1$ and $c_{T}(v)=i$. $p(u)+p(v) \leq \min \left\{\omega_{1}(u), \omega_{1}(v)\right\}$.
Number of colours of S_{i} at u or $v \leq \min \left\{\omega_{1}(u) / 2, \omega_{1}(v) / 2\right\}$.
No colours is assigned to both u and v.

Better distributed algorithms for hexagonal graphs

0-local: 3-competitive (fixed assignment according to c_{T})

1-local: 13/9-competitive
17/12-competitive
7/5-competitive
33/24-competitive

2-local: 4/3-competitive

4-local: 4/3-competitive derived from Nayaranan and Schende '97

Chin, Zhang and Zhu. '13
Witowski '09
Witowski and Žerovnik. '10
Witowski and Žerovnik. '13

Šparl and Žerovnik. '04

Triangle-free hexagonal graphs H triangle-free hexagonal graph.

Proposition (H.): $\chi(H, 2) \leq 5$

5-colouring of $(H, 2) \equiv$ homomorphism of H into the Petersen graph \mathcal{P}.

Proof: By induction.

Consider the highest 3-vertex of H and the thread T going up. A colouring of $(H-\dot{T}, \mathbf{2})$ can be extended to $(H, 2)$.

If length $(T)=3$, by symmetry.
If length $(T) \geq 4$, because two vertices are joined by a walk of any length at least 4 in \mathcal{P}.

Triangle-free hexagonal graphs

H triangle-free hexagonal graph.
Corollary: $\chi(H, p) \leq \frac{5}{4} \omega(G, p)+3$.
Proof:
0. $U:=V(H), S:=\emptyset, q=p$.

1. $S:=S \cup\{u \in U: q(u)=1\} ; U:=U \backslash\{u \in U: q(u)=1\}$;
2. If $U \neq \emptyset$, take 5 new colours.
a. Assign these colours to the set $/$ of isolated vertices of $T L[U]$; for all $u \in I, q(u):=\max \{0, q(u)-5\}$.
b. Assign two of these colours to each vertex of $U \backslash /$ according to a 5-colouring of ($T L[U \backslash I], 2$). for all $u \in U, q(u):=q(u)-2$.
c. Go to 1 .
3. Assign to all vertices of S a new colour according to c_{T}.

Different types of vertices in triangle-free hexagonal graphs
left corners

right corners

Triangle-free hexagonal graphs: distributed algorithm

1. Colour the left corners.

- If $c_{T}(v)=1$, then $C(v)=\{1,2\}$.
- If $c_{T}(v)=2$, then $C(v)=\{2,3\}$.
- If $c_{T}(v)=3$, then $C(v)=\{1,5\}$.

2. Extend to the rest of the graph. Union of tristars.

On each direction of TL, every fifth vertex is special. Cut tristars along special vertices.
Colour each piece separately in a distributed way.

Can be improved to 2-local. (Šparl, Žerovnik)

Triangle-free hexagonal graphs: distributed algorithm

1. Colour the left corners.

- If $c_{T}(v)=1$, then $C(v)=\{1,2\}$.
- If $c_{T}(v)=2$, then $C(v)=\{2,3\}$.
- If $c_{T}(v)=3$, then $C(v)=\{1,5\}$.

2. Extend to the rest of the graph. Union of tristars.

On each direction of TL, every fifth vertex is special. Cut tristars along special vertices.
Colour each piece separately in a distributed way.
\Longrightarrow 8-local algorithm.
Can be improved to 2-local. (Šparl, Žerovnik)

k-local 17/12-competitive algorithm for hexagonal graphs

Fisrt phase: \equiv 1-local version of first phase of McDiarmid-Reed.
For each vertex v.

- Compute $w_{1}(v)$. Set $k=\left\lceil w_{1}(v) / 3\right\rceil$.
- Assign to v the colours corresponding to its lattice colour

$$
\left(c_{T}(v), 1\right), \ldots,\left(c_{T}(v), \min \{k, p(v)\}\right) .
$$

- $m(v):=\max \left\{\min \{k, p(u)\} \mid u \in N(v)\right.$ and $c_{T}(u)=$ $\left.c_{T}(v)+1\right\} ; r(v)=\min \{p(v)-k, k-m(v)\}$. If $r(v) \geq 0$, then assign to v

$$
\left(c_{T}(v)+1, k-r(v)+1\right), \ldots,\left(c_{T}(v)+1, k\right) .
$$

2nd phase: k-local $5 / 4$-comp. algo. for triangle-free graph on ($\left.T L[U], p^{\prime}\right)$.

Uses $\omega(G, p)+\frac{5}{4} \omega\left(T L[U], p^{\prime}\right)+\beta \leq \frac{17}{12} \omega(G, p)+\beta^{\prime}$.

Triangle-free hexagonal graphs

H triangle-free hexagonal graph.
Theorem (H.): $\chi(H, 3) \leq 7$
Corollary: $\chi(H, p) \leq \frac{7}{6} \omega(G, p)+5$.
k-good: $\exists f: V \rightarrow\{1, \ldots, k\}$ s.t. every odd cycle has a vertex assigned i for all $1 \leq i \leq k$.

Lemma: If H is $k+1$-good, then $\chi(H, \mathbf{k}) \leq 2 k+2$.
Proof: For each $1 \leq i \leq k+1$, colour $G-f^{-1}(i)$ with 2 colours.
Each vertex receives (at least) k colours.
Sudeep \& Vishwanathan: triangle-free hexagonal $\Rightarrow 7$-good.
Conjecture: triangle-free hexagonal $\Rightarrow 9$-good.

Triangle-free hexagonal graphs are 5-good

Lemma: (Sudeep \& Vishwanathan)
Every odd cycle contains a flat vertex v s.t. $c_{T}(v)=i$ for all $1 \leq i \leq 3$.

5-good labelling f :

- If v is flat, then $f(v)=c_{T}(v)$.
- If v is right corner, then $f(v)=4$.
- If v is left corner, then $f(v)=5$.

Triangle-free hexagonal graphs are 7-good

Lemma: (Sudeep \& Vishwanathan)
There is a partition $\left(R_{1}, R_{2}\right)$ of the right corners s.t. every odd cycle intersects $R_{i}, i=1,2$.

7-good labelling f :

- If v is flat, then $f(v)=c_{T}(v)$.
- If $v \in R_{i}$, then $f(v)=3+i$.
- If $v \in L_{i}$, then $f(v)=5+i$.

Next problem to solve on hexagonal graphs

- Proving $\chi(H, p) \leq \alpha \omega(H, p)+\beta$ for $\alpha<4 / 3$.

McDiarmid-Reed Conjecture: $\alpha=9 / 8$

- Finding an α-competitive distributed algorithm for colouring hexagonal graphs for $\alpha<4 / 3$.
- Proving $\chi(H, p) \leq \alpha \omega(H, p)+\beta$ for $\alpha<7 / 6$, when H is triangle-free.
- Finding a 7/6-competitive distributed algorithm for colouring triangle-free hexagonal graphs.

