
An Optimal Ancestry Labeling Scheme

Pierre Fraigniaud Amos Korman1

CNRS and University Paris Diderot

1Speaker
1 / 31

Outline

Informative Labeling Scheme

Why should we fight for constants?

Optimal ancestry-labeling scheme

Small universal posets

Conclusion

2 / 31

Informative Labeling scheme

Graph representations:
I traditional: names given to the nodes serve merely as

pointers to entries in a data structure
I informative labeling: mechanism for assigning short, yet

informative, names to nodes (Kannan, Naor, Rudich [STOC ’88])

General objective
To assign labels to nodes in such a way that allows one to infer
information regarding any two nodes directly from their labels.

Main quality measure
Label size = number of bits used to form the labels

3 / 31

Informative Labeling scheme

Graph representations:
I traditional: names given to the nodes serve merely as

pointers to entries in a data structure
I informative labeling: mechanism for assigning short, yet

informative, names to nodes (Kannan, Naor, Rudich [STOC ’88])

General objective
To assign labels to nodes in such a way that allows one to infer
information regarding any two nodes directly from their labels.

Main quality measure
Label size = number of bits used to form the labels

3 / 31

Example 1: adjacency in trees

Input: tree T

1. Give distinct IDs to the nodes,
between 1 and n

2. Root T at an arbitrary vertex

L(u) = (ID(u), ID(parent(u))

u and v are adjacent ⇐⇒ u = parent(v) or v = parent(u)

Label size = 2dlog2 ne bits

4 / 31

Example 1: adjacency in trees

Input: tree T

1. Give distinct IDs to the nodes,
between 1 and n

2. Root T at an arbitrary vertex

L(u) = (ID(u), ID(parent(u))

u and v are adjacent ⇐⇒ u = parent(v) or v = parent(u)

Label size = 2dlog2 ne bits

4 / 31

Informative Labeling Scheme

Let P be a boolean predicate defined on pairs of vertices for
graphs in F

Encoder (or marker)M
Given G ∈ F ,M(G) = L where L : V (G)→ {0,1}∗

Decoder D
D : {0,1}∗ × {0,1}∗ → {true, false}

For any G ∈ F , and any (u, v) ∈ V (G)× V (G),

P(u, v) = true ⇐⇒ D(L(u),L(v)) = true

Can be generalized to various types of functions (distance,
connectivity, etc.), or tasks (e.g., routing).

5 / 31

Outline

Informative Labeling Scheme

Why should we fight for constants?

Optimal ancestry-labeling scheme

Small universal posets

Conclusion

6 / 31

Adjacency in trees

Definition
A graph U is universal for a graph family F if any G ∈ F is
isomorphic to an induced subgraph of U .

Theorem (Kannan, Naor, Rudich [STOC ’88])
There exists an adjacency labeling scheme for F with labels of
at most k bits if and only if there exists a universal graph for F
of order at most 2k .

Adjacency: State of the art
2 log n (Kannan, Naor, and Rudich [STOC ’88])

log n + O(log∗ n) (Alstrup and Rauhe [FOCS ’02])

⇒ universal graph of order n 2log∗ n

7 / 31

Adjacency in trees

Definition
A graph U is universal for a graph family F if any G ∈ F is
isomorphic to an induced subgraph of U .

Theorem (Kannan, Naor, Rudich [STOC ’88])
There exists an adjacency labeling scheme for F with labels of
at most k bits if and only if there exists a universal graph for F
of order at most 2k .

Adjacency: State of the art
2 log n (Kannan, Naor, and Rudich [STOC ’88])

log n + O(log∗ n) (Alstrup and Rauhe [FOCS ’02])

⇒ universal graph of order n 2log∗ n

7 / 31

Example 2: ancestry in trees

Input: rooted tree

Give distinct DFS numbers to the
nodes, between 1 and n

L(u) = (DFS(u), DFS(umax))

where umax is the node with largest
DFS number in the subtree rooted
at u.

u is an ancestor of v ⇐⇒ DFS(v) ∈ [DFS(u), DFS(umax)]

Label size = 2dlog2 ne bits

8 / 31

Example 2: ancestry in trees

Input: rooted tree

Give distinct DFS numbers to the
nodes, between 1 and n

L(u) = (DFS(u), DFS(umax))

where umax is the node with largest
DFS number in the subtree rooted
at u.

u is an ancestor of v ⇐⇒ DFS(v) ∈ [DFS(u), DFS(umax)]

Label size = 2dlog2 ne bits

8 / 31

XML trees
< art >

< book >
< Sutter’s Gold >

< author > Blaise Cendrars < /author >
< Release > 1925 < /Release >

< /Sutter’s Gold >
< /book >
< movie >

< Citizen Kane >
< direct > Orson Wells < /direct >
< Release > 1941 < /Release >

< /Citizen Kane >
< Once Upon a Time in the West >

< direct > Sergio Leone < /direct >
< Release > 1968 < /Release >

< /Once Upon a Time in the West >
< /movie >

< /art >

art

book movie

Sutter's Gold Citizen Kane Once Upon a Time
 in the West

author Release
date

director director Release
date

Release
date

• Answer queries using the index labels only, without accessing
the actual documents.

• A small improvement in the label size⇒ significant
improvement in the performances of XML search engines.

9 / 31

State of the art: ancestry in trees

Ancestry
2 log n (Kannan, Naor, and Rudich [STOC ’88])

3
2 log n + O(log log n) (Abiteboul, Kaplan, and Milo [SODA ’01])

log n + O(log n/ log log n) (Thorup and Zwick [SPAA ’01])

log n + O(
√

log n) (Alstrup and Rauhe [SODA ’02])
log n + Ω(log log n) (Alstrup, Bille and Rauhe [SODA ’03])

log n + 2 log(depth) + O(1) (Fraigniaud and Korman, [SODA ’10])
log n + O(log log n) (Fraigniaud and Korman, [STOC ’10])

10 / 31

Outline

Informative Labeling Scheme

Why should we fight for constants?

Optimal ancestry-labeling scheme

Small universal posets

Conclusion

11 / 31

Interval containment

v ancestor of u ⇐⇒ I(u) ⊆ I(v)

2 log n-scheme by Kannan, Naor, and Rudich use n2 intervals.

We aim at using n logc n intervals

We use intervals of the following form, for k = 1, . . . , log n:

level k:
I(k,a,b)1 N

xk

x ak x (a+b)k

xk 2xk

12 / 31

Spine decomposition

v i

v1

vs

Fi

F1

Fs

Nodes classified as either heavy or apex.
13 / 31

Trees with bounded spine decomposition depth d = 0(1)

v i

v1

vs

Fi

F1

Fs

F(n,d) = forests with ≤ n nodes,
and spine-decomposition depth ≤ d .

We aim at using nd2 intervals for
F ∈ F(n,d)

Induction of k = log n

Difficult case: F containing a tree T
of size larger than 2k , i.e.,
2k < |T | ≤ 2k+1.

14 / 31

Trees with bounded spine decomposition depth d = 0(1)

v i

v1

vs

Fi

F1

Fs

F(n,d) = forests with ≤ n nodes,
and spine-decomposition depth ≤ d .

We aim at using nd2 intervals for
F ∈ F(n,d)

Induction of k = log n

Difficult case: F containing a tree T
of size larger than 2k , i.e.,
2k < |T | ≤ 2k+1.

14 / 31

General idea

xk+1

kx

level k+1

level k

I(v)1 I(v)sI(v)2

J1 J2 Js

I(F)1 I(F)2 I(F)s

bin J

I(U F)
i=1 i
s

c |F |k 1 c |F |k 2 c |F |k s

15 / 31

Tuning of the parameters (1/3)

xk+1

kx

level k+1

level k

I(v)1 I(v)sI(v)2

J1 J2 Js

I(F)1 I(F)2 I(F)s

bin J

I(U F)
i=1 i
s

c |F |k 1 c |F |k 2 c |F |k s

For 1 ≤ i < s, the length of I(vi) must satisfy

|I(vi)| ≈ ck |Fi |+ xk+1 + |I(vi+1)| ≈ ck (
s∑

j=i

|Fi |) + i · xk+1.

Bin J to be of length |J| ≈ ck · 2k+1 + (s + 1) · xk+1 suffices.

16 / 31

Tuning of the parameters (2/3)

Since s ≤ d , we must have |J| be approximately

ck+12k+1 ≈ ck2k+1 + d · xk+1

Choose the values of ck so that:

ck+1 − ck ≈ d · xk+1

2k+1

We set

ck ≈
k∑

j=1

1
j1+ε

, and thus xk ≈
2k

d · k1+ε

17 / 31

Tuning of the parameters (3/3)

Let Ak ≈ N/xk and Bk ≈ ck2k/xk .

level k:
I(k,a,b)1 N

xk

x ak x (a+b)k

xk 2xk

where 1 ≤ a ≤ Ak and 1 ≤ b ≤ Bk .

Thus, N ≈ clog n · n = O(n).

The number of level-k intervals is

O(Ak · Bk) = O(nd2k2(1+ε)/2k),

yielding a total of O(nd2) intervals, as desired.

18 / 31

The general case: uses the folding-decomposition

v i

v1

vsFi

F1

Fs

v i
vs

Fi

F1

Fs

v2*=

v1 v1*=

*F1

F2*=

(a) (b)

v j

v j

u1 u2

u1u2 v2

v2

19 / 31

Ancestry preservation

DFS traversal in T that visits apex children first.
For any node u, let DFS(u) be the DFS number of u.

v i

v1

vsFi

F1

Fs

v i
vs

Fi

F1

Fs

v2*=

v1 v1*=

*F1

F2*=

(a) (b)

v j

v j

u1 u2

u1u2 v2

v2

Lemma
Node v is an ancestor of u in T if and only if at least one of the
following two conditions hold

I C1: v is an ancestor of u in T ∗;
I C2: APEX(v) is ancestor of u in T ∗ and DFS(v) < DFS(u).

20 / 31

Ordering the intervals

Lemma
Node v is an ancestor of u in T if and only if at least one of the
following two conditions hold

I C1: v is an ancestor of u in T ∗;
I C2’: APEX(v) is ancestor of u in T ∗ and I(v) ≺ I(u).

v1

v2

F1

F2

I(v)2

k+1
k

2
1

I(v)1

I(F)1 I(F)2

(a) (b)

label(u) = (I(u), I(APEX(u)))

21 / 31

Compact encoding of I(APEX(v))

It is sufficient to encode:
I its level k ′

I two shifts b′left and b′right in [1,Bk ′]

level k':

I(v)

N

x a'k' x (a'+b')k'

level k:

k',a',b'I
x a"k'

22 / 31

Outline

Informative Labeling Scheme

Why should we fight for constants?

Optimal ancestry-labeling scheme

Small universal posets

Conclusion

23 / 31

Graph arboricity

The arboricity of a graph is the minimum number of forests into
which its edges can be partitioned.

Corollary (Kannan, Naor, Rudich [STOC ’88])
There exists an adjacency labeling scheme for the family of
graphs with arboricity at most k with labels of at most
(k + 1) log n bits.

High level correspondence between:

adjacency/arboricity for graphs
and

ancestry/tree-dimension for posets

24 / 31

Partially ordered sets

Poset (X ,≤)

I reflexivity: x ≤ x
I antisymmetry: (x ≤ y and y ≤ x) ⇒ x = y
I transitivity: (x ≤ y and y ≤ z) ⇒ x ≤ z

(X ,≤′) is an extension of (X ,≤) if:

∀x , y ∈ X , x ≤ y ⇒ x ≤′ y

The dimension of a poset (X ,≤) is the smallest number of
linear (i.e., total order) extensions of (X ,≤) the intersection of
which gives rise to (X ,≤).

25 / 31

Universal posets

A poset (X ,≤X) contains a poset (Y ,≤Y) as an induced
suborder if there exists an injective mapping φ : Y → X such
that for any two elements a,b ∈ Y :

a ≤Y b ⇐⇒ φ(a) ≤X φ(b).

Definition
A poset (U ,≤) is called universal for a family of posets F if
(U ,≤) contains every poset in F as an induced suborder.

26 / 31

The size of a universal posets

Remark
The smallest size of a universal poset for the family of
n-element posets with dimension at most k is at most nk .

Theorem (Alon and Scheinerman [Order 1988])
The number of n-element posets of dimension k is at least
nn(k−o(1)).

Corollary
A universal poset for the family of all n-element posets with
dimension at most k has number of elements at least nk−o(1).

27 / 31

Tree dimension

Definition
A poset (X ,≤) is a tree if, for every pair x and y of
incomparable elements in X , there does not exist an element
z ∈ X such that x ≤ z and y ≤ z.

The tree-dimension of a poset (X ,≤) is the smallest number of
tree extensions of (X ,≤) the intersection of which gives rise to
(X ,≤).

28 / 31

Universal posets for tree-dimension k

tree-dim ≤ dim ≤ 2· tree-dim

Thus, the smallest size of a universal poset for the family of all
n-element posets with tree-dimension at most k is:

I at least nk−o(1), and
I at most n2k .

Theorem (Fraigniaud and Korman [STOC 2010])
For every integer k, there exists a universal poset of size
O(nk log4k n) for the family of the n-element posets of
tree-dimension k.

29 / 31

Outline

Informative Labeling Scheme

Why should we fight for constants?

Optimal ancestry-labeling scheme

Small universal posets

Conclusion

30 / 31

Further work

Open problem

I Is the size of a smallest universal graph for trees with at
most n nodes linear in n?

I Recall that we know it is of size at most n 2O(log∗ n).

Randomization

I Randomized ancestry labeling schemes (1-sided error).
I Tradeoffs can be established for adjacency [Fraigniaud and

Korman, SPAA 2009].

Generalization to “dynamic network”

I What is a dynamic graph?
I What type of complexity measure?

Thank You!

31 / 31

Further work

Open problem

I Is the size of a smallest universal graph for trees with at
most n nodes linear in n?

I Recall that we know it is of size at most n 2O(log∗ n).

Randomization

I Randomized ancestry labeling schemes (1-sided error).
I Tradeoffs can be established for adjacency [Fraigniaud and

Korman, SPAA 2009].

Generalization to “dynamic network”

I What is a dynamic graph?
I What type of complexity measure?

Thank You!
31 / 31

	Informative Labeling Scheme
	Why should we fight for constants?
	Optimal ancestry-labeling scheme
	Small universal posets
	Conclusion

