# Vertex colourings of signed graphs 

André Raspaud<br>LaBRI-CNRS, University of Bordeaux, Bordeaux, France

We study vertex-colourings of signed graphs as they were introduced by Zaslavsky in [1]. Let $G$ be a signed graph, that is, a graph in which each edge is labelled with +1 or -1 . A proper vertex-colouring of $G$ is a mapping $\phi: V(G) \rightarrow \mathbb{Z}$ such that for each edge $e=u v$ of $G$ the colour $\phi(u)$ is distinct from the colour $\sigma(e) \phi(v)$, where $\sigma(e)$ is the sign of $e$. In other words, the colours of vertices joined by a positive edge must not coincide while those joined by a negative edge must not be opposite to each other.

We define, for each $n \geq 1$, a subset $M_{n} \subseteq \mathbb{Z}$ by setting

$$
M_{n}=\{ \pm 1, \pm 2, \ldots, \pm k\}
$$

if $n=2 k$, and

$$
M_{n}=\{0, \pm 1, \pm 2, \ldots, \pm k\}
$$

if $n=2 k+1$.
A proper colouring of $G$ that uses colours from $M_{n}$ will be called an $n$ colouring. The smallest $n$ such that $G$ admits an $n$-colouring will be called the signed chromatic number of $G$ and will be denoted by $\chi_{ \pm}(G)$.

We provide bounds for signed chromatic number in terms of the chromatic number of the underlying unsigned graph.

Theorem 1 (E.Máčajová, A.R., M.Škoviera, 2014). For every signed graph $G, \chi_{ \pm}(G) \leq 2 \chi(G)-1$. Moreover, the bound is sharp.

We will also give some hints concerning a Brooks-type theorem for such colourings.

Theorem 2 (E.Máčajová, A.R., M.Škoviera, 2014). Let $G$ be a simple connected signed graph different from a balanced complete graph, a balanced circuit of odd length, and an unbalanced circuit of even length. Then

$$
\chi_{ \pm}(G) \leq \Delta(G) .
$$

## References

[1] T. Zaslavsky, Signed graph coloring, Discrete Math. 1982 pp.215-228

