A new combinatorial identity for unicellular maps, via a direct bijective approach

Guillaume Chapuy, École Polytechnique (France)

FPSAC, Hagenberg, 2009.

Unicellular maps as polygon gluings

We start with a $2 n$-gon, and we paste the edges pairwise in order to form an orientable surface.

Unicellular maps as polygon gluings

We start with a $2 n$-gon, and we paste the edges pairwise in order to form an orientable surface.

Unicellular maps as polygon gluings

We start with a $2 n$-gon, and we paste the edges pairwise in order to form an orientable surface.

Unicellular maps as polygon gluings

We start with a $2 n$-gon, and we paste the edges pairwise in order to form an orientable surface.

Unicellular maps as polygon gluings

We start with a $2 n$-gon, and we paste the edges pairwise in order to form an orientable surface.

The image of the polygon forms the drawing of an n-edge graph on the surface.
Euler's formula relates the number of vertices to the genus of the surface :

$$
v=n+1-2 g
$$

Unicellular maps as polygon gluings

We start with a $2 n$-gon, and we paste the edges pairwise in order to form an orientable surface.

1 vertex, genus 1

3 vertices, genus 0

The image of the polygon forms the drawing of an n-edge graph on the surface.
Euler's formula relates the number of vertices to the genus of the surface :

$$
v=n+1-2 g
$$

Unicellular maps as polygon gluings

We start with a $2 n$-gon, and we paste the edges pairwise in order to form an orientable surface.

1 vertex, genus 1

3 vertices, genus 0

The image of the polygon forms the drawing of an n-edge graph on the surface.
Euler's formula relates the number of vertices to the genus of the surface :

$$
v=n+1-2 g
$$

Counting

The number of unicellular maps with n edges is equal to the number of distinct matchings of the edges : $\frac{(2 n)!}{2^{n} n!}$.
Aim: count unicellular maps of fixed genus.

Counting

The number of unicellular maps with n edges is equal to the number of distinct matchings of the edges : $\frac{(2 n)!}{2^{n} n!}$.
Aim: count unicellular maps of fixed genus.
For instance, in the planar case...

Unicellular maps are exactly plane trees.

Therefore the number of n-edge unicellular maps of genus 0 is :
$\epsilon_{0}(n)=\operatorname{Cat}(n)=\frac{1}{n+1}\binom{2 n}{n}$

Higher genus ?

For each g the number of n-edge unicellular maps of genus g has the (beautiful) form :

$$
\epsilon_{g}(n)=(\text { some polynomial }) \times \operatorname{Cat}(n)
$$

For instance :

$$
\begin{aligned}
& \epsilon_{1}(n)=\frac{(n+1) n(n-1)}{12} \operatorname{Cat}(n) \\
& \epsilon_{2}(n)=\frac{(n+1) n(n-1)(n-2)(n-3)(5 n-2)}{1440} \operatorname{Cat}(n)
\end{aligned}
$$

References: Lehman and Walsh 72 (formal power series), Harer and Zagier 86 (matrix integrals).

Higher genus ?

For each g the number of n-edge unicellular maps of genus g has the (beautiful) form :

$$
\epsilon_{g}(n)=(\text { some polynomial }) \times \operatorname{Cat}(n)
$$

For instance :

$$
\begin{aligned}
& \epsilon_{1}(n)=\frac{(n+1) n(n-1)}{12} \operatorname{Cat}(n) \\
& \epsilon_{2}(n)=\frac{(n+1) n(n-1)(n-2)(n-3)(5 n-2)}{1440} \operatorname{Cat}(n)
\end{aligned}
$$

References : Lehman and Walsh 72 (formal power series), Harer and Zagier 86 (matrix integrals).

No combinatorial interpretation!

Higher genus ?

For each g the number of n-edge unicellular maps of genus g has the (beautiful) form :

$$
\epsilon_{g}(n)=(\text { some polynomial }) \times \operatorname{Cat}(n)
$$

For instance :

$$
\begin{aligned}
& \epsilon_{1}(n)=\frac{(n+1) n(n-1)}{12} \operatorname{Cat}(n) \\
& \epsilon_{2}(n)=\frac{(n+1) n(n-1)(n-2)(n-3)(5 n-2)}{1440} \operatorname{Cat}(n)
\end{aligned}
$$

References : Lehman and Walsh 72 (formal power series), Harer and Zagier 86 (matrix integrals).

No combinatorial interpretation!
Note for experts: the Goulden-Nica bijection does not solve the same problem (it solves a "Poissonized" version of the problem).

Map $=$ graph + rotation system

All the information is contained in the pair formed by the graph and the cyclic ordering of edges around each vertex.

Map $=$ graph + rotation system

All the information is contained in the pair formed by the graph and the cyclic ordering of edges around each vertex.

We started from one single polygon
\Rightarrow the graph has only one border

Map $=$ graph + rotation system

All the information is contained in the pair formed by the graph and the cyclic ordering of edges around each vertex.

We started from one single polygon
\Rightarrow the graph has only one border

Map $=$ graph + rotation system

All the information is contained in the pair formed by the graph and the cyclic ordering of edges around each vertex.

We started from one single polygon
\Rightarrow the graph has only one border

Map $=$ graph + rotation system

All the information is contained in the pair formed by the graph and the cyclic ordering of edges around each vertex.

We started from one single polygon
\Rightarrow the graph has only one border

Map $=$ graph + rotation system

All the information is contained in the pair formed by the graph and the cyclic ordering of edges around each vertex.

We started from one single polygon
\Rightarrow the graph has only one border

Map $=$ graph + rotation system

All the information is contained in the pair formed by the graph and the cyclic ordering of edges around each vertex.

We started from one single polygon
\Rightarrow the graph has only one border

Map $=$ graph + rotation system

All the information is contained in the pair formed by the graph and the cyclic ordering of edges aroud each vertex.

We started from one single polygon
\Rightarrow the graph has only one border

To do: cut the 2 g independant cycles of this graph in order to obtain a tree. Problem: where to cut ?

Numbering the corners.

We follow the border of the map starting from the root, and we number the corners from 1 to $2 n$.

Numbering the corners.

We follow the border of the map starting from the root, and we number the corners from 1 to $2 n$.

Numbering the corners.

We follow the border of the map starting from the root, and we number the corners from 1 to $2 n$.

Numbering the corners.

We follow the border of the map starting from the root, and we number the corners from 1 to $2 n$.

Numbering the corners.

We follow the border of the map starting from the root, and we number the corners from 1 to $2 n$.

We compare the two natural orderings of corners around one vertex: this gives a diagram.

Numbering the corners.

We follow the border of the map starting from the root, and we number the corners from 1 to $2 n$.

We compare the two natural orderings of corners around one vertex: this gives a diagram.

Planar case

In the planar case, the border-numbering and the cyclic ordering always coincide:

Planar case

In the planar case, the border-numbering and the cyclic ordering always coincide:

For each vertex, the diagram is increasing:

Planar case

In the planar case, the border-numbering and the cyclic ordering always coincide:

For each vertex, the diagram is increasing:

Higher genus

Around each vertex, a decrease in the diagram is called a trisection.

The trisection lemma

A unicellular map of genus g always has exactly $2 g$ trisections.

Proof: simple counting argument.
\rightarrow It is an equivalent problem to count unicellular maps with a distinguished trisection.

How to build a trisection : first method.

- Start with a map of genus $(g-1)$ with three marked vertices.
- Let $a_{1}<a_{2}<a_{3}$ be the labels of their minimal corners.
- Glue these three corners together as follows :

How to build a trisection : first method.

- Start with a map of genus $(g-1)$ with three marked vertices.
- Let $a_{1}<a_{2}<a_{3}$ be the labels of their minimal corners.
- Glue these three corners together as follows :

How to build a trisection : first method.

- Start with a map of genus $(g-1)$ with three marked vertices.
- Let $a_{1}<a_{2}<a_{3}$ be the labels of their minimal corners.
- Glue these three corners together as follows :

How to build a trisection : first method.

- Start with a map of genus $(g-1)$ with three marked vertices.
- Let $a_{1}<a_{2}<a_{3}$ be the labels of their minimal corners.
- Glue these three corners together as follows :

How to build a trisection : first method.

- Start with a map of genus $(g-1)$ with three marked vertices.
- Let $a_{1}<a_{2}<a_{3}$ be the labels of their minimal corners.
- Glue these three corners together as follows :

How to build a trisection : first method.

- Start with a map of genus $(g-1)$ with three marked vertices.
- Let $a_{1}<a_{2}<a_{3}$ be the labels of their minimal corners.
- Glue these three corners together as follows :

How to build a trisection : first method.

- Start with a map of genus $(g-1)$ with three marked vertices.
- Let $a_{1}<a_{2}<a_{3}$ be the labels of their minimal corners.
- Glue these three corners together as follows :

- The resulting map has only one border:

$$
1 \rightarrow 2 \rightarrow \ldots \rightarrow a_{1} \rightarrow \ldots \rightarrow a_{2} \rightarrow \ldots \rightarrow a_{3} \rightarrow \ldots \rightarrow 2 n
$$

How to build a trisection : first method.

- Start with a map of genus $(g-1)$ with three marked vertices.
- Let $a_{1}<a_{2}<a_{3}$ be the labels of their minimal corners.
- Glue these three corners together as follows :

- The resulting map has only one border:
$1 \rightarrow 2 \rightarrow \ldots$ 友 $a_{1} \rightarrow \ldots \rightarrow a_{2} \rightarrow \ldots \rightarrow a_{3} \rightarrow \ldots \rightarrow 2 n$

How to build a trisection : first method.

- Start with a map of genus $(g-1)$ with three marked vertices.
- Let $a_{1}<a_{2}<a_{3}$ be the labels of their minimal corners.
- Glue these three corners together as follows :

- The resulting map has only one border:

How to build a trisection : first method.

- Start with a map of genus $(g-1)$ with three marked vertices.
- Let $a_{1}<a_{2}<a_{3}$ be the labels of their minimal corners.
- Glue these three corners together as follows :

- The resulting map has only one border:

How to build a trisection : first method.

- Start with a map of genus $(g-1)$ with three marked vertices.
- Let $a_{1}<a_{2}<a_{3}$ be the labels of their minimal corners.
- Glue these three corners together as follows :

- The resulting map has only one border:

How to build a trisection : first method.

- Start with a map of genus $(g-1)$ with three marked vertices.
- Let $a_{1}<a_{2}<a_{3}$ be the labels of their minimal corners.
- Glue these three corners together as follows :

- The resulting map has only one border:

- By Euler's formula, it has genus g.

How to build a trisection : first method.

- Start with a map of genus $(g-1)$ with three marked vertices.
- Let $a_{1}<a_{2}<a_{3}$ be the labels of their minimal corners.
- Glue these three corners together as follows :

a_{1}

The resulting map has only one border:

- By Euler's formula, it has genus g.
- Moreover we have built a trisection.

Therefore we have a mapping :

Therefore we have a mapping :

The mapping is injective because we can retrieve the three corners, and cut the vertex back.

Therefore we have a mapping :

The mapping is injective because we can retrieve the three corners, and cut the vertex back.

Therefore we have a mapping :

The mapping is injective because we can retrieve the three corners, and cut the vertex back.

Therefore we have a mapping :

The mapping is injective because we can retrieve the three corners, and cut the vertex back.

Therefore we have a mapping :

The mapping is injective because we can retrieve the three corners, and cut the vertex back.

Hence :

Therefore we have a mapping :

The mapping is injective because we can retrieve the three corners, and cut the vertex back.

Hence :

Let's try the reverse mapping...

genus g
marked trisection

Let's try the reverse mapping...

genus g
marked trisection

Let's try the reverse mapping...

- We still have $a_{1}<a_{2}<a_{3}$ in the map of genus $(g-1)$.

Let's try the reverse mapping...

- We still have $a_{1}<a_{2}<a_{3}$ in the map of genus $(g-1)$.
- a_{1} and a_{2} are both the minimum corner in their vertex.

Let's try the reverse mapping...

- We still have $a_{1}<a_{2}<a_{3}$ in the map of genus $(g-1)$.
- a_{1} and a_{2} are both the minimum corner in their vertex.
- This is not always the case for a_{3} :

Let's try the reverse mapping...

- We still have $a_{1}<a_{2}<a_{3}$ in the map of genus $(g-1)$.
- a_{1} and a_{2} are both the minimum corner in their vertex.
- This is not always the case for a_{3} :
- If a_{3} is the minimum of its vertex : we are in the image of the previous construction.

Let's try the reverse mapping...

- We still have $a_{1}<a_{2}<a_{3}$ in the map of genus $(g-1)$.
- a_{1} and a_{2} are both the minimum corner in their vertex.
- This is not always the case for a_{3} :
- If a_{3} is the minimum of its vertex : we are in the image of the previous construction.
- Else a_{3} is incident to a trisection of the map of genus $(g-1)$.

Therefore :

genus g, one marked trisection

$$
\begin{gathered}
\text { good case } \\
\text { genus }(g-1), \\
3 \text { marked vertices }
\end{gathered}
$$

Therefore :

genus g, one marked trisection

Our main result:

Our main result:

And a new formula:

$$
2 g \cdot \epsilon_{g}(n)=\binom{n+3-2 g}{3} \epsilon_{g-1}(n)+
$$

Our main result:

$$
\underset{\text { one marked trisection }}{\text { genus } g,} \stackrel{\text { bij. }}{=} \bigcup_{i>0}\binom{\text { genus } g-i \text { and } 2 i+1}{\text { marked vertices. }}
$$

And a new formula:

$$
2 g \cdot \epsilon_{g}(n)=\binom{n+3-2 g}{3} \epsilon_{g-1}(n)+\binom{n+5-2 g}{5} \epsilon_{g-2}(n)+
$$

Our main result:

$$
\underset{\text { one marked trisection }}{\text { genus } g,} \stackrel{\text { bij. }}{=} \bigcup_{i>0}\binom{\text { genus } g-i \text { and } 2 i+1}{\text { marked vertices. }}
$$

And a new formula:

$$
2 g \cdot \epsilon_{g}(n)=\binom{n+3-2 g}{3} \epsilon_{g-1}(n)+\binom{n+5-2 g}{5} \epsilon_{g-2}(n)+\ldots+\binom{n+1}{2 g+1} \operatorname{Cat}(n)
$$

Our main result:

$\underset{\text { one marked trisection }}{\text { genus } g,} \stackrel{\text { bij. }}{=} \bigcup_{i>0}\binom{$ genus $g-i$ and $2 i+1}{$ marked vertices. }
And a new formula:
$2 g \cdot \epsilon_{g}(n)=\binom{n+3-2 g}{3} \epsilon_{g-1}(n)+\binom{n+5-2 g}{5} \epsilon_{g-2}(n)+\ldots+\binom{n+1}{2 g+1} \operatorname{Cat}(n)$

Everything boils down to plane trees:
$\epsilon_{g}(n)=($ some polynomial $) \times \operatorname{Cat}(n)$
$=$ "number" of possibilities for the successive choices of vertices.

$$
=\sum_{0=g_{0}<g_{1}<\ldots<g_{r}=g} \prod_{i=1}^{r} \frac{1}{2 g_{i}}\binom{n+1-2 g_{i-1}}{2\left(g_{i}-g_{i-1}\right)+1}
$$

For instance :

$$
2 \cdot \epsilon_{1}(n)=\frac{(n+1) n(n-1)}{6} \operatorname{Cat}(n)
$$

For instance :

$$
\begin{aligned}
2 \cdot \epsilon_{1}(n) & =\frac{(n+1) n(n-1)}{6} \operatorname{Cat}(n) \\
4 \cdot \epsilon_{2}(n) & =\frac{(n-1)(n-2)(n-3)}{6} \epsilon_{1}(n)+\frac{(n+1) n(n-1)(n-2)(n-3)}{5!} \operatorname{Cat}(n) \\
& =\frac{(n+1) n(n-1)(n-2)(n-3)(5 n-2)}{1440} \operatorname{Cat}(n)
\end{aligned}
$$

Extensions

- The formula leads to a differential equation which enables to recover the known closed formulas for the generating functions (HarerZagier, Itzykson-Zuber).
- Works the same for bipartite unicellular maps.
- The Marcus-Schaeffer bijection relates general maps on surfaces to labelled unicellular maps. The composition of the two bijections leads to a description of general maps of given genus in terms of labelled trees with distinguished vertices. This gives information about the continuum limit of maps on surfaces (Brownian map of genus g).

Thank you!

Formules d'Harer et Zagier :

Récurrence :

$$
(n+1) \epsilon_{g}(n)=2(2 n-1) \epsilon_{g}(n-1)+(2 n-1)(n-1)(2 n-3) \epsilon_{g-1}(n-2)
$$

Version sommatoire :

$$
\sum_{g \geq 0} \epsilon_{g}(n) y^{n+1-2 g}=\frac{(2 n)!}{2^{n} n!} \sum_{i \geq 1} 2^{i-1}\binom{n}{i-1}\binom{y}{i}
$$

