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Graph polynomials

Graph polynomials with a name for themselves...

e chromatic polynomial, P(G; k) = P(G\uv; k) — P(G/uv; k)
o Tutte polynomial (universal for recurrence in \uv and /uv)

e Averbouch—Godlin—Makowsky polynomial (recurrence in
\uv, /uv and —u—v), includes matching polynomial

e Tittmann—Averbouch—Makowsky polynomial (recurrence in
\v, /v and —N][v]), includes independence polynomial

... polynomials all determined by counting Hy-colourings of a
graph for a sequence of (multi)graphs (Hx : k =1,2,...)
e.g. for k € N, P(G; k) counts Ki-colourings
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Definition
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f:V(G) — V(H) is a homomorphism from G to H if
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Graph polynomials

Definition

Graphs G, H.
f:V(G) — V(H) is a homomorphism from G to H if
uv € E(G) = f(u)f(v) € E(H).

Definition

H with adjacency matrix (as ), weight as ¢ on st € E(H),

hom(G,H) = Y I 2w

f:V(G)—V(H) uveE(G)

hom(G, H) = #{homomorphisms from G to H}
= #{H-colourings of G}

when H simple (as; € {0,1}) or multigraph (as; € N)



Graph polynomials

The main question

For sequence (Hy,...), when is, for all graphs G,
hom(G, Hyy, ) = p(G; k,¢,...)

for polynomial p(G)?
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Related work

Definition (by example)

“Generalized k-colourings” include proper k-colourings and:
@ harmonious proper k-col'gs (pair of colours appears at most once)
@ connected k-colourings (colour classes connected)

@ k-colourings with small monochromatic components
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Graph polynomials

Related work

Definition (by example)
“Generalized k-colourings” include proper k-colourings and:
@ harmonious proper k-col'gs (pair of colours appears at most once)
@ connected k-colourings (colour classes connected)
@ k-colourings with small monochromatic components
Any permutation of the k colours preserves the property of being a
generalized colouring.
Theorem (Kotek, Makowsky, Zilber, 2008)

Generalized k-colourings are counted by polynomials in k.

We look rather at colourings with a local restriction specified by
the homomorphism target graph Hy.
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(K«)

hom(G, Kx) = P(G; k)

chromatic polynomial
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Examples

(Kk)
hom(G, K}) = kIV(©)I
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Sequences giving graph polynomials

Examples

hom(G,Kf) = Y (HEE(@FW)=F()
f:V(G)—[K]

— kc(G)(f _ 1)r(G) T(G; ZZE—{kag)
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Sequences giving graph polynomials

It has something to do with automorphisms...

2) = Sym, [Symy]
2) = 2V(OIP(G; k)

-----

,,,,,,
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. but what precisely?

Lo D

(K%)= (Qu) (hypercubes)
Aut(Qx) = Symy [Sym,]

Proposition (Garijo, G., Ne3et¥il, 2013+)

hom(G, Qx) = p(G; k, 2¥) for bivariate polynomial p(G)
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Sequences giving graph polynomials

Definition

(Hy) is strongly polynomial (in k) if VG 3 polynomial p(G) such
that hom(G, Hx) = p(G; k) for all k € N.

(Hy) is polynomial (in k) if VG 3 polynomial p(G) such that
hom(G, Hy) = p(G; k) for sufficiently large k (k > ko(G))

Since hom(Gy U Gy, H) = hom( Gy, H)hom( Gy, H), suffices to
consider connected G.

Example
(Kk).
(Ki
(Qk
(Ck

(K}). (kKz) strongly polynomial in k
strongly polynomial in k, ¢
not polynomial in k (but in k and 2)

v\./\/\/

, (Px) polynomial in k
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Subgraph criterion for strongly polynomial

hom(G, Hy) = Z surve(G, S)

SCH
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= Z surye(G, S) #{copies of S in Hy}
S5/

Assuming G connected, homomorphic image S also connected
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Sequences giving graph polynomials

Subgraph criterion for strongly polynomial

hom(G, Hy) = Z sury(G, S)

SSind Hk
[V(S) < [V(6)]
= Z sury(G, S) #{induced copies of S in Hy}
S/=
when Hj simple. (for each S want this polynomial in k)

Proposition (de la Harpe & Jaeger 1995)

o (Hy) strongly polynomial in k <
Vconnected S #{subgraphs = S in Hy} polynomial in k for
all k e N

@ can replace subgraphs = S by induced subgraphs = S when
(Hx) simple graphs
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Sequences giving graph polynomials

Polynomial but not strongly polynomial

o 0 A ]

(Ck)

hom(G, Cy) = Z sury(G, Pj) k + sury(G, Cy)
1<j<min{|V(G)|,k—1}

hom(Gs, G3) = 6, hom(C3, Cx) =0 when k=2 o0r k > 4
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Sequences giving graph polynomials

Polynomial but not strongly polynomial

A

(Px)

hom(G, Py) = > sury(G, P;) (k—j+1)
1<j<min{|V(G)| .k}



Sequences giving graph polynomials

Polynomial but not strongly polynomial

A

(Px)

hom(G, Py) = > sury(G, P;) (k—j+1)
1<j<min{|V(G)| .k}

hom(Py, P) = 2, and hom(Ps, Pc) = 8k — 16 for k > 3
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Proposition (de la Harpe & Jaeger, 1995; Garijo, G., NeSet¥il, 2013+)

If (Hk) strongly polynomial, Hy simple, then
o (Hk)
o (L(Hxk))

strongly polynomial.

Also, (¢Hy) strongly polynomial in k(.



Constructions

Proposition (de la Harpe & Jaeger, 1995; Garijo, G., NeSet¥il, 2013+)
If (Hk) strongly polynomial, Hy simple, then
o (Hk)
o (L(Hxk))
strongly polynomial.
Also, (¢Hy) strongly polynomial in k(.

Proposition (Garijo, G., NeSet¥il, 2013+)

If (Hk) strongly polynomial, at most one loop each vertex of Hy,
then

o (H?) (remove all loops)
o (H}) (add loops to make 1 loop each vertex)

strongly polynomial.
More generally, (Hf) strongly polynomial in k., ¥£.



Constructions

If (F}), (Hk) strongly polynomial, then
o (Fj U Hy)
o (Fj+ Hi)

strongly polynomial in j, k.
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Constructions

Example

Beginning with trivial strongly polynomial sequence (Kj), following
strongly polynomial:

e multiple: (kK1) = (Kk)

e complement: (Ky) (chromatic polynomial)

o loop-addition: (K}) (Tutte polynomial)

o join: (Ki_; + K{) (Averbouch-Godlin-Makowsky polynomial)



Constructions

Beginning with trivial strongly polynomial sequence (Kj), following
strongly polynomial:

e multiple: (kK1) = (Kk)

e complement: (Ky) (chromatic polynomial)

o loop-addition: (K}) (Tutte polynomial)

o join: (Ki_; + K{) (Averbouch-Godlin-Makowsky polynomial)

hOIIl(G, KI}—J + l'(f) — §(G, kag_]-? _J(‘g_]'))

Three-term recurrence: for uv € E(G),

§(G) = ag(G/uv) + b§(G\uv) + c§(G —u —v)
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Given simple graph H, set of graphs {F, : v € V(H)},
the composition H[{F, : v € V(H)}] is formed by

e disjoint union of {F, : v € V(H)},

@ join F, and F, whenever uv € E(H)
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Constructions

Given simple graph H, set of graphs {F, : v € V(H)},
the composition H[{F, : v € V(H)}] is formed by

e disjoint union of {F, : v € V(H)},

@ join F, and F, whenever uv € E(H)

Proposition (de la Harpe & Jaeger, 1995)

If (Fy.k,) strongly polynomial sequence in k,, each v € V(H),
then (H[{F.k,}]) strongly polynomial in (k, : v € V(H)).

Example

o K [{Kk,---, Ki,}] = Ki,... k, (complete r-partite graph)
e F,.x, = Fy all v € V(H) gives lexicographic product H[F]



Constructions

Graph products: direct, cartesian, lexicographic

Graphs H,H', u,v e V(H), u,v' € V(H)

>< Hx H' u~u and v~ v

*——o

—eo
°
HOH u=vandu' ~ v
,
oru~wvandu =’
— o
I H[HI] un~v,
oru=vandu ~ v




Constructions

Proposition (Garijo, G., Ne3etfil, 2013+)

If (F;) and (Hy) strongly polynomial, then
o (F; x Hy)
o (FlH)

strongly polynomial in j, k.
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Constructions

Proposition (Garijo, G., Ne3etfil, 2013+)
If (Fj) and (Hy) strongly polynomial, then
o (Fj x Hy)
o (Fj[Hk])
strongly polynomial in j, k.

Question

Strongly polynomial:

> (Kj+ Ki) = (Kj)

> (L(Kjk)) = (KjOKx) (Rook’s graph)
If (Fj), (Hk) strongly polynomial, is then (F;CIHy) also?
(Yes — ask Patrice)
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A new type of strongly polynomial sequence

SO 00 L -0.-0.-0

[ K ) IKklll\kD (Kklll\k\(Kkl

Iy v

Hi k= Klyj[{Kll} U {K,} on leaves}]

hom(G, Hyy) = 3 DK
UCV(G)



A new construction

A new type of strongly polynomial sequence

SO 00 L -0.-0.-0

[ K ) IKklll\kD (Kklll\k\(Kkl

Iy v

Hi k= Klyj[{Kll} U {K,} on leaves}]
hom(G, Hyp) = 3 jCIDLIY
UCV(G)

Tittmann—Averbouch—Godlin polynomial
(includes independence polynomial, satisfies three-term recurrence)



A new construction

Branching coloured rooted trees

“k-branching” at edge of coloured rooted tree



A new construction

Colours encoding subgraph of closure of rooted tree

level coloured rooted tree subgraph of closure
3 {0, 2}
2 {o,1} {1} o0}
1 0 {0}

0 (root)



A new construction

(1) Branching rooted tree encoding subgraph of closure

coloured rooted tree coloured rooted tree subgraph of closure
with branching

{0} {0} {0} {0}
k.

{0,1}
k

{0}
‘

Ki1,¢[{K1} U{Kix on leaves}]



A new construction

(2) Colours encoding subgraph along with ornaments

Ornamented graph Composition

({0}, K2) ({0,1}, %)




A new construction

(2) Colours encoding subgraph along with ornaments

Omamented graph Composition

@/

({0}, K2) ({0,1}, K»)




A new construction

(3) Colours encoding cographs by cotrees

k l k l

T T @ o © O O,
k k l
© © ® ©
K Ky Kk, Ky UK,
leaves = vertices of cograph

0 = disjoint union, 1 = join



A new construction

Theorem (Garijo, G., Ne3etfil, 2013+)
- Coloured rooted tree T representing graph H
- k,¢,... branching variables on edges of T
- after k-branching, (-branching, ..., obtain coloured rooted
tree representing graph H k,




A new construction

Theorem (Garijo, G., Ne3etfil, 2013+)
- Coloured rooted tree T representing graph H
- k,¢,... branching variables on edges of T
- after k-branching, (-branching, ..., obtain coloured rooted
tree representing graph H k,

goee e

Then (Hy, y ) strongly polynomial in k. (, ... .
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colour s € V(T) = V(H) subset of {0,1,..., height(T)}
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Theorem (Garijo, G., Ne3etfil, 2013+)
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colour s € V(T) = V(H) subset of {0,1,..., height(T)}
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A new construction

Theorem (Garijo, G., Ne3etfil, 2013+)
- Coloured rooted tree T representing graph H
- k,¢,... branching variables on edges of T
- after k-branching, (-branching, ..., obtain coloured rooted
tree representing graph H k,

Then (Hy. 4 ) strongly polynomial in k.l,... .

’

(1) H as a subgraph of closure of T,
colour s € V(T) = V(H) subset of {0,1,..., height(T)}
(2) ornamented version of (1), strongly poly'l seq. (Fs.j,) each
vertex s € V/(H), colour as in (1) paired with Fs.j,

(3) cotree T encoding of cograph H,
colour non-leaf of T from {U,+}, leaves of T= V(H)



A new construction

coloured rooted tree encoding graph H ;.

®, K1) ({0}, K3) ({0, 1}, K) ({0,1,...,d=1},K})
—O —O— - -
J J J

(ornamented closure of perfect j-ary tree of depth d)

hom(G, H; k) = > [IWal g Za<e<a c(GIWD)
ICWICWLC--CWyCV



A new construction

coloured rooted tree encoding graph H ;.

®, K1) ({0}, K3) ({0,1}, K) ({0,1,...,d=1},K})
—O —O s
J J J

(ornamented closure of perfect j-ary tree of depth d)

hom(G, H; k) = > [IWal Xr<e<a c(GIWeD)
PCEWICWLC--CWyCV

Question

This bivariate polynomial generalizes the Tittmann— Averbouch—
Makowsky polynomial (case d = 1).
Properties? Evaluations?
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Definition
Generalized Johnson graph Jx¢p, D C {0,1,...,¢}
vertices (X1), edge uv when [unv| e D

e Johnson graphs D = {k — 1}

@ Kneser graphs D = {0}

Proposition (de la Harpe & Jaeger, 1995; Garijo, G., NeSet¥il, 2013+)

For every ¢, D, sequence (Jx¢,p) is strongly polynomial in k.



Open problems

Definition
Generalized Johnson graph Jx¢p, D C {0,1,...,¢}
vertices (X1), edge uv when [unv| e D

e Johnson graphs D = {k — 1}

@ Kneser graphs D = {0}

Proposition (de la Harpe & Jaeger, 1995; Garijo, G., NeSet¥il, 2013+)

For every ¢, D, sequence (Jx¢,p) is strongly polynomial in k.

Question
Can generalized Johnson graphs be generated from simpler
sequences by branching coloured rooted trees?
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Prime power g = p? = 1 (mod 4)
Payley graph P, =Cayley(IFq, non-zero squares),
automorphism group order dg(q — 1)
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Open problems

Prime power g = p? = 1 (mod 4)

Payley graph P, =Cayley(FFq, non-zero squares),

automorphism group order dg(q — 1)

Quasi-random graphs: hom(G, P,)/hom(G, qu%) —1as qg— 0.

Proposition (Corollary to result of de la Harpe & Jaeger, 1995)

hom(G, Pg) is polynomial in q for series-parallel G

> Is hom(G, P,) polynomial in g for all graphs G?7

» Which Cayley graph sequences are (strongly) polynomial?
e.g. For D C N, sequence ( Cayley(Zg, £D)) is polynomial iff
D is finite or cofinite. (de la Harpe & Jaeger, 1995)

» Approximation of left-convergent graph sequences like (Gn,%)
by (strongly) polynomial sequences? (Recall Jarik's talk)
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Constructions

A new construction
Open problems

Further problems

> Is there a characterization of strongly polynomial sequences
(Hx) by the sequence of automorphism groups (Aut(H))?
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Sequences giving graph polynomials
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A new construction
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Further problems

> Is there a characterization of strongly polynomial sequences
(Hx) by the sequence of automorphism groups (Aut(H))?

» Can (Hy) be verified to be strongly polynomial by testing
hom(G, Hy) for G only in a restricted class of graphs? (yes,
for connected graphs — but for a smaller class?)

» Which graph polynomials defined by strongly polynomial
sequences of graphs satisfy a reduction formula
(size-decreasing recurrence) like the chromatic polynomial?

» For input graph F, complexity of counting induced copies of F
in Hx when (Hy) is a strongly polynomial sequence?
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Branching core
simple graph H coloured rooted tree T’ branching core of T'
fo.13 {o1} {1} {1} {0, 1} {1}
\ \Q {0}
be(T) =5
{1}
2
(0} 0 {0} oy oy

(intermediate coloured tree)

be(T) =3
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Let v(H) be the smallest branching core size of a coloured rooted
tree representing H.

Question

For given simple graph H, how to choose rooted tree representing
H that has smallest branching core size y(H)?
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Branching core size

Let v(H) be the smallest branching core size of a coloured rooted
tree representing H.

Question

For given simple graph H, how to choose rooted tree representing
H that has smallest branching core size y(H)?

Theorem (Garijo, G., Ne3etfil, 2013+)

Let H be a family of graphs of bounded branching core size. Then
‘H can be covered by finitely many strongly polynomial sequences
(produced by branching).



Open problems

Kneser graph Ji ¢ 10}
hom(G, Ji ¢.101) = pe(G; k) polynomial.



Open problems

Example
Kneser graph Ji ¢ 10}
hom(G, Ji ¢.101) = pe(G; k) polynomial.

pe(Pai k) = (5) (%1 "1 and trees on n vertices.



Open problems

Example
Kneser graph Ji ¢ 10}
hom(G, Ji ¢.101) = pe(G; k) polynomial.

pe(Pai k) = (5) (%1 "1 and trees on n vertices.

pe(Cai k) = <k2£>n+§(—1yn <<j{) - <£f 1)) (sz?)n
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