Semidefinite method and Caccetta-Häggvist conjecture

Jan Volec

ETH Zürich

joint work with Jean-Sébastien Sereni and Rémi De Joannis De Verclos

Conjecture (Caccetta-Häggvist, 1978)

Every n-vertex digraph with minimum out-degree at least k contains an oriented cycle of length at most $\lceil n/k \rceil$.

Conjecture (Caccetta-Häggvist, 1978)

Every n-vertex digraph with minimum out-degree at least k contains an oriented cycle of length at most $\lceil n/k \rceil$.

Theorem (Shen, 2000)

C-H conjecture holds for $k \leq \sqrt{n/2}$.

Conjecture (Caccetta-Häggvist, 1978)

Every n-vertex digraph with minimum out-degree at least k contains an oriented cycle of length at most $\lceil n/k \rceil$.

Theorem (Shen, 2000)

C-H conjecture holds for $k \leq \sqrt{n/2}$.

Triangle case

Conjecture (Caccetta-Häggvist, 1978)

Every n-vertex digraph with minimum out-degree at least k contains an oriented cycle of length at most $\lceil n/k \rceil$.

Theorem (Shen, 2000)

C-H conjecture holds for $k \leq \sqrt{n/2}$.

Triangle case

Every *n*-vertex oriented graph with minimum out-degree at least n/3 contains an oriented triangle.

3k + 1 vertices, connect each vertex $i \rightarrow i + 1, i + 2, \dots, i + k$

Conjecture (Caccetta-Häggvist, 1978)

Every n-vertex digraph with minimum out-degree at least k contains an oriented cycle of length at most $\lceil n/k \rceil$.

Theorem (Shen, 2000)

C-H conjecture holds for $k \leq \sqrt{n/2}$.

Triangle case

Every *n*-vertex oriented graph with minimum out-degree at least n/3 contains an oriented triangle.

3k + 1 vertices, connect each vertex $i \rightarrow i + 1, i + 2, \dots, i + k$

Conjecture (Caccetta-Häggvist, 1978)

Every n-vertex digraph with minimum out-degree at least k contains an oriented cycle of length at most $\lceil n/k \rceil$.

Theorem (Shen, 2000)

C-H conjecture holds for $k \leq \sqrt{n/2}$.

Triangle case

Every *n*-vertex oriented graph with minimum out-degree at least n/3 contains an oriented triangle.

G and H extremal graphs \longrightarrow G \times H lexicographic product

Conjecture (Caccetta-Häggvist, 1978)

Every n-vertex digraph with minimum out-degree at least k contains an oriented cycle of length at most $\lceil n/k \rceil$.

Theorem (Shen, 2000)

C-H conjecture holds for $k \leq \sqrt{n/2}$.

Triangle case

Every *n*-vertex oriented graph with minimum out-degree at least n/3 contains an oriented triangle.

G and H extremal graphs \longrightarrow G \times H lexicographic product

Conjecture (Caccetta-Häggvist, 1978)

Every n-vertex digraph with minimum out-degree at least k contains an oriented cycle of length at most $\lceil n/k \rceil$.

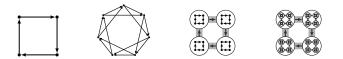
Theorem (Shen, 2000)

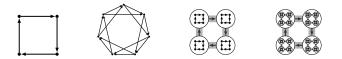
C-H conjecture holds for $k \leq \sqrt{n/2}$.

Triangle case

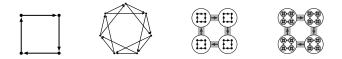
Every *n*-vertex oriented graph with minimum out-degree at least n/3 contains an oriented triangle.

G and H extremal graphs \longrightarrow G \times H lexicographic product

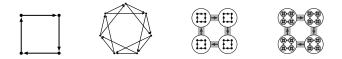




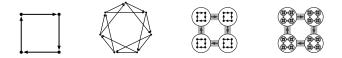
Every *n*-vertex oriented graph with minimum out-degree at least $c \cdot n$ contains an oriented triangle.



• Caccetta-Häggkvist (1978): $c < (3 - \sqrt{5})/2 \approx 0.3819$



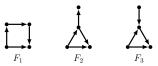
- Caccetta-Häggkvist (1978): $c < (3 \sqrt{5})/2 \approx 0.3819$
- Bondy (1997): $c < (2\sqrt{6} 3)/5 \approx 0.3797$



- Caccetta-Häggkvist (1978): $c < (3-\sqrt{5})/2 pprox 0.3819$
- Bondy (1997): $c < (2\sqrt{6} 3)/5 \approx 0.3797$
- Shen (1998): $c < 3 \sqrt{7} \approx 0.3542$
- Hamburger, Haxell, Kostochka (2007): c < 0.3531



- Caccetta-Häggkvist (1978): $c < (3-\sqrt{5})/2 pprox 0.3819$
- Bondy (1997): $c < (2\sqrt{6} 3)/5 \approx 0.3797$
- Shen (1998): $c < 3 \sqrt{7} \approx 0.3542$
- Hamburger, Haxell, Kostochka (2007): *c* < 0.3531
- Hladký, Kráľ, Norin (2009): *c* < 0.3465
- Razborov (2011): if D is $\{F_1, F_2, F_3\}$ -free, then C-H holds



• developed by Razborov (2010), closely related to graph limits

- developed by Razborov (2010), closely related to graph limits
- consider sequence of T-free oriented graphs G_1, G_2, \ldots

- developed by Razborov (2010), closely related to graph limits
- consider sequence of T-free oriented graphs G_1, G_2, \ldots
- $p_k(F) :=$ probability that random |F| vertices of G_k induces F

- developed by Razborov (2010), closely related to graph limits
- consider sequence of T-free oriented graphs G_1, G_2, \ldots
- $p_k(F) :=$ probability that random |F| vertices of G_k induces F
- always has a subsequence s.t. values $p_k(F)$ converge for all F

- developed by Razborov (2010), closely related to graph limits
- consider sequence of T-free oriented graphs G_1, G_2, \ldots
- $p_k(F) :=$ probability that random |F| vertices of G_k induces F
- always has a subsequence s.t. values $p_k(F)$ converge for all F
- sequence (G_k) is convergent if $p_k(F)$ converge for all F

- developed by Razborov (2010), closely related to graph limits
- consider sequence of T-free oriented graphs G_1, G_2, \ldots
- $p_k(F) :=$ probability that random |F| vertices of G_k induces F
- always has a subsequence s.t. values $p_k(F)$ converge for all F
- sequence (G_k) is convergent if $p_k(F)$ converge for all F
- limit object function q: finite T-free or.graphs $\mathcal{F}
 ightarrow [0,1]$

- developed by Razborov (2010), closely related to graph limits
- consider sequence of T-free oriented graphs G_1, G_2, \ldots
- $p_k(F) :=$ probability that random |F| vertices of G_k induces F
- always has a subsequence s.t. values $p_k(F)$ converge for all F
- sequence (G_k) is convergent if $p_k(F)$ converge for all F
- limit object function q: finite T-free or.graphs $\mathcal{F}
 ightarrow [0,1]$
- q yields homomorphism from linear combinations of ${\mathcal F}$ to ${\mathbb R}$

- developed by Razborov (2010), closely related to graph limits
- consider sequence of T-free oriented graphs G_1, G_2, \ldots
- $p_k(F) :=$ probability that random |F| vertices of G_k induces F
- always has a subsequence s.t. values $p_k(F)$ converge for all F
- sequence (G_k) is convergent if $p_k(F)$ converge for all F
- limit object function q: finite T-free or.graphs $\mathcal{F}
 ightarrow [0,1]$
- q yields homomorphism from linear combinations of ${\mathcal F}$ to ${\mathbb R}$
- the set of limit objects LIM = {homomorphism q : q(F) ≥ 0}

- developed by Razborov (2010), closely related to graph limits
- consider sequence of T-free oriented graphs G_1, G_2, \ldots
- $p_k(F) :=$ probability that random |F| vertices of G_k induces F
- always has a subsequence s.t. values $p_k(F)$ converge for all F
- sequence (G_k) is convergent if $p_k(F)$ converge for all F
- limit object function q: finite T-free or.graphs $\mathcal{F}
 ightarrow [0,1]$
- q yields homomorphism from linear combinations of ${\mathcal F}$ to ${\mathbb R}$
- the set of limit objects LIM = {homomorphism q : q(F) ≥ 0}
- semidefinite method: relaxing optimization problems on LIM

- developed by Razborov (2010), closely related to graph limits
- consider sequence of T-free oriented graphs G_1, G_2, \ldots
- $p_k(F) :=$ probability that random |F| vertices of G_k induces F
- always has a subsequence s.t. values $p_k(F)$ converge for all F
- sequence (G_k) is convergent if $p_k(F)$ converge for all F
- limit object function q: finite T-free or.graphs $\mathcal{F}
 ightarrow [0,1]$
- q yields homomorphism from linear combinations of ${\mathcal F}$ to ${\mathbb R}$
- the set of limit objects LIM = {homomorphism q : q(F) ≥ 0}
- semidefinite method: relaxing optimization problems on LIM
- we optimize on $\mathsf{LIM}^{\mathrm{EXT}} = \{q \in \mathsf{LIM} : q \text{ is extremal for C-H}\}$

• linear extension of *q*:

$$q(\alpha_1 \times \bigwedge + \alpha_2 \times \bigwedge) := \alpha_1 \cdot q(\bigwedge) + \alpha_2 \cdot q(\bigwedge)$$

• linear extension of *q*:

$$q(\alpha_1 \times \bigwedge + \alpha_2 \times \bigwedge) := \alpha_1 \cdot q(\bigwedge) + \alpha_2 \cdot q(\bigwedge)$$

• lifting up in q:

$$q(\mathbf{j}) = q\left(\frac{1}{3} \times \mathbf{i} + \frac{2}{3} \times \mathbf{i} + \frac{2}{3} \times \mathbf{i} + \frac{2}{3} \times \mathbf{i} + \mathbf{i} + \mathbf{i} \right)$$

• linear extension of q:

$$q(\alpha_1 \times \bigwedge + \alpha_2 \times \bigwedge) := \alpha_1 \cdot q(\bigwedge) + \alpha_2 \cdot q(\bigwedge)$$

• lifting up in q:

$$q(\mathbf{j}) = q\left(\frac{1}{3} \times \mathbf{/} + \frac{2}{3} \times \mathbf{/} + \frac{2}{3} \times \mathbf{/} + \frac{2}{3} \times \mathbf{/} + \mathbf{/}\right)$$

• product of graphs in q:

$$q(\mathbf{j}) \cdot q(\mathbf{\cdot}) = q\left(\frac{1}{3} \times \mathbf{/} + \frac{2}{3} \times \mathbf{/} + \frac{2}{3} \times \mathbf{/} + \frac{2}{3} \times \mathbf{/} + \mathbf{/}\right)$$

• linear extension of q:

$$q(\alpha_1 \times \bigwedge + \alpha_2 \times \bigwedge) := \alpha_1 \cdot q(\bigwedge) + \alpha_2 \cdot q(\bigwedge)$$

• lifting up in q:

$$q(\mathbf{j}) = q\left(\frac{1}{3} \times \mathbf{/} + \frac{2}{3} \times \mathbf{/} + \frac{2}{3} \times \mathbf{/} + \frac{2}{3} \times \mathbf{/} + \mathbf{/}\right)$$

• product of graphs in q:

$$q(\mathbf{j}) \cdot q(\mathbf{\cdot}) = q\left(\frac{1}{3} \times \mathbf{/} + \frac{2}{3} \times \mathbf{/} + \frac{2}{3} \times \mathbf{/} + \frac{2}{3} \times \mathbf{/} + \mathbf{/} \right)$$

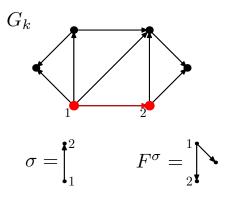
 \implies we define

$$\mathbf{i} \times \mathbf{\cdot} := \frac{1}{3} \times \mathbf{/} + \frac{2}{3} \times \mathbf{/} + \frac{2}{3} \times \mathbf{/} + \frac{2}{3} \times \mathbf{/} + \mathbf{/}$$

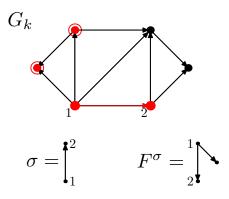
• let σ be a graph with $p_k(\sigma) > 0$ for all sufficiently large k's

- let σ be a graph with $p_k(\sigma) > 0$ for all sufficiently large k's
- for a fixed copy C of σ in G_k , consider probabilities $p_k^C(F^{\sigma})$ F^{σ} – a graph with fixed embedding of $\sigma \rightarrow$ function p_{μ}^C

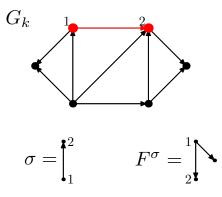
- let σ be a graph with $p_k(\sigma) > 0$ for all sufficiently large k's
- for a fixed copy C of σ in G_k , consider probabilities $p_k^C(F^{\sigma})$ F^{σ} – a graph with fixed embedding of $\sigma \rightarrow$ function p_k^C



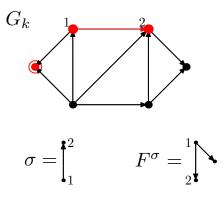
- let σ be a graph with $p_k(\sigma) > 0$ for all sufficiently large k's
- for a fixed copy C of σ in G_k , consider probabilities $p_k^C(F^{\sigma})$ F^{σ} – a graph with fixed embedding of $\sigma \rightarrow$ function p_k^C



- let σ be a graph with $p_k(\sigma) > 0$ for all sufficiently large k's
- for a fixed copy C of σ in G_k , consider probabilities $p_k^C(F^{\sigma})$ F^{σ} – a graph with fixed embedding of $\sigma \rightarrow$ function p_{ν}^C



- let σ be a graph with $p_k(\sigma) > 0$ for all sufficiently large k's
- for a fixed copy C of σ in G_k , consider probabilities $p_k^C(F^{\sigma})$ F^{σ} – a graph with fixed embedding of $\sigma \rightarrow$ function p_{ν}^C



- let σ be a graph with $p_k(\sigma) > 0$ for all sufficiently large k's
- for a fixed copy C of σ in G_k , consider probabilities $p_k^C(F^{\sigma})$ F^{σ} – a graph with fixed embedding of $\sigma \rightarrow$ function p_k^C
- a random copy **C** of σ in $G_k \rightarrow$ a random function \mathbf{p}_k^{σ}

- let σ be a graph with $p_k(\sigma) > 0$ for all sufficiently large k's
- for a fixed copy C of σ in G_k , consider probabilities $p_k^C(F^{\sigma})$ F^{σ} – a graph with fixed embedding of $\sigma \rightarrow$ function p_k^C
- a random copy **C** of σ in $G_k \rightarrow$ a random function \mathbf{p}_k^{σ}
- rand. functions \mathbf{p}_k^σ weakly converge to a random function \mathbf{q}^σ

- let σ be a graph with $p_k(\sigma) > 0$ for all sufficiently large k's
- for a fixed copy C of σ in G_k , consider probabilities $p_k^C(F^{\sigma})$ F^{σ} – a graph with fixed embedding of $\sigma \rightarrow$ function p_k^C
- a random copy **C** of σ in $G_k \rightarrow$ a random function \mathbf{p}_k^{σ}
- rand. functions \mathbf{p}_k^σ weakly converge to a random function \mathbf{q}^σ
- furthermore, ${\it q}$ uniquely determines ${\it q}^{\sigma}$ for every σ

- let σ be a graph with $p_k(\sigma) > 0$ for all sufficiently large k's
- for a fixed copy C of σ in G_k , consider probabilities $p_k^C(F^{\sigma})$ F^{σ} – a graph with fixed embedding of $\sigma \rightarrow$ function p_k^C
- a random copy **C** of σ in $G_k \rightarrow$ a random function \mathbf{p}_k^{σ}
- rand. functions \mathbf{p}_k^σ weakly converge to a random function \mathbf{q}^σ
- furthermore, q uniquely determines \mathbf{q}^{σ} for every σ
- Averaging argument:

$$q(\mathbf{j}) = 2 \cdot \mathbb{E}_1 \mathbf{q}^1(\mathbf{j}_1)$$

- let σ be a graph with $p_k(\sigma) > 0$ for all sufficiently large k's
- for a fixed copy C of σ in G_k , consider probabilities $p_k^C(F^{\sigma})$ F^{σ} – a graph with fixed embedding of $\sigma \rightarrow$ function p_k^C
- a random copy **C** of σ in $G_k \rightarrow$ a random function \mathbf{p}_k^{σ}
- rand. functions \mathbf{p}_k^σ weakly converge to a random function \mathbf{q}^σ
- furthermore, q uniquely determines \mathbf{q}^{σ} for every σ
- Averaging argument:

$$q(\mathbf{j}) = 2 \cdot \mathbb{E}_1 \mathbf{q}^1(\mathbf{j}_1)$$

 \Longrightarrow define

$$\left[\!\!\left[\overset{\bullet}{\mathbf{1}}_{1}\right]\!\!\right]_{1} := \frac{1}{2} \times \overset{\bullet}{\mathbf{1}}$$

- let σ be a graph with $p_k(\sigma) > 0$ for all sufficiently large k's
- for a fixed copy C of σ in G_k , consider probabilities $p_k^C(F^{\sigma})$ F^{σ} – a graph with fixed embedding of $\sigma \rightarrow$ function p_k^C
- a random copy **C** of σ in $G_k \rightarrow$ a random function \mathbf{p}_k^{σ}
- rand. functions \mathbf{p}_k^σ weakly converge to a random function \mathbf{q}^σ
- furthermore, q uniquely determines \mathbf{q}^{σ} for every σ
- Averaging argument:

$$q(\mathbf{j}) = 2 \cdot \mathbb{E}_1 \mathbf{q}^1(\mathbf{j}_1)$$

 \implies define

$$\left[\left[\stackrel{\bullet}{}_{_1} \right] \right]_1 := \frac{1}{2} \times \stackrel{\bullet}{}$$

• Cauchy-Schwarz inequality:

$$\left[\left(\sum \alpha_{F}F\right)^{2}\right]_{\sigma} \geq \left(\left[\left[\sum \alpha_{F}F\right]_{\sigma}\right)^{2} \geq 0\right]$$

$$q \Big(\left[\left(\left[\left(\begin{smallmatrix} \bullet \\ \bullet \\ 1 \end{smallmatrix} \right)^2 \right] _{\mathbf{l}} \right) \geq q \Big(\left[\left[\begin{smallmatrix} \bullet \\ \bullet \\ 1 \end{smallmatrix} \right] _{\mathbf{l}} \right)^2$$

$$q\left(\left[\left(\begin{smallmatrix} \mathbf{1}\\ \mathbf{1} \end{bmatrix}_{\mathbf{1}}^{2}\right]_{\mathbf{1}}\right) \ge q\left(\left[\begin{bmatrix} \mathbf{1}\\ \mathbf{1} \end{bmatrix}_{\mathbf{1}}^{2}\right]$$
$$q\left(\frac{1}{3}\bigvee\right) \ge q\left(\begin{bmatrix} \mathbf{1}\\ \mathbf{1} \end{bmatrix}_{\mathbf{1}}^{2}\right)$$

q

$$\begin{pmatrix} \left[\left(\left[\begin{array}{c} \\ 1 \end{array}\right]_{1}^{2} \right]_{1}^{2} \\ q \left(\frac{1}{3} \sqrt{2} \right) \geq q \left(\left[\begin{array}{c} \\ 1 \end{array}\right]_{1}^{2} \\ q \left(\frac{1}{3} \sqrt{2} \right) \geq q \left(\begin{array}{c} \\ 1 \end{array}\right)^{2} \\ q \left(\begin{array}{c} \\ 1 \end{array}\right) = q \left(\frac{1}{3} \cdot \frac{1}{2} + \frac{2}{3} \sqrt{2} + \sqrt{2} \right)$$

$$\begin{aligned} q\Big(\left[\left(\left[\begin{matrix} i \\ 1 \end{matrix}\right)^2\right]\right]_1\Big) &\geq q\Big(\left[\left[\begin{matrix} i \\ 1 \end{matrix}\right]\right]_1^2 \\ q\Big(\frac{1}{3}\checkmark^*\Big) &\geq q\Big(\left[\begin{matrix} i \\ 2 \end{matrix}\right]^2 \\ q\Big(\left[\begin{matrix} i \\ 3 \end{matrix}\right] &= q\Big(\frac{1}{3}\overset{\bullet \to \bullet}{\bullet} + \frac{2}{3}\checkmark^*\Big) \\ q\Big(\left[\begin{matrix} i \\ 2 \end{matrix}\right] &\geq q\Big(\frac{2}{3}\checkmark^*\Big) &\geq 2q\Big(\left[\begin{matrix} i \\ 2 \end{matrix}\right]^2 \end{aligned}$$

Use SDP for generating usefull Cauchy-Schwarz inequalities

Use SDP for generating usefull Cauchy-Schwarz inequalities Inductive arguments

• Suppose G is an extremal example for C-H with $\delta^+(G)=c$

- Suppose G is an extremal example for C-H with $\delta^+(G)=c$
- edge uv: $|N^+(v)| + |N^-(u) \cup N^-(v)| + (1-c)|N^+(u) \cap N^+(v)| \le n$

- Suppose G is an extremal example for C-H with $\delta^+(G)=c$
- edge $uv: |N^+(v)| + |N^-(u) \cup N^-(v)| + (1-c)|N^+(u) \cap N^+(v)| \le n$ (otherwise $G[N^+(u) \cap N^+(v)]$ has larger minimum δ^+ than G)

- Suppose G is an extremal example for C-H with $\delta^+(G)=c$
- edge $uv: |N^+(v)| + |N^-(u) \cup N^-(v)| + (1-c)|N^+(u) \cap N^+(v)| \le n$ (otherwise $G[N^+(u) \cap N^+(v)]$ has larger minimum δ^+ than G)
- can be written in flag algebras language as $f^{\sigma} \geq 0$ for $\sigma = uv$

- Suppose G is an extremal example for C-H with $\delta^+(G)=c$
- edge $uv: |N^+(v)| + |N^-(u) \cup N^-(v)| + (1-c)|N^+(u) \cap N^+(v)| \le n$ (otherwise $G[N^+(u) \cap N^+(v)]$ has larger minimum δ^+ than G)
- can be written in flag algebras language as $f^{\sigma} \geq 0$ for $\sigma = uv$
- for every σ -flag F^{σ} we have $\llbracket F^{\sigma} \times f^{\sigma} \rrbracket_{\sigma} \geq 0$

- Suppose G is an extremal example for C-H with $\delta^+(G)=c$
- edge $uv: |N^+(v)| + |N^-(u) \cup N^-(v)| + (1-c)|N^+(u) \cap N^+(v)| \le n$ (otherwise $G[N^+(u) \cap N^+(v)]$ has larger minimum δ^+ than G)
- can be written in flag algebras language as $f^{\sigma} \geq 0$ for $\sigma = uv$
- for every σ -flag F^{σ} we have $\llbracket F^{\sigma} \times f^{\sigma} \rrbracket_{\sigma} \geq 0$
- but also for every $\sum \alpha_F F^{\sigma}$ it holds $[[(\sum \alpha_F F^{\sigma})^2 \times f^{\sigma}]]_{\sigma} \ge 0$

Use SDP for generating usefull Cauchy-Schwarz inequalities Inductive arguments

- Suppose G is an extremal example for C-H with $\delta^+(G)=c$
- edge $uv: |N^+(v)| + |N^-(u) \cup N^-(v)| + (1-c)|N^+(u) \cap N^+(v)| \le n$ (otherwise $G[N^+(u) \cap N^+(v)]$ has larger minimum δ^+ than G)
- can be written in flag algebras language as $f^{\sigma} \geq 0$ for $\sigma = uv$
- for every σ -flag F^{σ} we have $\llbracket F^{\sigma} \times f^{\sigma} \rrbracket_{\sigma} \geq 0$
- but also for every $\sum \alpha_F F^{\sigma}$ it holds $[[(\sum \alpha_F F^{\sigma})^2 \times f^{\sigma}]]_{\sigma} \ge 0$

Theorem

Every n-vertex oriented graph with minimum out-degree at least 0.3386n contains an oriented triangle.

Use SDP for generating usefull Cauchy-Schwarz inequalities Inductive arguments

- Suppose G is an extremal example for C-H with $\delta^+(G)=c$
- edge $uv: |N^+(v)| + |N^-(u) \cup N^-(v)| + (1-c)|N^+(u) \cap N^+(v)| \le n$ (otherwise $G[N^+(u) \cap N^+(v)]$ has larger minimum δ^+ than G)
- can be written in flag algebras language as $f^{\sigma} \geq 0$ for $\sigma = uv$
- for every σ -flag F^{σ} we have $\llbracket F^{\sigma} \times f^{\sigma} \rrbracket_{\sigma} \geq 0$
- but also for every $\sum \alpha_F F^{\sigma}$ it holds $[[(\sum \alpha_F F^{\sigma})^2 \times f^{\sigma}]]_{\sigma} \ge 0$

Theorem

Every n-vertex oriented graph with minimum out-degree at least 0.3386n contains an oriented triangle.

Thank you for your attention!