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Map = graph + rotation system around each vertex.

=

topological faces = borders on the graph

Euler’s formula gives the
genus combinatorially:

v + f = e + 2− 2g

Maps are combinatorial objects:

Rooted map = a corner
is distinguished
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(maps are considered up to oriented homeomorphisms)

=
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Counting

Aim: count one-face maps of fixed genus.

The number of one-face maps with n edges is equal to the number

of distinct matchings of the edges : (2n− 1)!! =
(2n)!
2nn!

.

For instance, in the planar case...

One-face maps are exactly
plane trees.

Therefore the number of
n-edge one-face maps of
genus 0 is :

ε0(n) = Cat(n) =
1

n + 1

(
2n

n

)



Higher genus surfaces ?

For each g the number of n-edge one-face maps of genus g has
the (beautiful) form : εg(n) = (some polynomial)× Cat(n)

ε1(n) = (n+1)n(n−1)
12 Cat(n)

ε2(n) = (n+1)n(n−1)(n−2)(n−3)(5n−2)
1440 Cat(n)

For instance :

References : Lehman and Walsh 72 (formal power series), Harer
and Zagier 86 (matrix integrals).
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Higher genus surfaces ?

For each g the number of n-edge one-face maps of genus g has
the (beautiful) form : εg(n) = (some polynomial)× Cat(n)

ε1(n) = (n+1)n(n−1)
12 Cat(n)

ε2(n) = (n+1)n(n−1)(n−2)(n−3)(5n−2)
1440 Cat(n)

For instance :

References : Lehman and Walsh 72 (formal power series), Harer
and Zagier 86 (matrix integrals).

No combinatorial interpretation !

For years people have tried to give an interpretation of the Harer-
Zagier formula:

(n+1)εg(n) = 2(2n−1)εg(n−1)+(2n−1)(n−1)(2n−3)εg−1(n−2)

Aim of the talk: discover and prove, with bijections, other kind of
identities.



Trisections, and a bijection.
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In the planar case, the border-numbering and the cyclic ordering
always coincide:

1st

2nd3rd

4th

For each vertex, the diagram is increasing:

Higher genus

Around each vertex, a decrease in the
diagram is called a trisection.
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A one-face map of genus g always has exactly 2g trisections.

Proof:
• each non-root edge contains exaclty one
descent and one ascent.
• the root-edge contains two descents

• hence there are (n − 1) + 2 = n + 1
descents in total.

• but each vertex contains one descent
which is not a trisection:
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The trisection lemma

A one-face map of genus g always has exactly 2g trisections.

→ It is an equivalent problem to count one-face maps with a
distinguished trisection.

Proof:
• each non-root edge contains exaclty one
descent and one ascent.
• the root-edge contains two descents

• hence there are (n − 1) + 2 = n + 1
descents in total.

• but each vertex contains one descent
which is not a trisection:

# trisections = (# descents) - (# vertices)

= (n + 1)− (n + 1− 2g) QED.
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How to build a trisection : first method.

- Start with a map of genus (g − 1) with three marked vertices.
- Let a1 < a2 < a3 be the labels of their minimal corners.

a1 a2 a3

- Glue these three corners together as follows :
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1 → 2 → . . . → a3 →→ a2 →→ a1 → . . . → 2n. . .. . .
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- By Euler’s formula, it has genus g.

- Moreover we have built a trisection.

trisection

How to build a trisection : first method.

- Start with a map of genus (g − 1) with three marked vertices.
- Let a1 < a2 < a3 be the labels of their minimal corners.

- The resulting map has only one border :

- Glue these three corners together as follows :
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Therefore we have a mapping :

a1 a2 a3

genus g − 1, three
marked vertices

genus g, one marked
trisection

The mapping is injective because we can retrieve the three
corners, and cut the vertex back.

1 : minimum corner

2: corner following
the marked trisection

3: smallest corner
between 2 and 1 which
is greater than 2

Hence : 2g · εg(n) =
(

n + 3− 2g

3

)
εg−1(n) + . . .

genus g
marked trisection

genus g − 1
3 marked vertices

?
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a1 a2 a3

genus g − 1, three
marked corners

- We still have a1 < a2 < a3 in the map of genus (g − 1).
- a1 and a2 are both the minimum corner in their vertex.
- This is not always the case for a3 :
• If a3 is the minimum of its vertex : we are in the image of the
previous construction.
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Let’s try the reverse mapping...

a1 a2 a3

genus g − 1, three
marked corners

- We still have a1 < a2 < a3 in the map of genus (g − 1).
- a1 and a2 are both the minimum corner in their vertex.
- This is not always the case for a3 :
• If a3 is the minimum of its vertex : we are in the image of the
previous construction.
• Else a3 is incident to a trisection of the map of genus (g − 1).

genus g
marked trisection

3: smallest corner
between 2 and 1 which
is greater than 2

1 : minimum corner

2: corner following
the marked trisection
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vertices and 1 trisection

good case bad case



Therefore :

genus g, one marked
trisection

genus (g − 1),
3 marked vertices

genus (g − 1), 2
vertices and 1 trisection

genus (g − 2), 2+3=5
marked vertices

genus (g − 2), 2+2=4
vertices and 1 trisection

distinguished

good case bad case

good case bad case

good case bad case

and so on...
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Hence we have a bijection:

genus g,
one marked trisection = ∪

i > 0

genus g−i and 2i+1
marked vertices.( )bij.

2g ·εg(n)
(
n+3−2g

3

)
εg−1(n)+

(
n+5−2g

5

)
εg−2(n)+ . . . +

(
n+1
2g+1

)
Cat(n)=

εg(n) = (some polynomial)× Cat(n)︸ ︷︷ ︸
= ”number” of possibilities for the
successive choices of vertices.

And a new formula:

=
∑

0=g0<g1<...<gr=g

r∏
i=1

1
2gi

(
n + 1− 2gi−1

2(gi − gi−1) + 1

)

Everything boils down to plane trees:



A special case:

A map is precubic if all its vertices have degree 1 or 3.

In the planar case, precubic maps are planted binary trees, and
the number of precubic maps with n = 2m + 1 edges is given
by the Catalan number Cat(m).

Here:

The number of precubic maps of genus g with n = 2m + 1
edges is:

ξg(m) =
1

2gg!

(
m + 1

3, 3, . . . , 3,m + 1− 3g

)
Cat(m)

(always rooted at a vertex of degree one).

=
(2m)!

12gg!m!(m + 1− 3g)!



Non-orientable case.

...work in progress with Olivier Bernardi (MIT).



= upper hemisphere with antipodal points identified on the
equator.

Projective plane

= connected sum of the sphere and h projective planes.

Non-orientable surface Nh

What about maps on Nh ?



Maps become more complicated combinatorial objects...

Maps 6= graph + rotation system

In order to define the rotation system at each vertex, one must
first choose arbitrarily the clockwise orientation around each
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Maps become more complicated combinatorial objects...

Maps 6= graph + rotation system

In order to define the rotation system at each vertex, one must
first choose arbitrarily the clockwise orientation around each
vertex.

When the two orientations disagree along an edge, this edge is
called a twist:

counterclockwise counterclockwise



Drawing maps on the plane

Once an orientation convention is fixed, one can draw the map
on the plane as before. But now one has to remember the
position of the twists.

twist
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Drawing maps on the plane

Once an orientation convention is fixed, one can draw the map
on the plane as before. But now one has to remember the
position of the twists.

This representation is not unique: it is defined up to flips of the
vertices.

twist

twist

twist

=
flip!

Hence: map = (graph + rotation system + set of twists),
considered up to flips of the vertices.

Euler’s formula: s + f = e + 2− h



Hard to count with such a definition.

We weed to define a canonical orientation.

For the moment, we only know how to do that (well) in the
case of precubic maps (all vertices have degree 1 or 3).

The canonical orientation of a precubic one-face map is the only
one such that around each vertex, there are more left-corners
than right corners.

During the tour of the map, certain corners are visited on the
left of the tour, and others on the right.



Good news

In the canonical orientation, the notion of trisection still makes
sense.

We have a mapping

Precubic maps of type h with a distinguished trisection

Precubic maps of type (h− 2) with 3 distinsguished leaves

This mapping is one to four:
L R

L
RL

L
L

L

L

L
R L



Bad news

The trisection lemma does not work !

These two maps have type h = 2 (Klein bottle):

For example

2 trisections 0 trisections

What to do then? ...the trisection lemma is the key of our
approach.
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A very strange, global, and still mysterious involution



Cut all the twists...

A very strange, global, and still mysterious involution



Cut all the twists...

Make a rotation of the matching system of the twists.

A very strange, global, and still mysterious involution



Cut all the twists...

Make a rotation of the matching system of the twists.

A very strange, global, and still mysterious involution



Cut all the twists...

Make a rotation of the matching system of the twists.

A very strange, global, and still mysterious involution



A very strange, global, and still mysterious involution

Cut all the twists...

Make a rotation of the matching system of the twists.

The involution exchanges maps with h+k trisections and maps
with h− 2− k trisections. (here k ≥ 0)

Believe me



The averaged trisection lemma

For each h ≥ 0 the average number of trisections among non-
orientable precubic one-face maps of type h with n edges is
(h− 1).

In other words, the average excess of trisections is:
• 0 for orientable maps
• −1 for non-orientable maps.



The averaged trisection lemma

For each h ≥ 0 the average number of trisections among non-
orientable precubic one-face maps of type h with n edges is
(h− 1).

Therefore we can count !

h · ηh(m) = 4
(

m + 1− 2h

3

)
ηh−2(m) + ηh(m)− ξh(m)︸ ︷︷ ︸

distinguished
trisection

all maps of type h
(orientable +

non-orientable)

︸ ︷︷ ︸
to compensate

the excess

In other words, the average excess of trisections is:
• 0 for orientable maps
• −1 for non-orientable maps.

from which closed formulas follow...

orientable ones



Thank you !


