PARIS DIDEROT

An Optimal Ancestry Labeling Scheme

Pierre Fraigniaud Amos Korman¹

CNRS and University Paris Diderot

¹Speaker

Outline

Informative Labeling Scheme

Why should we fight for constants?

Optimal ancestry-labeling scheme

Small universal posets

Conclusion

Informative Labeling scheme

Graph representations:

- traditional: names given to the nodes serve merely as pointers to entries in a data structure
- informative labeling: mechanism for assigning short, yet informative, names to nodes (Kannan, Naor, Rudich [STOC '88])

General objective

To assign labels to nodes in such a way that allows one to infer information regarding any two nodes *directly from their labels*.

Main quality measure

Label size = number of bits used to form the labels

Example 1: adjacency in trees

Input: tree T

Example 1: adjacency in trees

Input: tree T

- 1. Give distinct IDs to the nodes, between 1 and *n*
- 2. Root *T* at an arbitrary vertex

L(u) = (ID(u), ID(parent(u)))

u and *v* are adjacent \iff *u* = parent(*v*) or *v* = parent(*u*)

Label size = $2 \lceil \log_2 n \rceil$ bits

Informative Labeling Scheme

Let $\mathcal P$ be a boolean predicate defined on pairs of vertices for graphs in $\mathcal F$

```
Encoder (or marker) \mathcal{M}
Given G \in \mathcal{F}, \mathcal{M}(G) = L where L : V(G) \rightarrow \{0, 1\}^*
Decoder \mathcal{D}
\mathcal{D} : \{0, 1\}^* \times \{0, 1\}^* \rightarrow \{\text{true, false}\}
```

For any $G \in \mathcal{F}$, and any $(u, v) \in V(G) \times V(G)$,

 $\mathcal{P}(u, v) = \text{true} \iff \mathcal{D}(L(u), L(v)) = \text{true}$

Can be generalized to various types of functions (distance, connectivity, etc.), or tasks (e.g., routing).

Outline

Informative Labeling Scheme

Why should we fight for constants?

Optimal ancestry-labeling scheme

Small universal posets

Conclusion

Adjacency in trees

Definition

A graph \mathcal{U} is universal for a graph family \mathcal{F} if any $G \in \mathcal{F}$ is isomorphic to an induced subgraph of \mathcal{U} .

Theorem (Kannan, Naor, Rudich [STOC '88])

There exists an adjacency labeling scheme for \mathcal{F} with labels of at most k bits if and only if there exists a universal graph for \mathcal{F} of order at most 2^k .

Adjacency in trees

Definition

A graph \mathcal{U} is universal for a graph family \mathcal{F} if any $G \in \mathcal{F}$ is isomorphic to an induced subgraph of \mathcal{U} .

Theorem (Kannan, Naor, Rudich [STOC '88])

There exists an adjacency labeling scheme for \mathcal{F} with labels of at most k bits if and only if there exists a universal graph for \mathcal{F} of order at most 2^k .

Adjacency: State of the art

 $2 \log n$ (Kannan, Naor, and Rudich [STOC '88]) $\log n + O(\log^* n)$ (Alstrup and Rauhe [FOCS '02]) \Rightarrow universal graph of order $n 2^{\log^* n}$

Example 2: ancestry in trees

Input: rooted tree

Example 2: ancestry in trees

Input: rooted tree

Give distinct DFS numbers to the nodes, between 1 and *n*

 $L(u) = (DFS(u), DFS(u_{max}))$

where u_{max} is the node with largest DFS number in the subtree rooted at u.

u is an ancestor of $v \iff \text{DFS}(v) \in [\text{DFS}(u), \text{DFS}(u_{max})]$

Label size = $2\lceil \log_2 n \rceil$ bits

XML trees

• Answer queries using the index labels only, without accessing the actual documents.

• A small improvement in the label size \Rightarrow significant improvement in the performances of XML search engines.

State of the art: ancestry in trees

Ancestry

 $\frac{2 \log n}{2} (\text{Kannan, Naor, and Rudich [STOC '88]})$ $\frac{3}{2} \log n + O(\log \log n) \text{ (Abiteboul, Kaplan, and Milo [SODA '01])}$ $\log n + O(\log n / \log \log n) \text{ (Thorup and Zwick [SPAA '01])}$ $\log n + O(\sqrt{\log n}) \text{ (Alstrup and Rauhe [SODA '02])}$ $\log n + \Omega(\log \log n) \text{ (Alstrup, Bille and Rauhe [SODA '03])}$ $\log n + 2\log(depth) + O(1) \text{ (Fraigniaud and Korman, [SODA '10])}$ $\log n + O(\log \log n) \text{ (Fraigniaud and Korman, [STOC '10])}$

Outline

Informative Labeling Scheme

Why should we fight for constants?

Optimal ancestry-labeling scheme

Small universal posets

Conclusion

Interval containment

v ancestor of $u \iff I(u) \subseteq I(v)$

2 log *n*-scheme by Kannan, Naor, and Rudich use n^2 intervals. We aim at using $n \log^c n$ intervals

We use intervals of the following form, for $k = 1, ..., \log n$:

Spine decomposition

Nodes classified as either heavy or apex.

Trees with bounded spine decomposition depth d = 0(1)

Trees with bounded spine decomposition depth d = 0(1)

 $\mathcal{F}(n, d) = \text{forests with} \leq n \text{ nodes},$ and spine-decomposition depth $\leq d$.

We aim at using nd^2 intervals for $F \in \mathcal{F}(n, d)$

Induction of $k = \log n$

Difficult case: *F* containing a tree *T* of size larger than 2^k , i.e., $2^k < |T| \le 2^{k+1}$.

General idea

Tuning of the parameters (1/3)

For $1 \le i < s$, the length of $I(v_i)$ must satisfy

$$|I(v_i)| \approx c_k |F_i| + x_{k+1} + |I(v_{i+1})| \approx c_k (\sum_{j=i}^s |F_i|) + i \cdot x_{k+1}.$$

Bin *J* to be of length $|J| \approx c_k \cdot 2^{k+1} + (s+1) \cdot x_{k+1}$ suffices.

Tuning of the parameters (2/3)

Since $s \leq d$, we must have |J| be approximately

$$c_{k+1}2^{k+1} \approx c_k 2^{k+1} + d \cdot x_{k+1}$$

Choose the values of c_k so that:

$$c_{k+1}-c_k~pprox~rac{d\cdot x_{k+1}}{2^{k+1}}$$

We set

$$c_k \approx \sum_{j=1}^k \frac{1}{j^{1+\epsilon}}$$
, and thus $x_k \approx \frac{2^k}{d \cdot k^{1+\epsilon}}$

Tuning of the parameters (3/3)

Let
$$A_k \approx N/x_k$$
 and $B_k \approx c_k 2^k/x_k$.

level k:
$$\begin{array}{ccc} x_k a & x_k (a+b) \\ I x_k 2x_k & I_{(k,a,b)} & N \\ \hline x_k & \hline x_k & I_{(k,a,b)} & N \\ \hline x_k & I_{(k,a,b)} & I_{(k,a,b)} & N \\ \hline x_k & I_{(k,a,b)} & I_{(k,a,b)} & N \\ \hline x_k & I_{(k,a,b)} & I_{(k,a,b)} & N \\ \hline x_k & I_{(k,a,b)} & I$$

where $1 \le a \le A_k$ and $1 \le b \le B_k$.

Thus, $N \approx c_{\log n} \cdot n = O(n)$.

The number of level-k intervals is

$$O(A_k \cdot B_k) = O(nd^2k^{2(1+\epsilon)}/2^k),$$

yielding a total of $O(nd^2)$ intervals, as desired.

The general case: uses the folding-decomposition

Ancestry preservation

DFS traversal in T that visits apex children first. For any node u, let DFS(u) be the DFS number of u.

Lemma

Node v is an ancestor of u in T if and only if at least one of the following two conditions hold

- ► C1: v is an ancestor of u in T*;
- ▶ **C2:** APEX(v) is ancestor of u in T^* and DFS(v) < DFS(u).

Ordering the intervals

Lemma

Node v is an ancestor of u in T if and only if at least one of the following two conditions hold

- C1: v is an ancestor of u in T*;
- ▶ C2': APEX(v) is ancestor of u in T^* and $I(v) \prec I(u)$.

label(u) = (l(u), l(APEX(u)))

Compact encoding of I(APEX(v))

It is sufficient to encode:

- its level k'
- two shifts b'_{left} and b'_{right} in $[1, B_{k'}]$

Outline

Informative Labeling Scheme

Why should we fight for constants?

Optimal ancestry-labeling scheme

Small universal posets

Conclusion

Graph arboricity

The arboricity of a graph is the minimum number of forests into which its edges can be partitioned.

Corollary (Kannan, Naor, Rudich [STOC '88])

There exists an adjacency labeling scheme for the family of graphs with arboricity at most k with labels of at most $(k + 1) \log n$ bits.

High level correspondence between:

adjacency/arboricity for graphs and ancestry/tree-dimension for posets

Partially ordered sets

Poset (X, \leq)

- reflexivity: $x \le x$
- antisymmetry: $(x \le y \text{ and } y \le x) \Rightarrow x = y$
- transitivity: $(x \le y \text{ and } y \le z) \Rightarrow x \le z$

 (X, \leq') is an extension of (X, \leq) if:

$$\forall x, y \in X, \ x \leq y \Rightarrow x \leq' y$$

The dimension of a poset (X, \leq) is the smallest number of linear (i.e., total order) extensions of (X, \leq) the intersection of which gives rise to (X, \leq) .

Universal posets

A poset (X, \leq_X) contains a poset (Y, \leq_Y) as an induced suborder if there exists an injective mapping $\phi : Y \to X$ such that for any two elements $a, b \in Y$:

$$a \leq_Y b \iff \phi(a) \leq_X \phi(b).$$

Definition

A poset (\mathcal{U}, \leq) is called universal for a family of posets \mathcal{F} if (\mathcal{U}, \leq) contains every poset in \mathcal{F} as an induced suborder.

The size of a universal posets

Remark

The smallest size of a universal poset for the family of n-element posets with dimension at most k is at most n^k .

Theorem (Alon and Scheinerman [Order 1988])

The number of *n*-element posets of dimension *k* is at least $n^{n(k-o(1))}$.

Corollary

A universal poset for the family of all *n*-element posets with dimension at most *k* has number of elements at least $n^{k-o(1)}$.

Tree dimension

Definition

A poset (X, \leq) is a tree if, for every pair *x* and *y* of incomparable elements in *X*, there does not exist an element $z \in X$ such that $x \leq z$ and $y \leq z$.

The tree-dimension of a poset (X, \leq) is the smallest number of tree extensions of (X, \leq) the intersection of which gives rise to (X, \leq) .

Universal posets for tree-dimension k

 $\textit{tree-dim} \leq \textit{dim} \leq 2 \cdot \textit{tree-dim}$

Thus, the smallest size of a universal poset for the family of all n-element posets with tree-dimension at most k is:

- at least $n^{k-o(1)}$, and
- at most n^{2k}.

Theorem (Fraigniaud and Korman [STOC 2010])

For every integer k, there exists a universal poset of size $O(n^k \log^{4k} n)$ for the family of the n-element posets of tree-dimension k.

Outline

Informative Labeling Scheme

Why should we fight for constants?

Optimal ancestry-labeling scheme

Small universal posets

Conclusion

Further work

Open problem

- Is the size of a smallest universal graph for trees with at most *n* nodes linear in *n*?
- Recall that we know it is of size at most n2^{O(log* n)}.

Randomization

- Randomized ancestry labeling schemes (1-sided error).
- Tradeoffs can be established for adjacency [Fraigniaud and Korman, SPAA 2009].

Generalization to "dynamic network"

- What is a dynamic graph?
- What type of complexity measure?

Further work

Open problem

- Is the size of a smallest universal graph for trees with at most *n* nodes linear in *n*?
- Recall that we know it is of size at most n2^{O(log* n)}.

Randomization

- Randomized ancestry labeling schemes (1-sided error).
- Tradeoffs can be established for adjacency [Fraigniaud and Korman, SPAA 2009].

Generalization to "dynamic network"

- What is a dynamic graph?
- What type of complexity measure?

Thank You!