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of distinct matchings of the edges :
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2nn!
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For instance, in the planar case...

Unicellular maps are exactly
plane trees.

Therefore the number of
n-edge unicellular maps of
genus 0 is :

ε0(n) = Cat(n) =
1

n + 1

(
2n

n

)



Higher genus ?

For each g the number of n-edge unicellular maps of genus g has
the (beautiful) form : εg(n) = (some polynomial)× Cat(n)

ε1(n) = (n+1)n(n−1)
12 Cat(n)

ε2(n) = (n+1)n(n−1)(n−2)(n−3)(5n−2)
1440 Cat(n)

For instance :

References : Lehman and Walsh 72 (formal power series), Harer
and Zagier 86 (matrix integrals).
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Higher genus ?

For each g the number of n-edge unicellular maps of genus g has
the (beautiful) form : εg(n) = (some polynomial)× Cat(n)

ε1(n) = (n+1)n(n−1)
12 Cat(n)

ε2(n) = (n+1)n(n−1)(n−2)(n−3)(5n−2)
1440 Cat(n)

For instance :

References : Lehman and Walsh 72 (formal power series), Harer
and Zagier 86 (matrix integrals).

No combinatorial interpretation !

Note for experts: the Goulden-Nica bijection does not solve the
same problem (it solves a ”Poissonized” version of the problem).
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=

To do: cut the 2g independant cycles of this graph in order to obtain
a tree. Problem: where to cut ?

All the information is contained in the pair formed by the graph and
the cyclic ordering of edges aroud each vertex.

We started from one single polygon
⇒ the graph has only one border

Map = graph + rotation system
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In the planar case, the border-numbering and the cyclic ordering
always coincide:

1st

2nd3rd

4th

For each vertex, the diagram is increasing:

Higher genus

Around each vertex, a decrease in the
diagram is called a trisection.
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The trisection lemma

A unicellular map of genus g always has exactly 2g trisections.

→ It is an equivalent problem to count unicellular maps with a
distinguished trisection.

Proof: simple counting argument.
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- By Euler’s formula, it has genus g.

- Moreover we have built a trisection.
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How to build a trisection : first method.

- Start with a map of genus (g − 1) with three marked vertices.
- Let a1 < a2 < a3 be the labels of their minimal corners.

- The resulting map has only one border :

- Glue these three corners together as follows :
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Let’s try the reverse mapping...

a1 a2 a3

genus g − 1, three
marked corners

- We still have a1 < a2 < a3 in the map of genus (g − 1).
- a1 and a2 are both the minimum corner in their vertex.
- This is not always the case for a3 :
• If a3 is the minimum of its vertex : we are in the image of the
previous construction.
• Else a3 is incident to a trisection of the map of genus (g − 1).

genus g
marked trisection

3: smallest corner be-
tween 2 and 1 which is
greater than 2

1 : minimum corner

2: corner following
the marked trisection
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Therefore :

genus g, one marked
trisection

genus (g − 1),
3 marked vertices

genus (g − 1), 2
vertices and 1 trisection

genus (g − 2), 2+3=5
marked vertices

genus (g − 2), 2+2=4
vertices and 1 trisection

distinguished

good case bad case

good case bad case

good case bad case

and so on...
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Our main result:

genus g,
one marked trisection = ∪

i > 0

genus g−i and 2i+1
marked vertices.( )bij.

2g ·εg(n)
(
n+3−2g

3

)
εg−1(n)+

(
n+5−2g

5

)
εg−2(n)+ . . . +

(
n+1
2g+1

)
Cat(n)=

εg(n) = (some polynomial)× Cat(n)︸ ︷︷ ︸
= ”number” of possibilities for the
successive choices of vertices.

And a new formula:

=
∑

0=g0<g1<...<gr=g

r∏
i=1

1
2gi

(
n + 1− 2gi−1

2(gi − gi−1) + 1

)

Everything boils down to plane trees:
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For instance :

2 · ε1(n) = (n+1)n(n−1)
6 Cat(n)

4 · ε2(n) = (n−1)(n−2)(n−3)
6 ε1(n) + (n+1)n(n−1)(n−2)(n−3)

5! Cat(n)

= (n+1)n(n−1)(n−2)(n−3)(5n−2)
1440 Cat(n)



Extensions

- The formula leads to a differential equation which enables to re-
cover the known closed formulas for the generating functions (Harer-
Zagier, Itzykson-Zuber).

- Works the same for bipartite unicellular maps.

- The Marcus-Schaeffer bijection relates general maps on surfaces
to labelled unicellular maps. The composition of the two bijections
leads to a description of general maps of given genus in terms of
labelled trees with distinguished vertices. This gives information
about the continuum limit of maps on surfaces (Brownian map of
genus g).



Thank you!



(n+1)εg(n) = 2(2n−1)εg(n−1)+(2n−1)(n−1)(2n−3)εg−1(n−2)

Récurrence :

∑
g≥0

εg(n)yn+1−2g =
(2n)!
2nn!

∑
i≥1

2i−1

(
n

i− 1

)(
y

i

)Version sommatoire :

Formules d’Harer et Zagier :


