

Integrating Theoretical Algorithmic Ideas in Empirical Biological Study

Amos Korman

In collaboration with Ofer Feinerman (Weizmann Institute)

Outline

- Scientific frameworks
- 2 How can an algorithmic perspective contribute?
- A novel scientific framework
- Searching for a nearby treasure
- 5 Information lower bounds for probabilistic search (DISC 2012)
- 6 Conclusions

Classical scientific frameworks in biology

Experimental framework:

- Preprocessing stage: observe and analyze
- 2 "Guess" a mathematical model
- Oata analysis: tune the parameters

Example: the *Albatross* (Nature 1996, 2007)

 $Pr(l=d) \approx 1/d^{\alpha}$

The Albatross is performing a Lévy flight

Example: the Albatross (Nature 1996, 2007)

 $Pr(l=d) \approx 1/d^{\alpha}$

The Albatross is performing a Lévy flight

What is α ? do statistics on experiments and obtain e.g., $\alpha = 2$

- Guess an abstract mathematical model
- Analyze the model

- Guess an abstract mathematical model
- Analyze the model
 - Find parameters maximizing a utility function

- Guess an abstract mathematical model
- Analyze the model
 - Find parameters maximizing a utility function

Example: if you perform a Lévy flight search under some certain food distribution then $\alpha = 2$ is optimal [Viswanathan et al. Nature 1999]

- Guess an abstract mathematical model
- Analyze the model
 - Find parameters maximizing a utility function
 Example: if you perform a Lévy flight search under some certain food distribution then α = 2 is optimal [Viswanathan et al. Nature 1999]
 - "Explain" a known phenomena
 - Example: Kleinberg's analysis of the greedy routing algorithm in small world networks "explains" Milgram's experiment [Nature 2000]

Outline

- Scientific frameworks
- 2 How can an algorithmic perspective contribute?
- A novel scientific framework
- Searching for a nearby treasure
- Information lower bounds for probabilistic search (DISC 2012)
- 6 Conclusions

An algorithmic perspective

Recently, CS theoreticians have tried to contribute from an algorithmic perspective [Alon, Chazelle, Kleinberg, Papadimitriou, Valiant, etc.].

An algorithmic perspective

Recently, CS theoreticians have tried to contribute from an algorithmic perspective [Alon, Chazelle, Kleinberg, Papadimitriou, Valiant, etc.].

Guiding principle

Algorithms' people are good at:

An algorithmic perspective

Recently, CS theoreticians have tried to contribute from an algorithmic perspective [Alon, Chazelle, Kleinberg, Papadimitriou, Valiant, etc.].

Guiding principle

Algorithms' people are good at:

- Formulating sophisticated guesses (algorithms)
- Analyzing the algorithms

Algorithmic perspective in classical frameworks

Experimental framework:

- Preprocessing stage: observe and analyze
- Quess a mathematical model [Afek et al., Science'11]
- Oata analysis: tune the parameters

Theoretical framework:

- Guess a mathematical model
- Analyze the model
 - Maximize a utility function [Papadimitriou et al., PNAS 2008]
 - Explain a known phenomena [Kleinberg, Nature, 2000]

Algorithmic perspective in classical frameworks

Experimental framework:

- Preprocessing stage: observe and analyze
- Quess a mathematical model [Afek et al., Science'11]
- Oata analysis: tune the parameters

Theoretical framework:

- Guess a mathematical model
- Analyze the model
 - Maximize a utility function [Papadimitriou et al., PNAS 2008]
 - Explain a known phenomena [Kleinberg, Nature, 2000]

Can an algorithmic perspective contribute otherwise?

 Biology is lacking tools for dealing with large, complex and interactive systems.

- Biology is lacking tools for dealing with large, complex and interactive systems.
- Early 90's Systems Biology (a holistic approach)

- Biology is lacking tools for dealing with large, complex and interactive systems.
- Early 90's Systems Biology (a holistic approach)
- Mathematics tools: differential equations.

- Biology is lacking tools for dealing with large, complex and interactive systems.
- Early 90's Systems Biology (a holistic approach)
- Mathematics tools: differential equations.
- Distributed computing: closer to mainstream CS than to physics.

- Biology is lacking tools for dealing with large, complex and interactive systems.
- Early 90's Systems Biology (a holistic approach)
- Mathematics tools: differential equations.
- Distributed computing: closer to mainstream CS than to physics.

How can a distributed algorithmic perspective contribute to biology?

In physics: rules of nature

Obtain equation (or connection) between parameters.

E.g.,
$$E = MC^2$$
, $\Delta U = Q + W$, $\sigma_X \cdot \sigma_p \ge \hbar$, etc.

In physics: rules of nature

Obtain equation (or connection) between parameters.

E.g.,
$$E = MC^2$$
, $\Delta U = Q + W$, $\sigma_X \cdot \sigma_p \ge \hbar$, etc.

What about biology?

- 1st solution: borrow connections from physics.
- 2nd solution: ignore seemingly negligable parameters.

In physics: rules of nature

Obtain equation (or connection) between parameters.

E.g.,
$$E = MC^2$$
, $\Delta U = Q + W$, $\sigma_X \cdot \sigma_p \ge \hbar$, etc.

What about biology?

- 1st solution: borrow connections from physics.
- 2nd solution: ignore seemingly negligable parameters.
- We propose: obtain connections between parameters using an algorithmic approach.

Tradeoffs: use lower bounds from CS to show that, e.g., any algorithm that runs in time T must use x amount of resources (x > f(T)).

Outline

- Scientific frameworks
- 2 How can an algorithmic perspective contribute?
- A novel scientific framework
- Searching for a nearby treasure
- 5 Information lower bounds for probabilistic search (DISC 2012)
- **6** Conclusions

Connecting parameters using an algorithmic perspective

Remarks: simplified experimental verifications

 \circ Tradeoffs are invariant of the algorithm \implies Instead of verifying setting+algorithm, only need to verify the setting!

A proof of concept

This talk

- Introduce the model (semi-realistic)
- Discuss the theoretical tradeoffs
- Experimental part: on-going

A proof of concept

This talk

- Introduce the model (semi-realistic)
- Discuss the theoretical tradeoffs
- Experimental part: on-going

Remark

The work is **not** complete. This presentation is a *proof of concept*

Outline

- Scientific frameworks
- 2 How can an algorithmic perspective contribute?
- A novel scientific framework
- Searching for a nearby treasure
- Information lower bounds for probabilistic search (DISC 2012)
- 6 Conclusions

Inspiration: the Cataglyphis niger and Honey bee

The Cataglyphis niger:

Inspiration: the Cataglyphis niger and Honey bee

The Cataglyphis niger:

Desert ant
 – does not leave traces, more individual

Inspiration: the Cataglyphis niger and Honey bee

The Cataglyphis niger:

- Desert ant
 – does not leave traces, more individual
- Relatively smart

 big brain, good navigation abilities

Good distance and location estimations [Wehner et al.]

Goal: find nearby treasures fast

Reasons for proximity

- Increasing the rate of food collection in case a large quantity of food is found [Orians and Pearson, 1979],
- Decreasing predation risk [Krebs, 1980],
- The ease of navigating back after collecting the food using familiar landmarks [Collett et al., 1992], etc.

Central place foraging

- Goal: find nearby treasures fast (biologically motivated)
- No communication once out of the nest
- Grid network: the visual radius determines the grid resolution
- Fact: The expected running time is $\Omega(D + D^2/k)$

Searching with one ant (k = 1)

An optimal algorithm

Perform a *spiral* search from the nest (takes $O(D^2)$ time).

Searching with one ant (k = 1)

An optimal algorithm

Perform a *spiral* search from the nest (takes $O(D^2)$ time).

Random walk is not efficient

- Expected time to visit any given node is ∞ .
- Even in a bounded region

 scales badly with # agents.

Optimal algorithm (PODC 2012) [Feinerman, Korman, Lotker, Sereni]

Lemma

There exists an algorithm running in time $O(D + D^2/k)$

Optimal algorithm (PODC 2012) [Feinerman, Korman, Lotker, Sereni]

Lemma

There exists an algorithm running in time $O(D + D^2/k)$

Observe: algorithm assumes that agents know *k*.

- Is it really necessary to know *k*?
- How much initial information is necessary?

Outline

- Scientific frameworks
- 2 How can an algorithmic perspective contribute?
- A novel scientific framework
- Searching for a nearby treasure
- Information lower bounds for probabilistic search (DISC 2012)
- 6 Conclusions

What is the amount of information that agents need initially?

The oracle (modelling the pre-processing stage inside the nest)

Being extremely liberal: oracle is a probabilistic centralized algorithm.

- Input: k agents
- Output: An advice A_i for each agent a.

Information theoretic approach

Advice complexity

Given k agents, the advice complexity f(k) is the maximum #bits used for representing the advice of an agent

Information theoretic approach

Advice complexity

Given k agents, the advice complexity f(k) is the maximum #bits used for representing the advice of an agent

State complexity

Note, a lower bound f on the advice complexity implies a lower bound of 2^f on the # of possible advices (states) when coming out of the nest

Main theorem [Feinerman and Korman, DISC 2012]

Theorem

For every $0 < \epsilon \le 1$, if the search time is $O(\log^{1-\epsilon} k \cdot (D + D^2/k))$ then the advice complexity is $\epsilon \log \log k - O(1)$

Main theorem [Feinerman and Korman, DISC 2012]

Theorem

For every $0 < \epsilon \le 1$, if the search time is $O(\log^{1-\epsilon} k \cdot (D + D^2/k))$ then the advice complexity is $\epsilon \log \log k - O(1)$

Corollary

If time is $T = O(\log^{1-\epsilon} k \cdot (D + D^2/k))$ then number of states when coming out of the nest is $S = \Omega(\log^{\epsilon} k)$

Main theorem [Feinerman and Korman, DISC 2012]

Theorem

For every $0 < \epsilon \le 1$, if the search time is $O(\log^{1-\epsilon} k \cdot (D + D^2/k))$ then the advice complexity is $\epsilon \log \log k - O(1)$

Corollary

If time is $T = O(\log^{1-\epsilon} k \cdot (D + D^2/k))$ then number of states when coming out of the nest is $S = \Omega(\log^{\epsilon} k)$

Remarks

- Results are asymptotically tight
- Hidden constants are small

Lemma

If running time is $o(\log k \cdot (D + D^2/k))$ then advice > 0.

Lemma

If running time is $o(\log k \cdot (D + D^2/k))$ then advice > 0.

Proof

Assume all agents start with the same advice regardless of k

Lemma

If running time is $o(\log k \cdot (D + D^2/k))$ then advice > 0.

Proof

- Assume all agents start with the same advice regardless of k
- Assume running in time is $(D + \frac{D^2}{k}) \cdot \phi(k)$ (and $\phi(\cdot)$ is non-decreasing) I.e., the expected time to visit u is $T_u \leq (d(u,s) + \frac{d(u,s)^2}{k}) \cdot \phi(k)$

Lemma

If running time is $o(\log k \cdot (D + D^2/k))$ then advice > 0.

Proof

- Assume all agents start with the same advice regardless of k
- Assume running in time is $(D + \frac{D^2}{k}) \cdot \phi(k)$ (and $\phi(\cdot)$ is non-decreasing) I.e., the expected time to visit u is $T_u \leq (d(u,s) + \frac{d(u,s)^2}{k}) \cdot \phi(k)$
- Fix W (upper bound on # agents)

Lemma

If running time is $o(\log k \cdot (D + D^2/k))$ then advice > 0.

Proof

- Assume all agents start with the same advice regardless of k
- Assume running in time is $(D + \frac{D^2}{k}) \cdot \phi(k)$ (and $\phi(\cdot)$ is non-decreasing) I.e., the expected time to visit u is $T_u \leq (d(u,s) + \frac{d(u,s)^2}{k}) \cdot \phi(k)$
- Fix W (upper bound on # agents)
- Structure of proof: we show that by time $T = 2W \cdot \phi(W)$, an agent is expected to visit many nodes: $\approx W \cdot \log(W)$. Since she can visit at most 1 node in 1 time unit, we cannot have $\phi(W) = o(\log W)$.

• Fix
$$i = 1, 2, \dots, \frac{\log W}{2} - 1$$
, and consider $S_i := \{u \mid \sqrt{W} \cdot 2^{i-1} < d(u, s) \le \sqrt{W} \cdot 2^i\}$. Note, $|S_i| \approx W \cdot 2^{2i}$

- Fix $i=1,2,\cdots,\frac{\log W}{2}-1$, and consider $S_i:=\{u\mid \sqrt{W}\cdot 2^{i-1}< d(u,s)\leq \sqrt{W}\cdot 2^i\}.$ Note, $|S_i|\approx W\cdot 2^{2i}$
- Assume now that $k_i = 2^{2i}$. So, $|S_i| \approx W \cdot k_i$. Note that $k_i < W$.

- Fix $i=1,2,\cdots,\frac{\log W}{2}-1$, and consider $S_i:=\{u\mid \sqrt{W}\cdot 2^{i-1}< d(u,s)\leq \sqrt{W}\cdot 2^i\}.$ Note, $|S_i|\approx W\cdot 2^{2i}$
- Assume now that $k_i = 2^{2i}$. So, $|S_i| \approx W \cdot k_i$. Note that $k_i < W$.
- Moreover, $k_i = 2^{i+1} \cdot 2^{i-1} \le \sqrt{W} \cdot 2^{i-1}$. I.e., $k_i \le d(u, s)$, $\forall u \in S_i$.

- Fix $i = 1, 2, \dots, \frac{\log W}{2} 1$, and consider $S_i := \{u \mid \sqrt{W} \cdot 2^{i-1} < d(u, s) \le \sqrt{W} \cdot 2^i\}.$ Note, $|S_i| \approx W \cdot 2^{2i}$
- Assume now that $k_i = 2^{2i}$. So, $|S_i| \approx W \cdot k_i$. Note that $k_i < W$.
- Moreover, $k_i = 2^{i+1} \cdot 2^{i-1} \le \sqrt{W} \cdot 2^{i-1}$. I.e., $k_i \le d(u, s)$, $\forall u \in S_i$.
- Therefore, $T_u \leq (d(u,s) + \frac{d(u,s)^2}{k_i}) \cdot \phi(k_i) \leq 2 \cdot \frac{d(u,s)^2}{k_i} \cdot \phi(k_i) < 2W \cdot \phi(W) = T.$

• So, probability of visiting $u \in S_i$ by time 2T is at least 1/2.

- So, probability of visiting $u \in S_i$ by time 2T is at least 1/2.
- Thus, the expected number of nodes in S_i that all agents visit by time 2T is roughly $|S_i| \approx W \cdot k_i$. Hence, the expected number of nodes in S_i that one agent visits by time 2T is $|S_i|/k_i \approx W$.

- So, probability of visiting $u \in S_i$ by time 2T is at least 1/2.
- Thus, the expected number of nodes in S_i that all agents visit by time 2T is roughly $|S_i| \approx W \cdot k_i$. Hence, the expected number of nodes in S_i that one agent visits by time 2T is $|S_i|/k_i \approx W$.
- Observe, this holds $\forall i \in [1, \frac{\log W}{2})$.

- So, probability of visiting $u \in S_i$ by time 2T is at least 1/2.
- Thus, the expected number of nodes in S_i that all agents visit by time 2T is roughly $|S_i| \approx W \cdot k_i$. Hence, the expected number of nodes in S_i that one agent visits by time 2T is $|S_i|/k_i \approx W$.
- Observe, this holds $\forall i \in [1, \frac{\log W}{2})$.
- Hence, the expected number of nodes that a single agent visits by time 2T is $\approx W \cdot \log W$. As $T \approx W \cdot \phi(W)$, this implies that we cannot have $\phi(W) = o(\log W)$.

A novel scientific framework?

Combine the theoretical lower bound with an experiment on living ants

A novel scientific framework?

Combine the theoretical lower bound with an experiment on living ants

• Measure the search time - approximate T as a function of k and D (relatively easy)

A novel scientific framework?

Combine the theoretical lower bound with an experiment on living ants

- lacktriangledown Measure the search time approximate T as a function of k and D (relatively easy)
- ② If the search time $T<\log^{1-\epsilon}k\cdot(D+D^2/k)$ then the number of states of ants when coming out of the nest is $\Omega(\log^\epsilon k)$

Outline

- Scientific frameworks
- 2 How can an algorithmic perspective contribute?
- A novel scientific framework
- Searching for a nearby treasure
- 5 Information lower bounds for probabilistic search (DISC 2012)
- 6 Conclusions

• This work is a proof of concept for a novel scientific framework

- This work is a proof of concept for a novel scientific framework
- To fully illustrate it there is a need for experimental work. This will undoubtedly require some tuning in model and theoretical results

- This work is a proof of concept for a novel scientific framework
- To fully illustrate it there is a need for experimental work. This will undoubtedly require some tuning in model and theoretical results
- The framework can be applied to other biological contexts. What about bacteria? tradeoffs between efficiency and communication?

- This work is a proof of concept for a novel scientific framework
- To fully illustrate it there is a need for experimental work. This will undoubtedly require some tuning in model and theoretical results
- The framework can be applied to other biological contexts. What about bacteria? tradeoffs between efficiency and communication?

Thanks!

