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Definitions

weighted graph = pair (G, p) where
o G is a graph;
e p: V(G) — N weight function.

k-colouring of (G, p): C: V(G) — P({1,...,k}) such that
e |C(v)| = p(v) for all v € V(G);
o C(uynC(v) =0 forall e € E(G).

chromatic number of (G, p):

X(G, p) = min{k | (G, p) admits a k-colouring}
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Clique number and chromatic number

clique number of (G, p):

w(G, p) = max{p(C) | C clique of G}, where p(C) = Zp(v)

veC

w(G,p) <x(G,p)
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Bipartite graphs

Proposition: If G is bipartite, then w(G, p) = x(G, p).
Proof: Assign to v

o {1,2,...,p(v)} if visin A,
o {w(G,p),...,w(G,p)—p(v)+1}if visin B. O

Linear-time algorithm finding optimal colouring of a weighted
bipartite graph:
e Compute w(G, p).
w(G, p) = max {max,cv(c) P(v) i Maxueg(c) P(u) + p(v) }
@ Assign as above.

BUT NOT DISTRIBUTED

F. Havet i35 COATI @ Ciwza=  Colouring weighted hexagonal graphs



Bipartite graphs: 1-local algorithm

k-local algorithm: to choose its colours each vertex knows only:
@ the vertices at distance at most k from it (and their weights) .

@ some precomputed fixed information independent from the
weights.

e For each a € A, assign {1,2,...,p(a)} to a.

@ For each vertex b € B,
Compute wy(b) = maxpye(c)(P(B) + p(v));
Assign {wi(b),...,wi(b) — p(b) + 1} to b.

F. Havet —i3s—

COATI @ Ciza— Colouring weighted hexagonal graphs



Odd cycles

20+ 1)k
Proposition: X(Cori1, k) = {MH-‘

14
If £ > 2, then w(C2g+1, k) = 2k.
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Hexagonal graphs

hexagonal graph: induced subgraph of the triangular lattice TL.
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Colouring weighted hexagonal graphs

H hexagonal graph.
X(H) < x(TL) <3, so

X(H,p) <3max{p(v)|ve V(H)} <3w(H,p)
. . . 4w(H,p)+1
Theorem (McDiarmid and Reed): (H,p) < %
Deciding whether x(H, p) = 3 or 4 is NP-complete.
Theorem (McDiarmid and Reed): There is a constant C s. t.

9
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Induced Cy in the triangular lattice

X(Co, k) = [%-‘
w(Co, K) = 2k

=
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4w(H,p)+1
Proof of x(H, p) < ===F—

Set k = L%J 3-colouring of TL: c7.

1. We use 3k colours: (i,j) fori=1,2,3 and j=1,... k.
o Assign to v the colours corresponding to its lattice colour
(er(v),1),...,(cr(v), min{k, p(v)}).

o m(v) := max{min{k, p(u)} | u € N(v) and cr(u) =
cr(v)+1}
r(v) = min{p(v) — k, k — m(v)}.
If r(v) > 0, then assign to v the unused colours on its right,
leftup, and leftdown neighbours

(cr(v) + 1,k — r(v) +1),...,(cr(v) + 1, k).

2. U set of vertices whose demand is not yet fulfilled. For u € U,
p'(u) = p(u) = 2k + m(u).
Colour (TL[U], p) using w(TL[U],p") < w(H, p) — 2k colours.
Possible because TL[U] is acyclic.

F. Havet —i3s—

COATI @ Ciwza=  Colouring weighted hexagonal graphs



Proving TL[U] is acyclic

Claim: Every vertex v has at most one neighbour to its right.

e p(u) > k+1forall ue U, = TL[U] is triangle-free.

o
m(u) > k
> 2k — m(u)
> k
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First distributed algorithms for hexagonal graphs

Janssen et al. '00: k-local algorithms adapted from global
algorithms.

0-local: 3-competitive (fixed assignment according to c7)
1-local: 3/2-competitive derived from Janssen et al. 99
2-local: 17/12-competitive  derived from Nayaranan and Schende '97

4-local: 4/3-competitive derived from Nayaranan and Schende '97

a-competitive: using at most o - x(H, p) + [ colours for all (H, p)
and some fixed f.
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1-local 3/2-competitive algorithm

Idea: Decomposing TL into 3 bipartite graphs (according to c71).

w1(v) = w(H[N[v]], p) = max. weighted clique in the
neighbourhood of v.

Algorithm: For each v
e compute wi(v). Set s = [wi(v)/2].
Fori=1,2,3,set S;={i,3+1,...,3s+i—3}.
e if cr(v) =i, then assign to v, the [p(v)/2] first colours of S;
and the |p(v)/2] colours of Sj4.

Validity: v, v adjacent, cr(u) =i—1and cr(v) =1i.

p(u) + p(v) < min{ews (u),w1(v)}.

Number of colours of S; at v or v < min{wi(u)/2,w1(v)/2}.
No colours is assigned to both v and v.
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Better distributed algorithms for hexagonal graphs

O-local: 3-competitive (fixed assignment according to cT)

1-local:

2-local:

4-local:
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13/9-competitive
17 /12-competitive
7/5-competitive
33/24-competitive

4/3-competitive

4/3-competitive

Chin, Zhang and Zhu. '13

Witowski '09

Witowski and Zerovnik. '10
Witowski and Zerovnik. '13

Sparl and Zerovnik. '04

derived from Nayaranan and Schende '97
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Triangle-free hexagonal graphs 1.2}
H triangle-free hexagonal graph. /{35}\
P iti H.): x(H,2) <5
roposition (H.): y(H,2) < s -
5-colouring of (H,2) = homomorphism \

of H into the Petersen graph P. (1,47 (2,4}

/ \

{1,3}

Proof: By induction. (25}

Consider the highest 3-vertex of H and the thread T going up.
A colouring of (H — T,2) can be extended to (H, 2).

If length(T) = 3, by sym-
metry.
If length(T) > 4, because

vAvAvAvAvAvA two vertices are joined by a
INONONININN/

NNNININ/N/N
AVAVAVAVAVAV

walk of any length at least 4
in P.
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Triangle-free hexagonal graphs

H triangle-free hexagonal graph.
Corollary: x(H, p) < 2w(G, p) + 3.
Proof:

0. U:=V(H),S:=0, g=p.
1. S =Su{veU:qu)=1};, U:=U\{ue U:q(u)=1};
2. If U # 0, take 5 new colours.

a. Assign these colours to the set / of isolated vertices of TL[U];
for all u € I, g(u) := max{0, g(u) — 5}.

b. Assign two of these colours to each vertex of U\ I according
to a 5-colouring of (TL[U\ /], 2).
for all u e U, q(u) := q(u) — 2.

c. Goto 1.

3. Assign to all vertices of S a new colour according to cr.
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Different types of vertices in triangle-free hexagonal graphs

left corners

right corners

flat vertices

F. Havet —izs— COATI 1) Ciwza=  Colouring weighted hexagonal graphs



Triangle-free hexagonal graphs: distributed algorithm

1. Colour the left corners.

o If cr(v) =1, then C(v) = {1,2}.

o If cr(v) =2, then C(v) = {2,3}.

o If cr(v) =3, then C(v) = {1,5}.
2. Extend to the rest of the graph.

Union of tristars.

On each direction of TL, every fifth vertex is special.
Cut tristars along special vertices.
Colour each piece separately in a distributed way.

—> 8-local algorithm.

Can be improved to 2-local. (Sparl, Zerovnik)
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k-local 17 /12-competitive algorithm for hexagonal graphs

Fisrt phase: = 1-local version of first phase of McDiarmid-Reed.
For each vertex v.

e Compute wy(v). Set k = [wi(v)/3].
@ Assign to v the colours corresponding to its lattice colour
(er(v),1),...,(ct(v), min{k, p(v)}).
o m(v) := max{min{k, p(u)} | u € N(v) and c1(u) =
cr(v)+1}; r(v) = min{p(v) — k, k — m(v)}.
If r(v) >0, then assign to v
(cr(v)+1,k—r(v)+1),...,(cr(v) + 1, k).
2nd phase: k-local 5/4-comp. algo. for triangle-free graph on
(TL[U], P).

Uses w(G, p) + 3w(TLIU], p') + B < 15w(G,p) + 5.
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Triangle-free hexagonal graphs

H triangle-free hexagonal graph.
Theorem (H.): x(H.3) <7
Corollary: x(H,p) < %w(G,p) + 5.

k-good: 3 f:V — {1,...,k} s.t. every odd cycle has a vertex
assigned i for all 1 < j < k.

Lemma: If H is k + 1-good, then x(H, k) < 2k + 2.

Proof: For each 1 < i < k + 1, colour G — f~1(i) with 2 colours.
Each vertex receives (at least) k colours. O

Sudeep & Vishwanathan: triangle-free hexagonal = 7-good.

Conjecture: triangle-free hexagonal = 9-good.
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Triangle-free hexagonal graphs are 5-good

Lemma: ( Sudeep & Vishwanathan)
Every odd cycle contains a flat vertex v s.t. cr(v) =i for all
1<i<3.

5-good labelling f:
e If v is flat, then f(v) = cr(v).
e If v is right corner, then f(v) = 4.

o If v is left corner, then f(v) = 5.
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Triangle-free hexagonal graphs are 7-good

Lemma: ( Sudeep & Vishwanathan)
There is a partition (R, R2) of the right corners s.t. every odd

cycle intersects R;, i =1,2.

7-good labelling f:
e If v is flat, then f(v) = cr(v).
o If veR;, then f(v) =3+1.
o If vel; then f(v) =5+
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Next problem to solve on hexagonal graphs

F. Havet

Proving x(H, p) < aw(H, p) + B for a < 4/3.
McDiarmid-Reed Conjecture: oo = 9/8

Finding an a-competitive distributed algorithm for colouring
hexagonal graphs for aw < 4/3.

Proving x(H, p) < aw(H, p) + B for « < 7/6, when H is
triangle-free.

Finding a 7/6-competitive distributed algorithm for colouring
triangle-free hexagonal graphs.
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