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Graph polynomials with a name for themselves...

chromatic polynomial, P(G ; k) = P(G\uv ; k)− P(G/uv ; k)

Tutte polynomial (universal for recurrence in \uv and /uv)

Averbouch–Godlin–Makowsky polynomial (recurrence in
\uv , /uv and −u−v), includes matching polynomial

Tittmann–Averbouch–Makowsky polynomial (recurrence in
\v , /v and −N[v ]), includes independence polynomial

... polynomials all determined by counting Hk -colourings of a
graph for a sequence of (multi)graphs (Hk : k = 1, 2, . . . )
e.g. for k ∈ N, P(G ; k) counts Kk -colourings
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Definition

Graphs G ,H.
f : V (G )→ V (H) is a homomorphism from G to H if
uv ∈ E (G ) ⇒ f (u)f (v) ∈ E (H).

Definition

H with adjacency matrix (as,t), weight as,t on st ∈ E (H),

hom(G ,H) =
∑

f :V (G)→V (H)

∏
uv∈E(G)

af (u),f (v).

hom(G ,H) = #{homomorphisms from G to H}
= #{H-colourings of G}

when H simple (as,t ∈ {0, 1}) or multigraph (as,t ∈ N)
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The main question

For sequence (Hk,`,...), when is, for all graphs G ,

hom(G ,Hk,`,...) = p(G ; k , `, . . . )

for polynomial p(G )?
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Related work

Definition (by example)

“Generalized k-colourings” include proper k-colourings and:

harmonious proper k-col’gs (pair of colours appears at most once)

connected k-colourings (colour classes connected)

k-colourings with small monochromatic components

Any permutation of the k colours preserves the property of being a
generalized colouring.

Theorem (Kotek, Makowsky, Zilber, 2008)

Generalized k-colourings are counted by polynomials in k.

We look rather at colourings with a local restriction specified by
the homomorphism target graph Hk .
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It has something to do with automorphisms...
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Aut(K2,...,2) ∼= Symk [Sym2]

hom(G ,K2,...,,2) = 2|V (G)|P(G ; k)
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(K�k2 ) = (Qk) (hypercubes)

Aut(Qk) ∼= Symk [Sym2]

Proposition (Garijo, G., Nešeťril, 2013+)

hom(G ,Qk) = p(G ; k , 2k) for bivariate polynomial p(G )
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Definition

(Hk) is strongly polynomial (in k) if ∀G ∃ polynomial p(G ) such
that hom(G ,Hk) = p(G ; k) for all k ∈ N.

(Hk) is polynomial (in k) if ∀G ∃ polynomial p(G ) such that
hom(G ,Hk) = p(G ; k) for sufficiently large k (k ≥ k0(G ))

Since hom(G1 ∪ G2,H) = hom(G1,H)hom(G2,H), suffices to
consider connected G .

Example

(Kk), (K 1
k ). (kK2) strongly polynomial in k

(K `
k) strongly polynomial in k , `

(Qk) not polynomial in k (but in k and 2k)

(Ck), (Pk) polynomial in k
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Subgraph criterion for strongly polynomial

hom(G ,Hk) =
∑
S⊆Hk

|V (S)| ≤ |V (G)|

surV,E(G ,S)

=
∑
S/∼=

surV,E(G , S) #{copies of S in Hk}

Assuming G connected, homomorphic image S also connected

Proposition (de la Harpe & Jaeger, 1995)

(Hk) strongly polynomial in k ⇔
∀connected S #{subgraphs ∼= S in Hk} is polynomial in k
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all k ∈ N
can replace subgraphs ∼= S by induced subgraphs ∼= S when
(Hk) simple graphs
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(Ck)

hom(G ,Ck) =
∑

1≤j≤min{|V (G)|,k−1}

surV(G ,Pj) k + surV(G ,Ck)

hom(C3,C3) = 6, hom(C3,Ck) = 0 when k = 2 or k ≥ 4
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hom(P4,P2) = 2, and hom(P4,Pk) = 8k − 16 for k ≥ 3
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Proposition (de la Harpe & Jaeger, 1995; Garijo, G., Nešeťril, 2013+)

If (Hk) strongly polynomial, Hk simple, then

(Hk)

(L(Hk))

strongly polynomial.
Also, (`Hk) strongly polynomial in k, `.

Proposition (Garijo, G., Nešeťril, 2013+)

If (Hk) strongly polynomial, at most one loop each vertex of Hk ,
then

(H0
k ) (remove all loops)

(H1
k ) (add loops to make 1 loop each vertex)

strongly polynomial.
More generally, (H`

k) strongly polynomial in k, `.
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Proposition

If (Fj), (Hk) strongly polynomial, then

(Fj ∪ Hk)

(Fj + Hk)

strongly polynomial in j , k.



Graph polynomials
Sequences giving graph polynomials

Constructions
A new construction

Open problems

Example

Beginning with trivial strongly polynomial sequence (K1), following
strongly polynomial:

multiple: (kK1) = (Kk)

complement: (Kk) (chromatic polynomial)

loop-addition: (K `
k) (Tutte polynomial)

join: (K 1
k−j + K `

j ) (Averbouch–Godlin–Makowsky polynomial)

hom(G ,K 1
k−j + K `

j ) = ξ(G ; k , `−1,−j(`−1))

Three-term recurrence: for uv ∈ E (G ),

ξ(G ) = aξ(G/uv) + bξ(G\uv) + cξ(G − u − v)
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Definition

Given simple graph H, set of graphs {Fv : v ∈ V (H)},
the composition H[{Fv : v ∈ V (H)}] is formed by

disjoint union of {Fv : v ∈ V (H)},
join Fu and Fv whenever uv ∈ E (H)

Proposition (de la Harpe & Jaeger, 1995)

If (Fv ;kv ) strongly polynomial sequence in kv , each v ∈ V (H),
then (H[{Fv ;kv }]) strongly polynomial in (kv : v ∈ V (H)).

Example

Kr [{Kk1 , . . . ,Kkr }] ∼= Kk1,...,kr (complete r -partite graph)

Fv ;kv = Fk all v ∈ V (H) gives lexicographic product H[Fk ]
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Graph products: direct, cartesian, lexicographic

Graphs H,H ′, u, v ∈ V (H), u′, v ′ ∈ V (H ′)

H

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

bb

bb
H ×H ′

H [H ′]

u ∼ u′ and v ∼ v′

u = v and u′ ∼ v′,
or u ∼ v and u′ = v′

u ∼ v,
or u = v and u′ ∼ v′

H ′
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Proposition (Garijo, G., Nešeťril, 2013+)

If (Fj) and (Hk) strongly polynomial, then

(Fj × Hk)

(Fj [Hk ])

strongly polynomial in j , k.

Question

Strongly polynomial:

I (Kj + Kk) = (Kj ,k)

I (L(Kj ,k)) = (Kj�Kk) (Rook’s graph)

If (Fj), (Hk) strongly polynomial, is then (Fj�Hk) also?
(Yes – ask Patrice)
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A new type of strongly polynomial sequence

b b

b bb

Kk Kk Kk

b

Kk Kk Kk

Hj ,k = K1,j [{K 1
1 } ∪ {K 1

k on leaves}]

hom(G ,Hj ,k) =
∑

U⊆V (G)

jc(G [U])k |U|

Tittmann–Averbouch–Godlin polynomial
(includes independence polynomial, satisfies three-term recurrence)
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Branching coloured rooted trees

b

b b b

b

bb

b

b b b

b

b

bb b

b

b

b

b b b

k times

k
b

“k-branching” at edge of coloured rooted tree



Graph polynomials
Sequences giving graph polynomials

Constructions
A new construction

Open problems

Colours encoding subgraph of closure of rooted tree

{0}bc∅

coloured rooted tree subgraph of closure

b

bc

{0}bcbcbc {1}{0, 1}

bc
{0, 2}

bc

b

bc

bcbcbc

bc

level

3

2

1

0 (root)
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(1) Branching rooted tree encoding subgraph of closure

bcbc
b b b

{1} {1}bcbc
b b b

b

bc

bc

b

{0}

{1}

bcbc{0} {0}

{0}

coloured rooted tree subgraph of closure

bc
{0}

k

b

bc
b b b

coloured rooted tree
with branching

bcbc

b

bc
b b b

K1,k

k

ℓ

{0}bcbc{0}

b

b b b

{1}

k

k k

ℓ

bcbc
b b b

bcbc
b b b

bcbc

b

b b b

k k

ℓ

bc

bc

b

{0, 1}

{0}
k

ℓ

bcbc
b b b

{0, 1} {0, 1}bcbc
b b b

{0}bcbc{0}

b

b b b

{0, 1}
k k

ℓ

{0, 1}

{1}

bcbc
b b b

bc
b b b

bcbc

b

b b b

k k

ℓ

bc

K1,ℓ[{K1} ∪ {K1,k on leaves}]

k
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(2) Colours encoding subgraph along with ornaments

({0},K2) ({0, 1},K2)

(∅,K2)

(∅,K2) K2

K2

K2 K2

Ornamented graph Composition
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(2) Colours encoding subgraph along with ornaments

(∅,K1
1)

({0},K1
k)

(Tittmann–Averbouch–Makowsky polynomial)

j
b b b

j

K1
k K1

k K1
k

({0},K2) ({0, 1},K2)

(∅,K2)

(∅,K2) K2

K2

K2 K2

Ornamented graph Composition



Graph polynomials
Sequences giving graph polynomials

Constructions
A new construction

Open problems

(3) Colours encoding cographs by cotrees

b

1

Kk

k

b

0

k

Kk

b

1

k

0

b
l

0

Kk,l

b

0

k

1

b
l

1

Kk ∪Kl

b

1

k

0

Kk,...,k = lKk

l

leaves = vertices of cograph

0 = disjoint union, 1 = join
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Theorem (Garijo, G., Nešeťril, 2013+)

- Coloured rooted tree T representing graph H

- k, `, . . . branching variables on edges of T

- after k-branching, `-branching, . . . , obtain coloured rooted
tree representing graph Hk, `, . . .

Then (Hk , `, . . . ) strongly polynomial in k, `, . . . .

Example

(1) H as a subgraph of closure of T ,
colour s ∈ V (T ) = V (H) subset of {0, 1, . . . ,height(T )}

(2) ornamented version of (1), strongly poly’l seq. (Fs;js ) each
vertex s ∈ V (H), colour as in (1) paired with Fs;js

(3) cotree T encoding of cograph H,
colour non-leaf of T from {∪,+}, leaves of T = V (H)
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- Coloured rooted tree T representing graph H

- k, `, . . . branching variables on edges of T

- after k-branching, `-branching, . . . , obtain coloured rooted
tree representing graph Hk, `, . . .

Then (Hk , `, . . . ) strongly polynomial in k, `, . . . .

Example

(1) H as a subgraph of closure of T ,
colour s ∈ V (T ) = V (H) subset of {0, 1, . . . ,height(T )}

(2) ornamented version of (1), strongly poly’l seq. (Fs;js ) each
vertex s ∈ V (H), colour as in (1) paired with Fs;js

(3) cotree T encoding of cograph H,
colour non-leaf of T from {∪,+}, leaves of T = V (H)



Graph polynomials
Sequences giving graph polynomials

Constructions
A new construction

Open problems

Theorem (Garijo, G., Nešeťril, 2013+)
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coloured rooted tree encoding graph Hj,k

b b b

(∅,K1
1) ({0},K1

k)

j

({0, 1},K1
k)

j

({0, 1, . . . , d−1},K1
k)

j

(ornamented closure of perfect j-ary tree of depth d)

hom(G ,Hj ,k) =
∑

∅⊆W1⊆W2⊆···⊆Wd⊆V

j |Wd |k
∑

1≤`≤d c(G [W`])

Question

This bivariate polynomial generalizes the Tittmann– Averbouch–
Makowsky polynomial (case d = 1).
Properties? Evaluations?
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Definition

Generalized Johnson graph Jk,`,D , D ⊆ {0, 1, . . . , `}
vertices

([k]
`

)
, edge uv when |u ∩ v | ∈ D

Johnson graphs D = {k − 1}
Kneser graphs D = {0}

Proposition (de la Harpe & Jaeger, 1995; Garijo, G., Nešeťril, 2013+)

For every `,D, sequence (Jk,`,D) is strongly polynomial in k.

Question

Can generalized Johnson graphs be generated from simpler
sequences by branching coloured rooted trees?
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Prime power q = pd ≡ 1 (mod 4)
Payley graph Pq =Cayley(Fq,non-zero squares),
automorphism group order dq(q − 1)

Quasi-random graphs: hom(G ,Pq)/hom(G ,Gq, 1
2
)→ 1 as q →∞.

Proposition (Corollary to result of de la Harpe & Jaeger, 1995)

hom(G ,Pq) is polynomial in q for series-parallel G

Questions

I Is hom(G ,Pq) polynomial in q for all graphs G ?

I Which Cayley graph sequences are (strongly) polynomial?
e.g. For D ⊂ N, sequence (Cayley(Zk ,±D) ) is polynomial iff
D is finite or cofinite. (de la Harpe & Jaeger, 1995)

I Approximation of left-convergent graph sequences like (Gn, 1
2
)

by (strongly) polynomial sequences? (Recall Jarik’s talk)
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Further problems

I Is there a characterization of strongly polynomial sequences
(Hk) by the sequence of automorphism groups (Aut(Hk))?

I Can (Hk) be verified to be strongly polynomial by testing
hom(G ,Hk) for G only in a restricted class of graphs? (yes,
for connected graphs – but for a smaller class?)

I Which graph polynomials defined by strongly polynomial
sequences of graphs satisfy a reduction formula
(size-decreasing recurrence) like the chromatic polynomial?

I For input graph F , complexity of counting induced copies of F
in Hk when (Hk) is a strongly polynomial sequence?
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I Can (Hk) be verified to be strongly polynomial by testing
hom(G ,Hk) for G only in a restricted class of graphs? (yes,
for connected graphs – but for a smaller class?)
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Branching core size

Let γ(H) be the smallest branching core size of a coloured rooted
tree representing H.

Question

For given simple graph H, how to choose rooted tree representing
H that has smallest branching core size γ(H)?

Theorem (Garijo, G., Nešeťril, 2013+)

Let H be a family of graphs of bounded branching core size. Then
H can be covered by finitely many strongly polynomial sequences
(produced by branching).
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Example

Kneser graph Jk,`,{0}.
hom(G , Jk,`,{0}) = p`(G ; k) polynomial.
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