Semidefinite method and Caccetta-Häggvist conjecture

Jan Volec
ETH Zürich

joint work with Jean-Sébastien Sereni and Rémi De Joannis De Verclos

Caccetta-Häggvist conjecture

Conjecture (Caccetta-Häggvist, 1978)

Every n-vertex digraph with minimum out-degree at least k contains an oriented cycle of length at most $\lceil n / k\rceil$.

Caccetta-Häggvist conjecture

Conjecture (Caccetta-Häggvist, 1978)

Every n-vertex digraph with minimum out-degree at least k contains an oriented cycle of length at most $\lceil n / k\rceil$.

Theorem (Shen, 2000)
C-H conjecture holds for $k \leq \sqrt{n / 2}$.

Caccetta-Häggvist conjecture

Conjecture (Caccetta-Häggvist, 1978)

Every n-vertex digraph with minimum out-degree at least k contains an oriented cycle of length at most $\lceil n / k\rceil$.

Theorem (Shen, 2000)
C-H conjecture holds for $k \leq \sqrt{n / 2}$.
Triangle case
Every n-vertex oriented graph with minimum out-degree at least $n / 3$ contains an oriented triangle.

Caccetta-Häggvist conjecture

Conjecture (Caccetta-Häggvist, 1978)

Every n-vertex digraph with minimum out-degree at least k contains an oriented cycle of length at most $\lceil n / k\rceil$.

Theorem (Shen, 2000)
C-H conjecture holds for $k \leq \sqrt{n / 2}$.

Triangle case

Every n-vertex oriented graph with minimum out-degree at least $n / 3$ contains an oriented triangle.

$3 k+1$ vertices, connect each vertex $i \rightarrow i+1, i+2, \ldots, i+k$

Caccetta-Häggvist conjecture

Conjecture (Caccetta-Häggvist, 1978)

Every n-vertex digraph with minimum out-degree at least k contains an oriented cycle of length at most $\lceil n / k\rceil$.

Theorem (Shen, 2000)
C-H conjecture holds for $k \leq \sqrt{n / 2}$.

Triangle case

Every n-vertex oriented graph with minimum out-degree at least $n / 3$ contains an oriented triangle.

$3 k+1$ vertices, connect each vertex $i \rightarrow i+1, i+2, \ldots, i+k$

Caccetta-Häggvist conjecture

Conjecture (Caccetta-Häggvist, 1978)

Every n-vertex digraph with minimum out-degree at least k contains an oriented cycle of length at most $\lceil n / k\rceil$.

Theorem (Shen, 2000)
C-H conjecture holds for $k \leq \sqrt{n / 2}$.
Triangle case
Every n-vertex oriented graph with minimum out-degree at least $n / 3$ contains an oriented triangle.

G and H extremal graphs $\longrightarrow G \times H$ lexicographic product

Caccetta-Häggvist conjecture

Conjecture (Caccetta-Häggvist, 1978)

Every n-vertex digraph with minimum out-degree at least k contains an oriented cycle of length at most $\lceil n / k\rceil$.

Theorem (Shen, 2000)
C-H conjecture holds for $k \leq \sqrt{n / 2}$.
Triangle case
Every n-vertex oriented graph with minimum out-degree at least $n / 3$ contains an oriented triangle.

G and H extremal graphs $\longrightarrow G \times H$ lexicographic product

Caccetta-Häggvist conjecture

Conjecture (Caccetta-Häggvist, 1978)

Every n-vertex digraph with minimum out-degree at least k contains an oriented cycle of length at most $\lceil n / k\rceil$.

Theorem (Shen, 2000)
C-H conjecture holds for $k \leq \sqrt{n / 2}$.
Triangle case
Every n-vertex oriented graph with minimum out-degree at least $n / 3$ contains an oriented triangle.

G and H extremal graphs $\longrightarrow G \times H$ lexicographic product

Triangle case

Every n-vertex oriented graph with minimum out-degree at least $n / 3$ contains an oriented triangle.

Triangle case

Every n-vertex oriented graph with minimum out-degree at least $c \cdot n$ contains an oriented triangle.

Triangle case

Every n-vertex oriented graph with minimum out-degree at least $c \cdot n$ contains an oriented triangle.

- Caccetta-Häggkvist (1978): $c<(3-\sqrt{5}) / 2 \approx 0.3819$

Triangle case

Every n-vertex oriented graph with minimum out-degree at least $c \cdot n$ contains an oriented triangle.

- Caccetta-Häggkvist (1978): $c<(3-\sqrt{5}) / 2 \approx 0.3819$
- Bondy (1997): $c<(2 \sqrt{6}-3) / 5 \approx 0.3797$

Triangle case

Every n-vertex oriented graph with minimum out-degree at least $c \cdot n$ contains an oriented triangle.

- Caccetta-Häggkvist (1978): $c<(3-\sqrt{5}) / 2 \approx 0.3819$
- Bondy (1997): $c<(2 \sqrt{6}-3) / 5 \approx 0.3797$
- Shen (1998): $c<3-\sqrt{7} \approx 0.3542$
- Hamburger, Haxell, Kostochka (2007): c <0.3531

Triangle case

Every n-vertex oriented graph with minimum out-degree at least $c \cdot n$ contains an oriented triangle.

- Caccetta-Häggkvist (1978): $c<(3-\sqrt{5}) / 2 \approx 0.3819$
- Bondy (1997): $c<(2 \sqrt{6}-3) / 5 \approx 0.3797$
- Shen (1998): $c<3-\sqrt{7} \approx 0.3542$
- Hamburger, Haxell, Kostochka (2007): c <0.3531
- Hladký, Král', Norin (2009): c < 0.3465
- Razborov (2011): if D is $\left\{F_{1}, F_{2}, F_{3}\right\}$-free, then C-H holds

Flag Algebras and Semidefinite Method

- developed by Razborov (2010), closely related to graph limits

Flag Algebras and Semidefinite Method

- developed by Razborov (2010), closely related to graph limits
- consider sequence of T-free oriented graphs G_{1}, G_{2}, \ldots

Flag Algebras and Semidefinite Method

- developed by Razborov (2010), closely related to graph limits
- consider sequence of T-free oriented graphs G_{1}, G_{2}, \ldots
- $p_{k}(F):=$ probability that random $|F|$ vertices of G_{k} induces F

Flag Algebras and Semidefinite Method

- developed by Razborov (2010), closely related to graph limits
- consider sequence of T-free oriented graphs G_{1}, G_{2}, \ldots
- $p_{k}(F):=$ probability that random $|F|$ vertices of G_{k} induces F
- always has a subsequence s.t. values $p_{k}(F)$ converge for all F

Flag Algebras and Semidefinite Method

- developed by Razborov (2010), closely related to graph limits
- consider sequence of T-free oriented graphs G_{1}, G_{2}, \ldots
- $p_{k}(F):=$ probability that random $|F|$ vertices of G_{k} induces F
- always has a subsequence s.t. values $p_{k}(F)$ converge for all F
- sequence $\left(G_{k}\right)$ is convergent if $p_{k}(F)$ converge for all F

Flag Algebras and Semidefinite Method

- developed by Razborov (2010), closely related to graph limits
- consider sequence of T-free oriented graphs G_{1}, G_{2}, \ldots
- $p_{k}(F):=$ probability that random $|F|$ vertices of G_{k} induces F
- always has a subsequence s.t. values $p_{k}(F)$ converge for all F
- sequence $\left(G_{k}\right)$ is convergent if $p_{k}(F)$ converge for all F
- limit object - function q : finite T-free or.graphs $\mathcal{F} \rightarrow[0,1]$

Flag Algebras and Semidefinite Method

- developed by Razborov (2010), closely related to graph limits
- consider sequence of T-free oriented graphs G_{1}, G_{2}, \ldots
- $p_{k}(F):=$ probability that random $|F|$ vertices of G_{k} induces F
- always has a subsequence s.t. values $p_{k}(F)$ converge for all F
- sequence $\left(G_{k}\right)$ is convergent if $p_{k}(F)$ converge for all F
- limit object - function q : finite T-free or.graphs $\mathcal{F} \rightarrow[0,1]$
- q yields homomorphism from linear combinations of \mathcal{F} to \mathbb{R}

Flag Algebras and Semidefinite Method

- developed by Razborov (2010), closely related to graph limits
- consider sequence of T-free oriented graphs G_{1}, G_{2}, \ldots
- $p_{k}(F):=$ probability that random $|F|$ vertices of G_{k} induces F
- always has a subsequence s.t. values $p_{k}(F)$ converge for all F
- sequence $\left(G_{k}\right)$ is convergent if $p_{k}(F)$ converge for all F
- limit object - function q : finite T-free or.graphs $\mathcal{F} \rightarrow[0,1]$
- q yields homomorphism from linear combinations of \mathcal{F} to \mathbb{R}
- the set of limit objects LIM $=\{$ homomorphism $q: q(F) \geq 0\}$

Flag Algebras and Semidefinite Method

- developed by Razborov (2010), closely related to graph limits
- consider sequence of T-free oriented graphs G_{1}, G_{2}, \ldots
- $p_{k}(F):=$ probability that random $|F|$ vertices of G_{k} induces F
- always has a subsequence s.t. values $p_{k}(F)$ converge for all F
- sequence $\left(G_{k}\right)$ is convergent if $p_{k}(F)$ converge for all F
- limit object - function q : finite T-free or.graphs $\mathcal{F} \rightarrow[0,1]$
- q yields homomorphism from linear combinations of \mathcal{F} to \mathbb{R}
- the set of limit objects LIM $=\{$ homomorphism $q: q(F) \geq 0\}$
- semidefinite method: relaxing optimization problems on LIM

Flag Algebras and Semidefinite Method

- developed by Razborov (2010), closely related to graph limits
- consider sequence of T-free oriented graphs G_{1}, G_{2}, \ldots
- $p_{k}(F):=$ probability that random $|F|$ vertices of G_{k} induces F
- always has a subsequence s.t. values $p_{k}(F)$ converge for all F
- sequence $\left(G_{k}\right)$ is convergent if $p_{k}(F)$ converge for all F
- limit object - function q : finite T-free or.graphs $\mathcal{F} \rightarrow[0,1]$
- q yields homomorphism from linear combinations of \mathcal{F} to \mathbb{R}
- the set of limit objects LIM $=\{$ homomorphism $q: q(F) \geq 0\}$
- semidefinite method: relaxing optimization problems on LIM
- we optimize on $\operatorname{LIM}^{\mathrm{EXT}}=\{q \in \mathrm{LIM}: q$ is extremal for $\mathrm{C}-\mathrm{H}\}$

Flag Algebras - basic properties of q

- linear extension of q :

$$
q\left(\alpha_{1} \times \Lambda+\alpha_{2} \times \triangle\right):=\alpha_{1} \cdot q(\bigwedge)+\alpha_{2} \cdot q(\triangle)
$$

Flag Algebras - basic properties of q

- linear extension of q :

$$
q\left(\alpha_{1} \times \Lambda+\alpha_{2} \times \triangle\right):=\alpha_{1} \cdot q(\bigwedge)+\alpha_{2} \cdot q(\triangle)
$$

- lifting up in q :

$$
q(\mathrm{i})=q\left(\frac{1}{3} \times / .+\frac{2}{3} \times \Lambda+\frac{2}{3} \times \Lambda+\frac{2}{3} \times \Lambda+\Lambda\right)
$$

Flag Algebras - basic properties of q

- linear extension of q :

$$
q\left(\alpha_{1} \times \Lambda+\alpha_{2} \times \triangle\right):=\alpha_{1} \cdot q(\bigwedge)+\alpha_{2} \cdot q(\bigwedge)
$$

- lifting up in q :

$$
q(\mathrm{i})=q\left(\frac{1}{3} \times / .+\frac{2}{3} \times \Lambda+\frac{2}{3} \times \Lambda+\frac{2}{3} \times \Lambda+\Lambda\right)
$$

- product of graphs in q :

$$
q(\mathfrak{i}) \cdot q(\cdot)=q\left(\frac{1}{3} \times / .+\frac{2}{3} \times \Lambda+\frac{2}{3} \times \Lambda+\frac{2}{3} \times \Lambda+\Lambda\right)
$$

Flag Algebras - basic properties of q

- linear extension of q :

$$
q\left(\alpha_{1} \times \Lambda+\alpha_{2} \times \triangle\right):=\alpha_{1} \cdot q(\bigwedge)+\alpha_{2} \cdot q(\bigwedge)
$$

- lifting up in q :

$$
q(\mathrm{i})=q\left(\frac{1}{3} \times / .+\frac{2}{3} \times \Lambda+\frac{2}{3} \times \Lambda+\frac{2}{3} \times \Lambda+\Lambda\right)
$$

- product of graphs in q :

$$
q(\mathrm{i}) \cdot q(\cdot)=q\left(\frac{1}{3} \times / .+\frac{2}{3} \times \Lambda+\frac{2}{3} \times \Lambda+\frac{2}{3} \times \Lambda+\Lambda\right)
$$

\Longrightarrow we define

$$
\mathfrak{i} \times \cdot:=\frac{1}{3} \times / .+\frac{2}{3} \times \Lambda+\frac{2}{3} \times \Lambda+\frac{2}{3} \times \Lambda+\Lambda
$$

Flag Algebras - rooted homomorphisms

- let σ be a graph with $p_{k}(\sigma)>0$ for all sufficiently large k 's

Flag Algebras - rooted homomorphisms

- let σ be a graph with $p_{k}(\sigma)>0$ for all sufficiently large k 's
- for a fixed copy C of σ in G_{k}, consider probabilities $p_{k}^{C}\left(F^{\sigma}\right)$ F^{σ} - a graph with fixed embedding of $\sigma \rightarrow$ function p_{k}^{C}

Flag Algebras - rooted homomorphisms

- let σ be a graph with $p_{k}(\sigma)>0$ for all sufficiently large k 's
- for a fixed copy C of σ in G_{k}, consider probabilities $p_{k}^{C}\left(F^{\sigma}\right)$ F^{σ} - a graph with fixed embedding of $\sigma \rightarrow$ function p_{k}^{C}

$$
\sigma=\left.\right|_{1} ^{2} \quad F^{\sigma}={ }_{2}^{1}
$$

Flag Algebras - rooted homomorphisms

- let σ be a graph with $p_{k}(\sigma)>0$ for all sufficiently large k 's
- for a fixed copy C of σ in G_{k}, consider probabilities $p_{k}^{C}\left(F^{\sigma}\right)$ F^{σ} - a graph with fixed embedding of $\sigma \rightarrow$ function p_{k}^{C}

$$
\sigma=\left.\right|_{1} ^{2} \quad F^{\sigma}={ }_{2}^{1}
$$

Flag Algebras - rooted homomorphisms

- let σ be a graph with $p_{k}(\sigma)>0$ for all sufficiently large k 's
- for a fixed copy C of σ in G_{k}, consider probabilities $p_{k}^{C}\left(F^{\sigma}\right)$ F^{σ} - a graph with fixed embedding of $\sigma \rightarrow$ function p_{k}^{C}

$$
\sigma=\left.\right|_{1} ^{2} \quad F^{\sigma}={ }_{2}^{1}
$$

Flag Algebras - rooted homomorphisms

- let σ be a graph with $p_{k}(\sigma)>0$ for all sufficiently large k 's
- for a fixed copy C of σ in G_{k}, consider probabilities $p_{k}^{C}\left(F^{\sigma}\right)$ F^{σ} - a graph with fixed embedding of $\sigma \rightarrow$ function p_{k}^{C}

$$
\sigma=\left.\right|_{1} ^{2} \quad F^{\sigma}={ }_{2}^{1}
$$

Flag Algebras - rooted homomorphisms

- let σ be a graph with $p_{k}(\sigma)>0$ for all sufficiently large k 's
- for a fixed copy C of σ in G_{k}, consider probabilities $p_{k}^{C}\left(F^{\sigma}\right)$ F^{σ} - a graph with fixed embedding of $\sigma \rightarrow$ function p_{k}^{C}
- a random copy \mathbf{C} of σ in $G_{k} \rightarrow$ a random function \mathbf{p}_{k}^{σ}

Flag Algebras - rooted homomorphisms

- let σ be a graph with $p_{k}(\sigma)>0$ for all sufficiently large k 's
- for a fixed copy C of σ in G_{k}, consider probabilities $p_{k}^{C}\left(F^{\sigma}\right)$ F^{σ} - a graph with fixed embedding of $\sigma \rightarrow$ function p_{k}^{C}
- a random copy \mathbf{C} of σ in $G_{k} \rightarrow$ a random function \mathbf{p}_{k}^{σ}
- rand. functions \mathbf{p}_{k}^{σ} weakly converge to a random function \mathbf{q}^{σ}

Flag Algebras - rooted homomorphisms

- let σ be a graph with $p_{k}(\sigma)>0$ for all sufficiently large k 's
- for a fixed copy C of σ in G_{k}, consider probabilities $p_{k}^{C}\left(F^{\sigma}\right)$ F^{σ} - a graph with fixed embedding of $\sigma \rightarrow$ function p_{k}^{C}
- a random copy \mathbf{C} of σ in $G_{k} \rightarrow$ a random function \mathbf{p}_{k}^{σ}
- rand. functions \mathbf{p}_{k}^{σ} weakly converge to a random function \mathbf{q}^{σ}
- furthermore, q uniquely determines \mathbf{q}^{σ} for every σ

Flag Algebras - rooted homomorphisms

- let σ be a graph with $p_{k}(\sigma)>0$ for all sufficiently large k 's
- for a fixed copy C of σ in G_{k}, consider probabilities $p_{k}^{C}\left(F^{\sigma}\right)$ F^{σ} - a graph with fixed embedding of $\sigma \rightarrow$ function p_{k}^{C}
- a random copy \mathbf{C} of σ in $G_{k} \rightarrow$ a random function \mathbf{p}_{k}^{σ}
- rand. functions \mathbf{p}_{k}^{σ} weakly converge to a random function \mathbf{q}^{σ}
- furthermore, q uniquely determines \mathbf{q}^{σ} for every σ
- Averaging argument:

$$
q(\dot{\mathfrak{l}})=2 \cdot \mathbb{E}_{1} \mathbf{q}^{1}\left(\dot{\AA}_{1}\right)
$$

Flag Algebras - rooted homomorphisms

- let σ be a graph with $p_{k}(\sigma)>0$ for all sufficiently large k 's
- for a fixed copy C of σ in G_{k}, consider probabilities $p_{k}^{C}\left(F^{\sigma}\right)$ F^{σ} - a graph with fixed embedding of $\sigma \rightarrow$ function p_{k}^{C}
- a random copy \mathbf{C} of σ in $G_{k} \rightarrow$ a random function \mathbf{p}_{k}^{σ}
- rand. functions \mathbf{p}_{k}^{σ} weakly converge to a random function \mathbf{q}^{σ}
- furthermore, q uniquely determines \mathbf{q}^{σ} for every σ
- Averaging argument:

$$
q(\mathfrak{i})=2 \cdot \mathbb{E}_{1} \mathbf{q}^{1}\left(\dot{\mathfrak{t}_{1}}\right)
$$

\Longrightarrow define

$$
\llbracket \grave{\AA}_{1} \rrbracket_{1}:=\frac{1}{2} \times!
$$

Flag Algebras - rooted homomorphisms

- let σ be a graph with $p_{k}(\sigma)>0$ for all sufficiently large k 's
- for a fixed copy C of σ in G_{k}, consider probabilities $p_{k}^{C}\left(F^{\sigma}\right)$ F^{σ} - a graph with fixed embedding of $\sigma \rightarrow$ function p_{k}^{C}
- a random copy \mathbf{C} of σ in $G_{k} \rightarrow$ a random function \mathbf{p}_{k}^{σ}
- rand. functions \mathbf{p}_{k}^{σ} weakly converge to a random function \mathbf{q}^{σ}
- furthermore, q uniquely determines \mathbf{q}^{σ} for every σ
- Averaging argument:

$$
q(\dot{\mathfrak{l}})=2 \cdot \mathbb{E}_{1} \mathbf{q}^{1}\left(\dot{\emptyset_{1}}\right)
$$

\Longrightarrow define

$$
\llbracket \mathfrak{i}_{1} \rrbracket_{1}:=\frac{1}{2} \times!
$$

- Cauchy-Schwarz inequality:

$$
\llbracket\left(\sum \alpha_{F} F\right)^{2} \rrbracket_{\sigma} \geq\left(\llbracket \sum \alpha_{F} F \rrbracket_{\sigma}\right)^{2} \geq 0
$$

Flag Algebras - Mantel's Theorem
If $\left(G_{n}\right)$ conv. sequence of triangle-free graphs, then $q(\mathbb{\Pi}) \leq \frac{1}{2}$.

Flag Algebras - Mantel's Theorem
If $\left(G_{n}\right)$ conv. sequence of triangle-free graphs, then $q(\mathbb{\rrbracket}) \leq \frac{1}{2}$.

Flag Algebras - Mantel's Theorem

If $\left(G_{n}\right)$ conv. sequence of triangle-free graphs, then $q(\mathbb{\S}) \leq \frac{1}{2}$.

$$
\begin{gathered}
q\left(\left\|\left(\|_{1}\right)^{2}\right\|_{1} \geq q\left(\| \|_{1} \|_{1}\right)^{2}\right. \\
q\left(\frac{1}{3} \sqrt{0}\right) \geq q(\cdot)^{2}
\end{gathered}
$$

Flag Algebras - Mantel's Theorem

If $\left(G_{n}\right)$ conv. sequence of triangle-free graphs, then $q(\mathbb{\S}) \leq \frac{1}{2}$.

$$
\begin{aligned}
& q\left(\|\left(\varrho_{1}\right)^{2} \rrbracket_{1}\right) \geq q\left(\left\|\square_{1}\right\|_{1}\right)^{2} \\
& q\left(\frac{1}{3} \bigvee\right) \geq q(!)^{2} \\
& q(\mathrm{I})=q\left(\frac{1}{3} \cdot+\frac{2}{3} V+\nabla\right)
\end{aligned}
$$

Flag Algebras - Mantel's Theorem

If $\left(G_{n}\right)$ conv. sequence of triangle-free graphs, then $q(\mathbb{\S}) \leq \frac{1}{2}$.

$$
\begin{aligned}
q\left(\llbracket\left(\emptyset_{1}\right)^{2} \rrbracket_{1}\right) & \geq q\left(\llbracket \emptyset_{1} \|_{1}\right)^{2} \\
q\left(\frac{1}{3} \downarrow\right) & \geq q(\bullet)^{2} \\
q(\cdot) & =q\left(\frac{1^{\bullet} \cdot}{3} \cdot \frac{2}{3} \emptyset\right)
\end{aligned}
$$

Flag Algebras - Mantel's Theorem

If $\left(G_{n}\right)$ conv. sequence of triangle-free graphs, then $q(\mathbb{\S}) \leq \frac{1}{2}$.

$$
\begin{aligned}
& q\left(\left|(1,)^{2}\right|\right) \geq a\left(\mid[\mid=1,)^{1}\right.
\end{aligned}
$$

$$
\begin{aligned}
& q(\mathrm{I})=\left(\mathrm{q}\left(\frac{2}{3} \cdot+\frac{2}{2} \mathrm{~V}\right)\right. \\
& q(:) \geq 0\left(\frac{2}{\mathrm{~V}} \mathrm{~V}\right) \geq 20\left(\mathrm{I}^{2}\right)
\end{aligned}
$$

Flag Algebras - Mantel's Theorem

If $\left(G_{n}\right)$ conv. sequence of triangle-free graphs, then $q(\mathbb{\S}) \leq \frac{1}{2}$.

$$
\begin{aligned}
& q\left(\left\|\left(\bullet_{1}\right)^{2}\right\|_{1}\right) \geq q\left(\left\|\bullet_{1}\right\|_{1}\right)^{2} \\
& q\left(\frac{1}{3} \sqrt{\circ}\right) \geq q(\cdot)^{2} \\
& q(\bullet)=q\left(\frac{1^{\bullet}}{3} \bullet+\frac{2}{3} \downarrow\right) \\
& q(\cdot) \geq q\left(\frac{2}{3} \vee\right) \geq 2 q(!)^{2} \\
& \frac{1}{2} \geq q(!)
\end{aligned}
$$

Obtaining the bound

Use SDP for generating usefull Cauchy-Schwarz inequalities

Obtaining the bound

Use SDP for generating usefull Cauchy-Schwarz inequalities Inductive arguments

- Suppose G is an extremal example for C-H with $\delta^{+}(G)=c$

Obtaining the bound

Use SDP for generating usefull Cauchy-Schwarz inequalities Inductive arguments

- Suppose G is an extremal example for C-H with $\delta^{+}(G)=c$
- edge $u v:\left|N^{+}(v)\right|+\left|N^{-}(u) \cup N^{-}(v)\right|+(1-c)\left|N^{+}(u) \cap N^{+}(v)\right| \leq n$

Obtaining the bound

Use SDP for generating usefull Cauchy-Schwarz inequalities Inductive arguments

- Suppose G is an extremal example for C-H with $\delta^{+}(G)=c$
- edge $u v:\left|N^{+}(v)\right|+\left|N^{-}(u) \cup N^{-}(v)\right|+(1-c)\left|N^{+}(u) \cap N^{+}(v)\right| \leq n$ (otherwise $G\left[N^{+}(u) \cap N^{+}(v)\right]$ has larger minimum δ^{+}than G)

Obtaining the bound

Use SDP for generating usefull Cauchy-Schwarz inequalities Inductive arguments

- Suppose G is an extremal example for C-H with $\delta^{+}(G)=c$
- edge $u v:\left|N^{+}(v)\right|+\left|N^{-}(u) \cup N^{-}(v)\right|+(1-c)\left|N^{+}(u) \cap N^{+}(v)\right| \leq n$ (otherwise $G\left[N^{+}(u) \cap N^{+}(v)\right]$ has larger minimum δ^{+}than G)
- can be written in flag algebras language as $f^{\sigma} \geq 0$ for $\sigma=u v$

Obtaining the bound

Use SDP for generating usefull Cauchy-Schwarz inequalities Inductive arguments

- Suppose G is an extremal example for C-H with $\delta^{+}(G)=c$
- edge $u v:\left|N^{+}(v)\right|+\left|N^{-}(u) \cup N^{-}(v)\right|+(1-c)\left|N^{+}(u) \cap N^{+}(v)\right| \leq n$ (otherwise $G\left[N^{+}(u) \cap N^{+}(v)\right]$ has larger minimum δ^{+}than G)
- can be written in flag algebras language as $f^{\sigma} \geq 0$ for $\sigma=u v$
- for every σ-flag F^{σ} we have $\llbracket F^{\sigma} \times f^{\sigma} \rrbracket_{\sigma} \geq 0$

Obtaining the bound

Use SDP for generating usefull Cauchy-Schwarz inequalities Inductive arguments

- Suppose G is an extremal example for C-H with $\delta^{+}(G)=c$
- edge $u v:\left|N^{+}(v)\right|+\left|N^{-}(u) \cup N^{-}(v)\right|+(1-c)\left|N^{+}(u) \cap N^{+}(v)\right| \leq n$ (otherwise $G\left[N^{+}(u) \cap N^{+}(v)\right]$ has larger minimum δ^{+}than G)
- can be written in flag algebras language as $f^{\sigma} \geq 0$ for $\sigma=u v$
- for every σ-flag F^{σ} we have $\llbracket F^{\sigma} \times f^{\sigma} \rrbracket_{\sigma} \geq 0$
- but also for every $\sum \alpha_{F} F^{\sigma}$ it holds $\llbracket\left(\sum \alpha_{F} F^{\sigma}\right)^{2} \times f^{\sigma} \rrbracket_{\sigma} \geq 0$

Obtaining the bound

Use SDP for generating usefull Cauchy-Schwarz inequalities

 Inductive arguments- Suppose G is an extremal example for C-H with $\delta^{+}(G)=c$
- edge $u v:\left|N^{+}(v)\right|+\left|N^{-}(u) \cup N^{-}(v)\right|+(1-c)\left|N^{+}(u) \cap N^{+}(v)\right| \leq n$ (otherwise $G\left[N^{+}(u) \cap N^{+}(v)\right]$ has larger minimum δ^{+}than G)
- can be written in flag algebras language as $f^{\sigma} \geq 0$ for $\sigma=u v$
- for every σ-flag F^{σ} we have $\llbracket F^{\sigma} \times f^{\sigma} \rrbracket_{\sigma} \geq 0$
- but also for every $\sum \alpha_{F} F^{\sigma}$ it holds $\llbracket\left(\sum \alpha_{F} F^{\sigma}\right)^{2} \times f^{\sigma} \rrbracket_{\sigma} \geq 0$

Theorem

Every n-vertex oriented graph with minimum out-degree at least $0.3386 n$ contains an oriented triangle.

Obtaining the bound

Use SDP for generating usefull Cauchy-Schwarz inequalities

 Inductive arguments- Suppose G is an extremal example for C-H with $\delta^{+}(G)=c$
- edge $u v:\left|N^{+}(v)\right|+\left|N^{-}(u) \cup N^{-}(v)\right|+(1-c)\left|N^{+}(u) \cap N^{+}(v)\right| \leq n$ (otherwise $G\left[N^{+}(u) \cap N^{+}(v)\right]$ has larger minimum δ^{+}than G)
- can be written in flag algebras language as $f^{\sigma} \geq 0$ for $\sigma=u v$
- for every σ-flag F^{σ} we have $\llbracket F^{\sigma} \times f^{\sigma} \rrbracket_{\sigma} \geq 0$
- but also for every $\sum \alpha_{F} F^{\sigma}$ it holds $\llbracket\left(\sum \alpha_{F} F^{\sigma}\right)^{2} \times f^{\sigma} \rrbracket_{\sigma} \geq 0$

Theorem

Every n-vertex oriented graph with minimum out-degree at least $0.3386 n$ contains an oriented triangle.

Thank you for your attention!

