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Informative Labeling scheme

Graph representations:

» traditional: names given to the nodes serve merely as
pointers to entries in a data structure

» informative labeling: mechanism for assigning short, yet
informative, names to nodes (Kannan, Naor, Rudich [STOC '88])

General objective

To assign labels to nodes in such a way that allows one to infer
information regarding any two nodes directly from their labels.

Main quality measure
Label size = number of bits used to form the labels
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Example 1: adjacency in trees

Input: tree T
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Example 1: adjacency in trees

Input: tree T

1. Give distinct IDs to the nodes,

3 between 1 and n
1 15 7 2. Root T at an arbitrary vertex
12 894 @16 9

L(u) = (Ib(u), ID(parent(u))
U, 6 5 FE To: 1%

uand v are adjacent <= u = parent(v) or v = parent(u)

Label size = 2log, n| bits



Informative Labeling Scheme

Let P be a boolean predicate defined on pairs of vertices for
graphs in F

Encoder (or marker) M
Given G € F, M(G) = Lwhere L: V(G) — {0,1}*

Decoder D
D :{0,1}* x {0,1}* — {true, false}

Forany G € F, and any (u, v) € V(G) x V(G),
P(u,v) =true < D(L(u),L(v)) = true

Can be generalized to various types of functions (distance,
connectivity, etc.), or tasks (e.g., routing).



Outline

Why should we fight for constants?
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Adjacency in trees

Definition
A graph U/ is universal for a graph family 7 if any G € F is
isomorphic to an induced subgraph of /.

Theorem (Kannan, Naor, Rudich [STOC "88])

There exists an adjacency labeling scheme for F with labels of
at most k bits if and only if there exists a universal graph for 7
of order at most 2*.



Adjacency in trees

Definition
A graph U/ is universal for a graph family 7 if any G € F is
isomorphic to an induced subgraph of /.

Theorem (Kannan, Naor, Rudich [STOC "88])

There exists an adjacency labeling scheme for F with labels of
at most k bits if and only if there exists a universal graph for 7
of order at most 2*.

Adjacency: State of the art
2log n (Kannan, Naor, and Rudich [STOC '88])
log n + O(log™ n) (Alstrup and Rauhe [FOCS "02))
= universal graph of order n2/°9™ "




Example 2: ancestry in trees

Input: rooted tree
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Example 2: ancestry in trees

Input: rooted tree

Give distinct DFS numbers to the
nodes, between 1 and n

L(u) = (DFS(u), DFS(Umax))

where umayx is the node with largest
DFS number in the subtree rooted
at u.

uis an ancestor of v <= DFS(v) € [DFS(u), DFS(Umax)]

Label size = 2[log, n] bits



XML trees

< art >
< book >
< Sutter’s Gold >
< author > Blaise Cendrars < /author >
< Release > 1925 < /Release >
< /sutter’s Gold >
< /book >
< movie >
< Citizen Kane >
< direct > Orson Wells < /direct >
< Release > 1941 < /Release >
< /Citizen Kane >
< Once Upon a Time in the West >
< direct > Sergio Leone < /direct >
< Release > 1968 < /Release >
< /Once Upon a Time in the West >
< /movie >
< /art >

art \
movie
Citizen Kane Once Upon a Time
in the West
Release  director Release
date date

e Answer queries using the index labels only, without accessing

the actual documents.

¢ A small improvement in the label size = significant
improvement in the performances of XML search engines.



State of the art: ancestry in trees

Ancestry
2log n (Kannan, Naor, and Rudich [STOC '88))
g log n + O(log log n) (Abiteboul, Kaplan, and Milo [SODA "01])
log n+ O(log n/ loglog n) (Thorup and Zwick [SPAA "01])
log n + O(\/log n) (Alstrup and Rauhe [SODA '02])
log n + Q(loglog n) (Alstrup, Bille and Rauhe [SODA "03])
log n + 2log(depth) + O(1) (Fraigniaud and Korman, [SODA '10])
log n + O(loglog n) (Fraigniaud and Korman, [STOC *10])
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Optimal ancestry-labeling scheme

11/31



Interval containment

v ancestor of u <= I(u) C I(v)

2log n-scheme by Kannan, Naor, and Rudich use n? intervals.
We aim at using nlog® n intervals

We use intervals of the following form, for k = 1,... log n:

Xga X (a+b)

1 Xy 2%, Tapy N
level K b-- 7o =% - f 2 - Sl - - { - - == - =} == - -4
Xk
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Spine decomposition

Nodes classified as either heavy or apex.
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Trees with bounded spine decomposition depth d = 0(1)
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Trees with bounded spine decomposition depth d = 0(1)

F(n,d) = forests with < n nodes,
and spine-decomposition depth < d.

We aim at using nd? intervals for

F e F(n,d)

Induction of k = log n

Difficult case: F containing atree T

of size larger than 2% i.e.,
2K < |T| < 2k+1,
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General idea

I(v;) I(w) I(v)
bin J \ \1
———
lovel ki1 +—t :[(J1: g :)] b
Xkt
(f N\ 2\ (ﬁ\
level k t—+—+—+ e L st
X
I(F,) I(F) I(F5)
| Pl cdfsl
I(9,F)
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Tuning of the parameters (1/3)

1(vy) 1(%) I(vg)
binJ X \v
——
level k+1 ] A S
Xk
level k ####r11111\5(1111111\§§§§(1111111\J§§5555
Eo
I(Fy) I(F,) I(Fy)
olF| GdRl dFs|
S
1Y)
J

For 1 <i < s, the length of /(v;) must satisfy

S
(V)| = ekl Fil + Xicer + [1(Vigr) | = e IFil) + i+ Xep1.-

j=i

Bin J to be of length |J| &~ ¢k - 2Kt1 + (s + 1) - xx,.1 suffices.
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Tuning of the parameters (2/3)

Since s < d, we must have |J| be approximately
Ck+1 2k+1 ~ Ck2k+1 + d- Xk 41

Choose the values of ¢, so that:

d - Xk
Ck+1 —Ck = ok+1
We set
k
1 ok
Ck & Z/_—1+6, and thus Xk ~ ——

j=1
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Tuning of the parameters (3/3)

Let A = N/Xk and By ~ Ck2k/Xk.

X, a Xy (a+b)

1 Xy 2%, Tapy N
level K b= - b2 o - - e - - { - = = - =} == - -4
Xk

where 1 < a< Arand 1 < b < By.
Thus, N = 0ogn - 1= O(n).

The number of level-k intervals is
O(Ax - Bx) = O(nd®k?(1+) j2K),

yielding a total of O(nd?) intervals, as desired.
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The general case: uses the folding-decomposition
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Ancestry preservation

DFS traversal in T that visits apex children first.
For any node u, let DFS(u) be the DFS number of v.

Lemma
Node v is an ancestor of u in T if and only if at least one of the
following two conditions hold

» C1: visanancestorofuin T*;
» C2: APEX(V) is ancestor of u in T* and DFS(v) < DFS(u).
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Ordering the intervals

Lemma
Node v is an ancestor of u in T if and only if at least one of the
following two conditions hold

» C1: vis an ancestor of u in T*;

» C2’: APEX(V) js ancestor of u in T* and I(v) < I(u).
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Compact encoding of /(APEX(V))

It is sufficient to encode:

> its level K’
. , P
> two shifts bj,, and by, in [1, Bi]
Xa' X (a'+b")
: . :
, Xkra" k,a,b N
e S o e e R
level k: . _L ____________________________
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Small universal posets
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Graph arboricity

The arboricity of a graph is the minimum number of forests into
which its edges can be partitioned.

Corollary (sznzm. Naor, Rudich [STOC '88])

There exists an adjacency labeling scheme for the family of
graphs with arboricity at most k with labels of at most
(k+1)log n bits.

High level correspondence between:

adjacency/arboricity for
and
ancestry/tree-dimension for
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Partially ordered sets

Poset (X, <)

» reflexivity: x < x
» antisymmetry: (x <yandy <x) = x=y
» transitivity: (x <yandy <z) = x<z

(X, <) is an extension of (X, <) if:
vx,yeX, x<y=x<y

The dimension of a poset (X, <) is the smallest number of
linear (i.e., total order) extensions of (X, <) the intersection of
which gives rise to (X, <).
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Universal posets

A poset (X, <x) contains a poset (Y, <y) as an induced
suborder if there exists an injective mapping ¢ : Y — X such
that for any two elements a,b € Y:

a<yb < ¢(a) <x ¢(b).
Definition

A poset (U, <) is called universal for a family of posets 7 if
(U, <) contains every poset in F as an induced suborder.
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The size of a universal posets

Remark
The smallest size of a universal poset for the family of
n-element posets with dimension at most k is at most n*.

Theorem (Alon and Scheinerman [Order 1988])

The number of n-element posets of dimension k is at least
nh(k—o(1)).

Corollary
A universal poset for the family of all n-element posets with
dimension at most k has number of elements at least n*—°(1).
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Tree dimension

Definition

A poset (X, <) is a tree if, for every pair x and y of
incomparable elements in X, there does not exist an element
ze Xsuchthatx <zandy < z.

The tree-dimension of a poset (X, <) is the smallest number of
tree extensions of (X, <) the intersection of which gives rise to

(X, <)
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Universal posets for tree-dimension k

tree-dim < dim < 2- tree-dim

Thus, the smallest size of a universal poset for the family of all
n-element posets with tree-dimension at most k is:

» at least n*—°(1) and
» at most n?X.

Theorem (Fl'uigniuud and Korman [STOC 20]0])

For every integer K, there exists a universal poset of size
O(n*log* n) for the family of the n-element posets of
tree-dimension k.
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Conclusion
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Further work

Open problem
» Is the size of a smallest universal graph for trees with at
most n nodes linear in n?
» Recall that we know it is of size at most n20(1°9" 1),
Randomization
» Randomized ancestry labeling schemes (1-sided error).

» Tradeoffs can be established for adjacency [Fraigniaud and
Korman, SPAA 2009].

Generalization to “dynamic network”

» What is a dynamic graph?
» What type of complexity measure?
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Further work

Open problem

» Is the size of a smallest universal graph for trees with at
most n nodes linear in n?

» Recall that we know it is of size at most n20(°9" 7).,
Randomization
» Randomized ancestry labeling schemes (1-sided error).

» Tradeoffs can be established for adjacency [Fraigniaud and
Korman, SPAA 2009].

Generalization to “dynamic network”

» What is a dynamic graph?
» What type of complexity measure?

Thank You!
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