Integrating Theoretical Algorithmic Ideas in Empirical Biological Study

Amos Korman

In collaboration with Ofer Feinerman (Weizmann Institute)

Outline

(1) Scientific frameworks
(2) How can an algorithmic perspective contribute?
(3) A novel scientific framework
(4) Searching for a nearby treasure
(5) Information lower bounds for probabilistic search (DISC 2012)

- Conclusions

Classical scientific frameworks in biology

Experimental framework:

(1) Preprocessing stage: observe and analyze
(2) "Guess" a mathematical model
(3) Data analysis: tune the parameters

Example: the Albatross (Nature 1996, 2007)

The Albatross is performing a Lévy flight

Example: the Albatross (Nature 1996, 2007)

The Albatross is performing a Lévy flight
What is α ? do statistics on experiments and obtain e.g., $\alpha=2$

Theoretical framework:

(1) Guess an abstract mathematical model
(2) Analyze the model

Theoretical framework:

(1) Guess an abstract mathematical model
(2) Analyze the model

- Find parameters maximizing a utility function

Theoretical framework:

(1) Guess an abstract mathematical model
(2) Analyze the model

- Find parameters maximizing a utility function

Example: if you perform a Lévy flight search under some certain food distribution then $\alpha=2$ is optimal [Viswanathan et al. Nature 1999]

Theoretical framework:

(1) Guess an abstract mathematical model
(2) Analyze the model

- Find parameters maximizing a utility function

Example: if you perform a Lévy flight search under some certain food distribution then $\alpha=2$ is optimal [Viswanathan et al. Nature 1999]

- "Explain" a known phenomena

Example: Kleinberg's analysis of the greedy routing algorithm in small world networks "explains" Milgram's experiment [Nature 2000]

Outline

(1) Scientific frameworks

(2) How can an algorithmic perspective contribute?
(3) A novel scientific framework
(4) Searching for a nearby treasure
(3) Information lower bound's for probabilistic search (DISC 2012)
(6) Conclusions

An algorithmic perspective

Recently, CS theoreticians have tried to contribute from an algorithmic perspective [Alon, Chazelle, Kleinberg, Papadimitriou, Valiant, etc.].

An algorithmic perspective

Recently, CS theoreticians have tried to contribute from an algorithmic perspective [Alon, Chazelle, Kleinberg, Papadimitriou, Valiant, etc.].

Guiding principle

Algorithms' people are good at:

An algorithmic perspective

Recently, CS theoreticians have tried to contribute from an algorithmic perspective [Alon, Chazelle, Kleinberg, Papadimitriou, Valiant, etc.].

Guiding principle

Algorithms' people are good at:
(1) Formulating sophisticated guesses (algorithms)
(2) Analyzing the algorithms

Algorithmic perspective in classical frameworks

Experimental framework:

(1) Preprocessing stage: observe and analyze
(2) Guess a mathematical model [Afek et al., Science'11]
(3) Data analysis: tune the parameters

Theoretical framework:

(1) Guess a mathematical model
(2) Analyze the model

- Maximize a utility function [Papadimitriou et al., PNAS 2008]
- Explain a known phenomena [Kleinberg, Nature, 2000]

Algorithmic perspective in classical frameworks

Experimental framework:

(1) Preprocessing stage: observe and analyze
(2) Guess a mathematical model [Afek et al., Science'11]
(3) Data analysis: tune the parameters

Theoretical framework:

(1) Guess a mathematical model
(2) Analyze the model

- Maximize a utility function [Papadimitriou et al., PNAS 2008]
- Explain a known phenomena [Kleinberg, Nature, 2000]

```
Can an algorithmic perspective contribute
otherwise?
```


Systems biology

- Biology is lacking tools for dealing with large, complex and interactive systems.

Systems biology

- Biology is lacking tools for dealing with large, complex and interactive systems.
- Early 90's - Systems Biology (a holistic approach)

Systems biology

- Biology is lacking tools for dealing with large, complex and interactive systems.
- Early 90’s - Systems Biology (a holistic approach)
- Mathematics tools: differential equations.

Systems biology

- Biology is lacking tools for dealing with large, complex and interactive systems.
- Early 90’s - Systems Biology (a holistic approach)
- Mathematics tools: differential equations.
- Distributed computing: closer to mainstream CS than to physics.

Systems biology

- Biology is lacking tools for dealing with large, complex and interactive systems.
- Early 90's - Systems Biology (a holistic approach)
- Mathematics tools: differential equations.
- Distributed computing: closer to mainstream CS than to physics.

How can a distributed algorithmic perspective contribute to biology?

The big challenge: reduce the parameter space

The big challenge: reduce the parameter space

In physics: rules of nature

Obtain equation (or connection) between parameters.
E.g., $E=M C^{2}, \quad \Delta U=Q+W, \quad \sigma_{x} \cdot \sigma_{p} \geq \hbar$, etc.

The big challenge: reduce the parameter space

In physics: rules of nature
Obtain equation (or connection) between parameters.
E.g., $E=M C^{2}, \quad \Delta U=Q+W, \quad \sigma_{x} \cdot \sigma_{p} \geq \hbar$, etc.

What about biology?

- 1st solution: borrow connections from physics.
- 2nd solution: ignore seemingly negligable parameters.

The big challenge: reduce the parameter space

In physics: rules of nature
Obtain equation (or connection) between parameters.
E.g., $E=M C^{2}, \quad \Delta U=Q+W, \quad \sigma_{x} \cdot \sigma_{p} \geq \hbar$, etc.

What about biology?

- 1st solution: borrow connections from physics.
- 2nd solution: ignore seemingly negligable parameters.
- We propose: obtain connections between parameters using an algorithmic approach.

Tradeoffs: use lower bounds from CS to show that, e.g., any algorithm that runs in time T must use x amount of resources $(x>f(T))$.

Outline

(1) Scientific frameworks

(2) How can an algorithmic perspective contribute?
(3) A novel scientific framework
(4) Searching for a nearby treasure
(5) Information lower bounds for probabilistic search (DISC 2012)

Conclusions

Connecting parameters using an algorithmic perspective

Remarks: simplified experimental verifications

- Tradeoffs are invariant of the algorithm \Longrightarrow Instead of verifying setting+algorithm, only need to verify the setting!

A proof of concept

This talk

- Introduce the model (semi-realistic)
- Discuss the theoretical tradeoffs
- Experimental part: on-going

A proof of concept

This talk

- Introduce the model (semi-realistic)
- Discuss the theoretical tradeoffs
- Experimental part: on-going

Remark

The work is not complete. This presentation is a proof of concept

Outline

(1) Scientific frameworks

(2) How can an algorithmic perspective contribute?
(3) A novel scientific framework
(4) Searching for a nearby treasure
(5) Information lower bounds for probabilistic search (DISC 2012)

6 Conclusions

Inspiration: the Cataglyphis niger and Honey bee
The Cataglyphis niger:

Inspiration: the Cataglyphis niger and Honey bee
The Cataglyphis niger:

- Desert ant- does not leave traces, more individual

Inspiration: the Cataglyphis niger and Honey bee

The Cataglyphis niger:

- Desert ant- does not leave traces, more individual
- Relatively smart- big brain, good navigation abilities

Good distance and location estimations [Wehner et al.]

Goal: find nearby treasures fast

Reasons for proximity

- Increasing the rate of food collection in case a large quantity of food is found [Orians and Pearson, 1979],
- Decreasing predation risk [Krebs, 1980],
- The ease of navigating back after collecting the food using familiar landmarks [Collett et al., 1992], etc.

Central place foraging

- Goal: find nearby treasures fast (biologically motivated)
- No communication once out of the nest
- Grid network: the visual radius determines the grid resolution
- Fact: The expected running time is $\Omega\left(D+D^{2} / k\right)$

Searching with one ant $(k=1)$

An optimal algorithm

Perform a spiral search from the nest (takes $O\left(D^{2}\right)$ time).

Searching with one ant ($k=1$)

An optimal algorithm

Perform a spiral search from the nest (takes $O\left(D^{2}\right)$ time).

Random walk is not efficient

- Expected time to visit any given node is ∞.
- Even in a bounded region- scales badly with \# agents.

Optimal algorithm (PODC 2012) [Feinerman, Korman, Lotker, Sereni]

Lemma

There exists an algorithm running in time $O\left(D+D^{2} / k\right)$

Optimal algorithm (PODC 2012) [Feinerman, Korman, Lotker, Sereni]

Lemma

There exists an algorithm running in time $O\left(D+D^{2} / k\right)$

Observe: algorithm assumes that agents know k.

- Is it really necessary to know k ?
- How much initial information is necessary?

Outline

(1) Scientific frameworks

(2) How can an algorithmic perspective contribute?

(3) A novel scientific framework
(4) Searching for a nearby treasure
(5) Information lower bounds for probabilistic search (DISC 2012)
6. Conclusions

What is the amount of information that agents need initially?
The oracle (modelling the pre-processing stage inside the nest) Being extremely liberal: oracle is a probabilistic centralized algorithm.

- Input: k agents
- Output: An advice A_{i} for each agent a.

Information theoretic approach

Advice complexity

Given k agents, the advice complexity $f(k)$ is the maximum \#bits used for representing the advice of an agent

Information theoretic approach

Advice complexity

Given k agents, the advice complexity $f(k)$ is the maximum \#bits used for representing the advice of an agent

State complexity

Note, a lower bound f on the advice complexity implies a lower bound of 2^{f} on the \# of possible advices (states) when coming out of the nest

Main theorem [Feinerman and Korman, DISC 2012]

Theorem
For every $0<\epsilon \leq 1$, if the search time is $O\left(\log ^{1-\epsilon} k \cdot\left(D+D^{2} / k\right)\right)$ then the advice complexity is $\epsilon \log \log k-O(1)$

Main theorem [Feinerman and Korman, DISC 2012]

Theorem
For every $0<\epsilon \leq 1$, if the search time is $O\left(\log ^{1-\epsilon} k \cdot\left(D+D^{2} / k\right)\right)$ then the advice complexity is $\epsilon \log \log k-O(1)$

Corollary
If time is $T=O\left(\log ^{1-\epsilon} k \cdot\left(D+D^{2} / k\right)\right)$ then number of states when coming out of the nest is $S=\Omega\left(\log ^{\epsilon} k\right)$

Main theorem [Feinerman and Korman, DISC 2012]

Theorem
For every $0<\epsilon \leq 1$, if the search time is $O\left(\log ^{1-\epsilon} k \cdot\left(D+D^{2} / k\right)\right)$ then the advice complexity is $\epsilon \log \log k-O(1)$

Corollary
If time is $T=O\left(\log ^{1-\epsilon} k \cdot\left(D+D^{2} / k\right)\right)$ then number of states when coming out of the nest is $S=\Omega\left(\log ^{\epsilon} k\right)$

Remarks

- Results are asymptotically tight
- Hidden constants are small

Simplified proof (for a weaker version of the lower bound (appeared in PODC 2012)

Lemma

If running time is $o\left(\log k \cdot\left(D+D^{2} / k\right)\right)$ then advice >0.

Simplified proof (for a weaker version of the lower bound (appeared in PODC 2012)

Lemma

If running time is $o\left(\log k \cdot\left(D+D^{2} / k\right)\right)$ then advice >0.

Proof

- Assume all agents start with the same advice regardless of k

Simplified proof (for a weaker version of the lower bound (appeared in PODC 2012)

Lemma

If running time is $o\left(\log k \cdot\left(D+D^{2} / k\right)\right)$ then advice >0.

Proof

- Assume all agents start with the same advice regardless of k
- Assume running in time is $\left(D+\frac{D^{2}}{k}\right) \cdot \phi(k)$ (and $\phi(\cdot)$ is non-decreasing) I.e., the expected time to visit u is $T_{u} \leq\left(d(u, s)+\frac{d(u, s)^{2}}{k}\right) \cdot \phi(k)$

Simplified proof (for a weaker version of the lower bound (appeared in PODC 2012)

Lemma

If running time is $o\left(\log k \cdot\left(D+D^{2} / k\right)\right)$ then advice >0.

Proof

- Assume all agents start with the same advice regardless of k
- Assume running in time is $\left(D+\frac{D^{2}}{k}\right) \cdot \phi(k)$ (and $\phi(\cdot)$ is non-decreasing) I.e., the expected time to visit u is $T_{u} \leq\left(d(u, s)+\frac{d(u, s)^{2}}{k}\right) \cdot \phi(k)$
- Fix W (upper bound on \# agents)

Simplified proof (for a weaker version of the lower bound (appeared in PODC 2012)

Lemma

If running time is $o\left(\log k \cdot\left(D+D^{2} / k\right)\right)$ then advice >0.

Proof

- Assume all agents start with the same advice regardless of k
- Assume running in time is $\left(D+\frac{D^{2}}{k}\right) \cdot \phi(k)$ (and $\phi(\cdot)$ is non-decreasing) I.e., the expected time to visit u is $T_{u} \leq\left(d(u, s)+\frac{d(u, s)^{2}}{k}\right) \cdot \phi(k)$
- Fix W (upper bound on \# agents)
- Structure of proof: we show that by time $T=2 W \cdot \phi(W)$, an agent is expected to visit many nodes: $\approx W \cdot \log (W)$. Since she can visit at most 1 node in 1 time unit, we cannot have $\phi(W)=o(\log W)$.

Simplified proof (cont.)

- Fix $i=1,2, \cdots, \frac{\log W}{2}-1$, and consider

$$
S_{i}:=\left\{u \mid \sqrt{W} \cdot 2^{i-1}<d(u, s) \leq \sqrt{W} \cdot 2^{i}\right\} . \quad \text { Note, }\left|S_{i}\right| \approx W \cdot 2^{2 i}
$$

Simplified proof (cont.)

- Fix $i=1,2, \cdots, \frac{\log W}{2}-1$, and consider

$$
S_{i}:=\left\{u \mid \sqrt{W} \cdot 2^{i-1}<d(u, s) \leq \sqrt{W} \cdot 2^{i}\right\} . \quad \text { Note, }\left|S_{i}\right| \approx W \cdot 2^{2 i}
$$

- Assume now that $k_{i}=2^{2 i}$. So, $\left|S_{i}\right| \approx W \cdot k_{i}$. Note that $k_{i}<W$.

Simplified proof (cont.)

- Fix $i=1,2, \cdots, \frac{\log W}{2}-1$, and consider

$$
S_{i}:=\left\{u \mid \sqrt{W} \cdot 2^{i-1}<d(u, s) \leq \sqrt{W} \cdot 2^{i}\right\} . \quad \text { Note, }\left|S_{i}\right| \approx W \cdot 2^{2 i}
$$

- Assume now that $k_{i}=2^{2 i}$. So, $\left|S_{i}\right| \approx W \cdot k_{i}$. Note that $k_{i}<W$.
- Moreover, $k_{i}=2^{i+1} \cdot 2^{i-1} \leq \sqrt{W} \cdot 2^{i-1}$. I.e., $k_{i} \leq d(u, s), \forall u \in S_{i}$.

Simplified proof (cont.)

- Fix $i=1,2, \cdots, \frac{\log W}{2}-1$, and consider

$$
S_{i}:=\left\{u \mid \sqrt{W} \cdot 2^{i-1}<d(u, s) \leq \sqrt{W} \cdot 2^{i}\right\} . \quad \text { Note, }\left|S_{i}\right| \approx W \cdot 2^{2 i}
$$

- Assume now that $k_{i}=2^{2 i}$. So, $\left|S_{i}\right| \approx W \cdot k_{i}$. Note that $k_{i}<W$.
- Moreover, $k_{i}=2^{i+1} \cdot 2^{i-1} \leq \sqrt{W} \cdot 2^{i-1}$. I.e., $k_{i} \leq d(u, s), \forall u \in S_{i}$.
- Therefore,

$$
T_{u} \leq\left(d(u, s)+\frac{d(u, s)^{2}}{k_{i}}\right) \cdot \phi\left(k_{i}\right) \leq 2 \cdot \frac{d(u, s)^{2}}{k_{i}} \cdot \phi\left(k_{i}\right)<2 W \cdot \phi(W)=T
$$

Simplified proof (cont.)

- So, probability of visiting $u \in S_{i}$ by time $2 T$ is at least $1 / 2$.

Simplified proof (cont.)

- So, probability of visiting $u \in S_{i}$ by time $2 T$ is at least $1 / 2$.
- Thus, the expected number of nodes in S_{i} that all agents visit by time $2 T$ is roughly $\left|S_{i}\right| \approx W \cdot k_{i}$. Hence, the expected number of nodes in S_{i} that one agent visits by time $2 T$ is $\left|S_{i}\right| / k_{i} \approx W$.

Simplified proof (cont.)

- So, probability of visiting $u \in S_{i}$ by time $2 T$ is at least $1 / 2$.
- Thus, the expected number of nodes in S_{i} that all agents visit by time $2 T$ is roughly $\left|S_{i}\right| \approx W \cdot k_{i}$. Hence, the expected number of nodes in S_{i} that one agent visits by time $2 T$ is $\left|S_{i}\right| / k_{i} \approx W$.
- Observe, this holds $\forall i \in\left[1, \frac{\log W}{2}\right)$.

Simplified proof (cont.)

- So, probability of visiting $u \in S_{i}$ by time $2 T$ is at least $1 / 2$.
- Thus, the expected number of nodes in S_{i} that all agents visit by time $2 T$ is roughly $\left|S_{i}\right| \approx W \cdot k_{i}$. Hence, the expected number of nodes in S_{i} that one agent visits by time $2 T$ is $\left|S_{i}\right| / k_{i} \approx W$.
- Observe, this holds $\forall i \in\left[1, \frac{\log W}{2}\right)$.
- Hence, the expected number of nodes that a single agent visits by time $2 T$ is $\approx W \cdot \log W$. As $T \approx W \cdot \phi(W)$, this implies that we cannot have $\phi(W)=o(\log W)$.

A novel scientific framework?

Combine the theoretical lower bound with an experiment on living ants

A novel scientific framework?

Combine the theoretical lower bound with an experiment on living ants
(1) Measure the search time - approximate T as a function of k and D (relatively easy)

A novel scientific framework?

Combine the theoretical lower bound with an experiment on living ants
(1) Measure the search time - approximate T as a function of k and D (relatively easy)
(2) If the search time $T<\log ^{1-\epsilon} k \cdot\left(D+D^{2} / k\right)$ then the number of states of ants when coming out of the nest is $\Omega\left(\log ^{\epsilon} k\right)$

Outline

(1) Scientific frameworks

(2) How can an algorithmic perspective contribute?
(3) A novel scientific framework
(4) Searching for a nearby treasure
(5) Information lower bounds for probabilistic search (DISC 2012)
(6) Conclusions

Conclusions and future work

- This work is a proof of concept for a novel scientific framework

Conclusions and future work

- This work is a proof of concept for a novel scientific framework
- To fully illustrate it there is a need for experimental work. This will undoubtedly require some tuning in model and theoretical results

Conclusions and future work

- This work is a proof of concept for a novel scientific framework
- To fully illustrate it there is a need for experimental work. This will undoubtedly require some tuning in model and theoretical results
- The framework can be applied to other biological contexts. What about bacteria? tradeoffs between efficiency and communication?

Conclusions and future work

- This work is a proof of concept for a novel scientific framework
- To fully illustrate it there is a need for experimental work. This will undoubtedly require some tuning in model and theoretical results
- The framework can be applied to other biological contexts. What about bacteria? tradeoffs between efficiency and communication?

Thanks!

