Short synchronizing words for random automata

Guillaume Chapuy

CNRS – IRIF – Université Paris Cité – ERC CombiTop

based on joint work with

Guillem Perarnau

Universitat Politècnica de Catalunya

 \rightarrow on arxiv last July: arXiv:2207.14108

INSTITUT DE RECHERCHE EN INFORMATIQUE FONDAMENTALE

Short synchronizing words for random automata

Guillaume Chapuy

CNRS – IRIF – Université Paris Cité – ERC CombiTop

based on joint work with

Guillem Perarnau

Universitat Politècnica de Catalunya

 \rightarrow on arxiv last July: arXiv:2207.14108

INSTITUT DE RECHERCHE EN INFORMATIQUE FONDAMENTALE

Automata, synchronizing words

Automata

• An automaton with n states on $\{a, b\}$ is the data of two functions:

(there are $n^n \times n^n = n^{2n}$ such things)

Automata

• An automaton with n states on $\{a, b\}$ is the data of two functions:

• Notion of w-transitions: if $v \in [n]$ and $w \in \{a, b\}^*$, we can read w starting from v

for example:
$$w = ababb$$
, $1 \xrightarrow{w} 4$

Automata

• An automaton with n states on $\{a, b\}$ is the data of two functions:

• Notion of w-transitions: if $v \in [n]$ and $w \in \{a, b\}^*$, we can read w starting from v

for example: w = ababb, $1 \xrightarrow{w} 4$

• Fix a subset $S \subset [n]$. Language recognized by an automaton (not used in this talk) = set of all words w s.t. $1 \xrightarrow{w} s$ with $s \in S$

Recognized by automaton iff. recognized by regular expression All the super nice theory of regular/rational languages (Chomtsky-Schutzenberger) (still full of incredible open problems!!!)

Synchronizing words

• A word w is synchronizing if there exists $v_0 \in [n]$ such that

 $v \xrightarrow{w} v_0$ for all $v \in [n]$

(think of a reset word. Basic motivation: the german-speaking microwave oven at IRIF)

Here $w = b^2 a b^2$ works. (b^2 syncs $1, 2, 3 \rightarrow 1$ and $4 \rightarrow 4$ then a sends $1, 4 \rightarrow 1, 2$ so b^2 again syncs everyone)

Synchronizing words

• A word w is synchronizing if there exists $v_0 \in [n]$ such that

 $v \xrightarrow{w} v_0$ for all $v \in [n]$

(think of a reset word. Basic motivation: the german-speaking microwave oven at IRIF)

Here
$$w = b^2 a b^2$$
 works.

(
$$b^2$$
 syncs $1, 2, 3 \rightarrow 1$ and $4 \rightarrow 4$
then a sends $1, 4 \rightarrow 1, 2$
so b^2 again syncs everyone)

•Not all automata are synchonizable !!!

(Note: checking synchronizability = easy; finding shortest word = NP-hard)

• Remark (Czerny 1960's)

If A is synchronizable, there is sync word of length $\leq n^3$

(synchronize 1, 2 with a word w of length $\leq n^2$ by pigeonhole on pairs of visited vertices then repeat n-1 times)

• Remark (Czerny 1960's)

If A is synchronizable, there is sync word of length $\leq n^3$

(synchronize 1, 2 with a word w of length $\leq n^2$ by pigeonhole on pairs of visited vertices then repeat n-1 times)

• Černý's conjecture (1960's) If A is synchronizable,

then there is a sync word of length $\leq (n-1)^2$

(one of the biggest open problems in automata theory!!!)

• Remark (Czerny 1960's)

If A is synchronizable, there is sync word of length $\leq n^3$

(synchronize 1, 2 with a word w of length $\leq n^2$ by pigeonhole on pairs of visited vertices then repeat n-1 times)

• Černý's conjecture (1960's) If A is synchronizable,

then there is a sync word of length $\leq (n-1)^2$

(one of the biggest open problems in automata theory!!!)

Best results are cn^3 : [Pin-Frankl 1983] $c = \frac{1}{6}$; [Szykuła 2018] c = 0.1666 [Shitov 2019] c = 0.1654

• Remark (Czerny 1960's)

If A is synchronizable, there is sync word of length $\leq n^3$

(synchronize 1, 2 with a word w of length $\leq n^2$ by pigeonhole on pairs of visited vertices then repeat n-1 times)

• Černý's conjecture (1960's) If A is synchronizable, then there is a sync word of length $\leq (n-1)^2$

(one of the biggest open problems in automata theory!!!)

Best results are cn^3 : [Pin-Frankl 1983] $c = \frac{1}{6}$; [Szykuła 2018] c = 0.1666 [Shitov 2019] c = 0.1654

• What about random automata ???

• **Conjecture** [Cameron 2013] A random automaton is synchronizable w.h.p.

Proved! [Berlinkov 2016] " abstract" proof

[Nicaud 2016] quantitative bound $O(n \log(n)^3)$ for shortest word!

Shortest sync words in random automata (main result!)

• Experiments and...

Shortest sync words in random automata (main result!)

• Experiments and...

Theorem [GC+ Guillem Perarnau, July 2022]

The conjecture of Kisielewicz, Kowalski, and Szykuła is true! up to a log factor. With high probability, a uniform random automaton has a synchronizing word of length at most $100\sqrt{n}\log(n)$

Rest of the talk: heuristic of the proof one-letter automata!

One-letter automata (!)

• A one-letter automata is just a function $a : [n] \longrightarrow [n]$ (i.e. a one-outregular digraph on [n])

• Such an object is a collection of directed cycles with trees attached to them.

• A one-letter automata is just a function $a : [n] \longrightarrow [n]$ (i.e. a one-outregular digraph on [n])

• Such an object is a collection of directed cycles with trees attached to them.

• It is synchronizable if and only if it is a (cycle-rooted) tree!!!

• A one-letter automata is just a function $a : [n] \longrightarrow [n]$ (i.e. a one-outregular digraph on [n])

• Such an object is a collection of directed cycles with trees attached to them.

• It is synchronizable if and only if it is a (cycle-rooted) tree!!!

This is happens with probability $\frac{nb. \text{ of trees}}{nb. \text{ of automata}} = \frac{n^{n-1}}{n^n} = \frac{1}{n}$ (this is Cayley's formula!)

• A one-letter automata is just a function $a : [n] \longrightarrow [n]$ (i.e. a one-outregular digraph on [n])

• Such an object is a collection of directed cycles with trees attached to them.

• It is synchronizable if and only if it is a (cycle-rooted) tree!!!

This is happens with probability

$$rac{\mathsf{nb. of trees}}{\mathsf{nb. of automata}} = rac{n^{n-1}}{n^n} = rac{1}{n}$$

(this is Cayley's formula!)

• Let A be a random 2-letter automaton.

Let A_w be the one-letter automaton induced by w-transitions (for some word w)

• Maybe....

 A_w somehow behaves as a uniform random one-letter automaton...

• Let A be a random 2-letter automaton.

Let A_w be the one-letter automaton induced by w-transitions (for some word w)

• Maybe....

 A_w somehow behaves as a uniform random one-letter automaton...

• so maybe....

 A_w might be a tree with probability $\frac{1}{w}$

• Let A be a random 2-letter automaton.

Let A_w be the one-letter automaton induced by w-transitions (for some word w)

• Maybe....

 A_w somehow behaves as a uniform random one-letter automaton...

• so maybe....

 A_w might be a tree with probability $\frac{1}{m}$

and maybe....

combinatorics is messy enough so the A_w for different w are "somehow independent" (hum...)

• Let A be a random 2-letter automaton.

Let A_w be the one-letter automaton induced by w-transitions (for some word w)

• Maybe....

 A_w somehow behaves as a uniform random one-letter automaton...

• so maybe....

 A_w might be a tree with probability $\frac{1}{w}$

and maybe....

combinatorics is messy enough so the A_w for different w are "somehow independent"

(hum...)

• so maybe...

If I try all the words w of length $(1 + \epsilon) \log(n)$ (there are $n^{1+\epsilon} >> n$ of these) ... one w will work.

• Let A be a random 2-letter automaton.

Let A_w be the one-letter automaton induced by w-transitions (for some word w)

• Maybe....

 A_w somehow behaves as a uniform random one-letter automaton...

• so maybe....

 A_w might be a tree with probability $\frac{1}{w}$

• and maybe....

combinatorics is messy enough so the A_w for different w are "somehow independent"

(hum...)

• so maybe...

If I try all the words w of length $(1 + \epsilon) \log(n)$ (there are $n^{1+\epsilon} >> n$ of these) ... one w will work.

• and maybe...

The automaton A_w is not too far from a uniform tree, its height will be $\approx \sqrt{n}$ so the word w^H of length $\approx \sqrt{n} \log(n)$ will be synchronizing in A !!!

- Say that the 2-letter automaton A is a w-tree if (the 1-letter aut.) A_w is a tree
- Let $N_k(A)$ the number of w of length k such that A is a w-tree^{*}.

- Say that the 2-letter automaton A is a w-tree if (the 1-letter aut.) A_w is a tree
- Let $N_k(A)$ the number of w of length k such that A is a w-tree^{*}.

Theorem [GC+ Guillem Perarnau 2022] For a random 2-letter automaton A on n. $\mathbf{P}\Big(N_k(A) > 0\Big) \longrightarrow \begin{cases} 0 & , \ k \le (1 - \epsilon) \log n \\ 1 & , \ k \ge (1 + \epsilon) \log n \end{cases}$

- Say that the 2-letter automaton A is a w-tree if (the 1-letter aut.) A_w is a tree
- Let $N_k(A)$ the number of w of length k such that A is a w-tree^{*}.

Theorem [GC+ Guillem Perarnau 2022] For a random 2-letter automaton A on n. $\mathbf{P}\Big(N_k(A) > 0\Big) \longrightarrow \begin{cases} 0 & , \ k \le (1 - \epsilon) \log n \\ 1 & , \ k \ge (1 + \epsilon) \log n \end{cases}$

so whp there exists w of length $(1+\epsilon)\log(n)$ such that A is a w-tree.

In fact we have $\mathbf{E}N_k(A) \sim \frac{n^{1+\epsilon}}{n} = n^{\epsilon}$ and second moment concentration (this is how the pf works)

- Say that the 2-letter automaton A is a w-tree if (the 1-letter aut.) A_w is a tree
- Let $N_k(A)$ the number of w of length k such that A is a w-tree^{*}.

Theorem [GC+ Guillem Perarnau 2022] For a random 2-letter automaton A on n. $\mathbf{P}\Big(N_k(A) > 0\Big) \longrightarrow \begin{cases} 0 & , \ k \le (1 - \epsilon) \log n \\ 1 & , \ k \ge (1 + \epsilon) \log n \end{cases}$

so whp there exists w of length $(1+\epsilon)\log(n)$ such that A is a w-tree.

In fact we have $\mathbf{E}N_k(A) \sim \frac{n^{1+\epsilon}}{n} = n^{\epsilon}$ and second moment concentration (this is how the pf works)

• It is easy to see that any branch $v \longrightarrow^*$ in A_w has length $\leq 100\sqrt{n}$ with probability at least $1 - o(n^{-3})$ so we can take union bound on all w and on all v to deduce that the height of A_w is smaller than $100\sqrt{n}$.

• we get a synchronizing word w^H of length $H \cdot |w| = 100(1 + \epsilon) \log(n) \sqrt{n}$.

Two proofs from the book of Cayley's formula

- Let $a : [n] \longrightarrow [n]$ be a uniform random function.
 - We reveal a iteratively:
 - pick vertex 1 and reveal its future until a cycle is made (at some random time T_1)
 - pick smallest unexplored and reveal its future until it merges with the previous graph or a cycle is made
 - (at some random time T_2)
 - ...repeat
 - until last vertex future is revealed (at some time $T_k = n$)

- Let $a : [n] \longrightarrow [n]$ be a uniform random function.
 - We reveal a iteratively:
 - pick vertex 1 and reveal its future until a cycle is made (at some random time T_1)
 - pick smallest unexplored and reveal its future until it merges with the previous graph or a cycle is made
 - (at some random time T_2)
 - ...repeat
 - until last vertex future is revealed (at some time $T_k = n$)

- Let $a : [n] \longrightarrow [n]$ be a uniform random function.
 - We reveal a iteratively:
 - pick vertex 1 and reveal its future until a cycle is made (at some random time T_1)
 - pick smallest unexplored and reveal its future until it merges with the previous graph or a cycle is made
 - (at some random time T_2)
 - ...repeat
 - until last vertex future is revealed (at some time $T_k = n$)

- Let $a : [n] \longrightarrow [n]$ be a uniform random function.
 - We reveal a iteratively:
 - pick vertex 1 and reveal its future until a cycle is made (at some random time T_1)
 - pick smallest unexplored and reveal its future until it merges with the previous graph or a cycle is made
 - (at some random time T_2)
 - ...repeat
 - until last vertex future is revealed (at some time $T_k = n$)

- Let $a : [n] \longrightarrow [n]$ be a uniform random function.
 - We reveal a iteratively:
 - pick vertex 1 and reveal its future until a cycle is made (at some random time T_1)
 - pick smallest unexplored and reveal its future until it merges with the previous graph or a cycle is made
 - (at some random time T_2)
 - ...repeat
 - until last vertex future is revealed (at some time $T_k = n$)

- Let $a : [n] \longrightarrow [n]$ be a uniform random function.
 - We reveal a iteratively:
 - pick vertex 1 and reveal its future until a cycle is made (at some random time T_1)
 - pick smallest unexplored and reveal its future until it merges with the previous graph or a cycle is made
 - (at some random time T_2)
 - ...repeat
 - until last vertex future is revealed (at some time $T_k = n$)

- Let $a : [n] \longrightarrow [n]$ be a uniform random function.
 - We reveal a iteratively:
 - pick vertex 1 and reveal its future until a cycle is made (at some random time T_1)
 - pick smallest unexplored and reveal its future until it merges with the previous graph or a cycle is made
 - (at some random time T_2)
 - ...repeat
 - until last vertex future is revealed (at some time $T_k = n$)

New (?) proof of n^{n-1} by exploration – telescopic argument

(related to [Foata-Fuchs 1970])

- Let $a : [n] \longrightarrow [n]$ be a uniform random function.
 - We reveal a iteratively:
 - pick vertex 1 and reveal its future until a cycle is made (at some random time T_1)
 - pick smallest unexplored and reveal its future until it merges with the previous graph or a cycle is made
 - (at some random time T_2)
 - ...repeat
 - until last vertex future is revealed (at some time $T_k = n$)

The proof also shows that the height of a random vertex in a random tree is the time of first collision in birthday paradox problem! (exact equality, in law)

$$P(height = h) = \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \left(1 - \frac{h-1}{n}\right) \frac{h}{n} \approx \frac{h}{n} e^{-\frac{h^2}{2n}}$$

Rayleigh law in scale \sqrt{n} and deviations estimates are trivial.

$$\mathbb{P}(\text{getakee} \mid T_1, ..., T_K, K) = \frac{1}{T_1} \times \frac{T_1}{T_2} \times \frac{T_2}{T_2} \cdots \times \frac{T_{K-1}}{T_K} = \frac{1}{n} \quad \text{ged}(\binom{1}{n})$$

• Let $a : [n] \longrightarrow [n]$ be a function.

Remove the edge after the minimum in each cycle and concatenate by decreasing minima.

• Let $a : [n] \longrightarrow [n]$ be a function.

Remove the edge after the minimum in each cycle and concatenate by decreasing minima.

• Let $a : [n] \longrightarrow [n]$ be a function.

Remove the edge after the minimum in each cycle and concatenate by decreasing minima.

One obtains a doubly marked tree (rewired edges = lower records on the branch) so $n \times \text{rooted trees} = n^n$

• Let $a : [n] \longrightarrow [n]$ be a function.

Remove the edge after the minimum in each cycle and concatenate by decreasing minima.

One obtains a doubly marked tree (rewired edges = lower records on the branch) so $n \times \text{rooted trees} = n^n$

• This is super powerful: a random tree and a random function differ only on $O(\log(n))$ edges!

• First moment = count w-trees. Apply w-variant of Joyal bijection.

• First moment = count w-trees. Apply w-variant of Joyal bijection.

- PROBLEM: The *w*-version of the Joyal bijection is only approximate
 - rewiring one edge in fact rewires many edges!!!!
 - could create new cycles by accident!
 - no independence!

• First moment = count w-trees. Apply w-variant of Joyal bijection.

• PROBLEM: The *w*-version of the Joyal bijection is only approximate

- rewiring one edge in fact rewires many edges!!!!
- could create new cycles by accident!
- no independence!
- Second moment: count things which are both w_1 and w_2 trees. Apply w-variant of Joyal bijection twice in a row!!!

• First moment = count w-trees. Apply w-variant of Joyal bijection.

• PROBLEM: The *w*-version of the Joyal bijection is only approximate

- rewiring one edge in fact rewires many edges!!!!
- could create new cycles by accident!
- no independence!
- Second moment: count things which are both w_1 and w_2 trees. Apply w-variant of Joyal bijection twice in a row!!!
- SOLUTION:

We need to control certain bad events under which the bijection fails. Example: a w_1 -lower record contains a w_2 -lower record in its future Final proof is suprisingly messy (with many case disjunctions)

using the w-variant of the exploration process.

- Exact counting of w-trees? (start e.g. with w = aab)
- Do random w-trees converge to the CRT ?
- Problem: improve bounds on the height of a random w-tree and (hopefully) improve our result to something like $\sqrt{n}\sqrt{\log n} \times O_P(1)$.
- Statistics question: I give you a sample of A_w , can you tell me w? (e.g. discriminate aa from ab)

- Exact counting of w-trees? (start e.g. with w = aab)
- Do random w-trees converge to the CRT ?
- Problem: improve bounds on the height of a random w-tree and (hopefully) improve our result to something like $\sqrt{n}\sqrt{\log n} \times O_P(1)$.
- Statistics question: I give you a sample of A_w , can you tell me w? (e.g. discriminate aa from ab)

• Fun fact: we prove the conjecture of Kisielewicz, Kowalski, and Szykuła (2013) about the $n^{0.5}$ exponent. But almost the same day we put our paper on arxiv, Szykuła and Zyzik put a paper going much further in the simulations and saying that the estimate is probably wrong, suggesting $n^{0.55}$ instead...

- Exact counting of w-trees? (start e.g. with w = aab)
- Do random *w*-trees converge to the CRT ?
- Problem: improve bounds on the height of a random w-tree and (hopefully) improve our result to something like $\sqrt{n}\sqrt{\log n} \times O_P(1)$.
- Statistics question: I give you a sample of A_w , can you tell me w? (e.g. discriminate aa from ab)

• Fun fact: we prove the conjecture of Kisielewicz, Kowalski, and Szykuła (2013) about the $n^{0.5}$ exponent. But almost the same day we put our paper on arxiv, Szykuła and Zyzik put a paper going much further in the simulations and saying that the estimate is probably wrong, suggesting $n^{0.55}$ instead...

- Exact counting of w-trees? (start e.g. with w = aab)
- Do random w-trees converge to the CRT ?
- Problem: improve bounds on the height of a random w-tree and (hopefully) improve our result to something like $\sqrt{n}\sqrt{\log n} \times O_P(1)$.
- Statistics question: I give you a sample of A_w , can you tell me w? (e.g. discriminate aa from ab)