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Caccetta-Häggvist conjecture

Conjecture (Caccetta-Häggvist, 1978)

Every n-vertex digraph with minimum out-degree at least k
contains an oriented cycle of length at most dn/ke.

Theorem (Shen, 2000)

C-H conjecture holds for k ≤
√
n/2.

Triangle case

Every n-vertex oriented graph with minimum out-degree at least
n/3 contains an oriented triangle.
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Caccetta-Häggvist conjecture

Conjecture (Caccetta-Häggvist, 1978)

Every n-vertex digraph with minimum out-degree at least k
contains an oriented cycle of length at most dn/ke.

Theorem (Shen, 2000)

C-H conjecture holds for k ≤
√

n/2.

Triangle case

Every n-vertex oriented graph with minimum out-degree at least
n/3 contains an oriented triangle.
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Triangle case

Every n-vertex oriented graph with minimum out-degree at least
n/3 contains an oriented triangle.

• Caccetta-Häggkvist (1978): c < (3−
√

5)/2 ≈ 0.3819

• Bondy (1997): c < (2
√

6− 3)/5 ≈ 0.3797

• Shen (1998): c < 3−
√

7 ≈ 0.3542

• Hamburger, Haxell, Kostochka (2007): c < 0.3531

• Hladký, Král’, Norin (2009): c < 0.3465

• Razborov (2011): if D is {F1,F2,F3}-free, then C-H holds

F1 F2 F3
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• Caccetta-Häggkvist (1978): c < (3−
√

5)/2 ≈ 0.3819

• Bondy (1997): c < (2
√

6− 3)/5 ≈ 0.3797

• Shen (1998): c < 3−
√

7 ≈ 0.3542

• Hamburger, Haxell, Kostochka (2007): c < 0.3531
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• Caccetta-Häggkvist (1978): c < (3−
√

5)/2 ≈ 0.3819

• Bondy (1997): c < (2
√

6− 3)/5 ≈ 0.3797

• Shen (1998): c < 3−
√

7 ≈ 0.3542

• Hamburger, Haxell, Kostochka (2007): c < 0.3531
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Flag Algebras and Semidefinite Method

• developed by Razborov (2010), closely related to graph limits

• consider sequence of T -free oriented graphs G1,G2, . . .

• pk(F ) := probability that random |F | vertices of Gk induces F

• always has a subsequence s.t. values pk(F ) converge for all F

• sequence (Gk) is convergent if pk(F ) converge for all F

• limit object – function q: finite T -free or.graphs F → [0, 1]

• q yields homomorphism from linear combinations of F to R
• the set of limit objects LIM = {homomorphism q : q(F ) ≥ 0}
• semidefinite method: relaxing optimization problems on LIM

• we optimize on LIMEXT = {q ∈ LIM : q is extremal for C-H}
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Flag Algebras – basic properties of q

• linear extension of q:
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Flag Algebras – Mantel’s Theorem
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Obtaining the bound

Use SDP for generating usefull Cauchy-Schwarz inequalities

Inductive arguments

• Suppose G is an extremal example for C-H with δ+(G ) = c

• edge uv : |N+(v)|+ |N−(u)∪N−(v)|+ (1− c)|N+(u)∩N+(v)| ≤ n

(otherwise G [N+(u)∩N+(v)] has larger minimum δ+ than G )

• can be written in flag algebras language as f σ ≥ 0 for σ = uv

• for every σ-flag F σ we have
q
F σ × f σ

y
σ
≥ 0

• but also for every
∑
αFF

σ it holds
q

(
∑
αFF

σ)2 × f σ
y
σ
≥ 0

Theorem
Every n-vertex oriented graph with minimum out-degree at least
0.3386n contains an oriented triangle.
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Thank you for your attention!


