Short synchronizing words for random automata

Guillaume Chapuy
CNRS - IRIF - Université Paris Cité - ERC CombiTop
based on joint work with
Guillem Perarnau
Universitat Politècnica de Catalunya

\longrightarrow on arxiv last July: arXiv:2207.14108

Short synchronizing words for random automata

Guillaume Chapuy
CNRS - IRIF - Université Paris Cité - ERC CombiTop
based on joint work with
Guillem Perarnau
Universitat Politècnica de Catalunya

\longrightarrow on arxiv last July: arXiv:2207.14108

Automata, synchronizing words

Automata

- An automaton with n states on $\{a, b\}$ is the data of two functions:

$$
\begin{gathered}
a:[n] \longrightarrow[n] \\
b:[n] \longrightarrow[n]
\end{gathered}
$$

(there are $n^{n} \times n^{n}=n^{2 n}$ such things)

Automata

- An automaton with n states on $\{a, b\}$ is the data of two functions:

$$
\begin{aligned}
& a:[n] \longrightarrow[n] \\
& b:[n] \longrightarrow[n]
\end{aligned}
$$

(there are $n^{n} \times n^{n}=n^{2 n}$ such things)

- Notion of w-transitions: if $v \in[n]$ and $w \in\{a, b\}^{*}$, we can read w starting from v

$$
\text { for example: } w=a b a b b, 1 \xrightarrow{w} 4
$$

Automata

- An automaton with n states on $\{a, b\}$ is the data of two functions:

$$
\begin{aligned}
& a:[n] \longrightarrow[n] \\
& b:[n] \longrightarrow[n]
\end{aligned}
$$

(there are $n^{n} \times n^{n}=n^{2 n}$ such things)

- Notion of w-transitions: if $v \in[n]$ and $w \in\{a, b\}^{*}$, we can read w starting from v

$$
\text { for example: } w=a b a b b, 1 \xrightarrow{w} 4
$$

- Fix a subset $S \subset[n]$. Language recognized by an automaton (not used in this talk)

$$
=\text { set of all words } w \text { s.t. } 1 \xrightarrow{w} s \text { with } s \in S
$$

Recognized by automaton iff. recognized by regular expression All the super nice theory of regular/rational languages (Chomtsky-Schutzenberger) (still full of incredible open problems!!!)

Synchronizing words

- A word w is synchronizing if there exists $v_{0} \in[n]$ such that

$$
v \xrightarrow{w} v_{0} \text { for all } v \in[n]
$$

(think of a reset word. Basic motivation: the german-speaking microwave oven at IRIF)

Here $w=b^{2} a b^{2}$ works.
(b^{2} syncs $1,2,3 \rightarrow 1$ and $4 \rightarrow 4$
then a sends $1,4 \rightarrow 1,2$
so b^{2} again syncs everyone)

Synchronizing words

- A word w is synchronizing if there exists $v_{0} \in[n]$ such that

$$
v \xrightarrow{w} v_{0} \text { for all } v \in[n]
$$

(think of a reset word. Basic motivation: the german-speaking microwave oven at IRIF)

Here $w=b^{2} a b^{2}$ works.

$$
\begin{aligned}
& \left(b^{2} \text { syncs } 1,2,3 \rightarrow 1 \text { and } 4 \rightarrow 4\right. \\
& \text { then } a \text { sends } 1,4 \rightarrow 1,2 \\
& \text { so } b^{2} \text { again syncs everyone) }
\end{aligned}
$$

- Not all automata are synchonizable !!!

(Note: checking synchronizability = easy; finding shortest word $=$ NP-hard)

Shortest synchronizing words?

- Remark (Czerny 1960's)

If A is synchronizable, there is sync word of length $\leq n^{3}$
(synchronize 1,2 with a word w of length $\leq n^{2}$ by pigeonhole on pairs of visited vertices then repeat $n-1$ times)

Shortest synchronizing words?

- Remark (Czerny 1960's)

If A is synchronizable, there is sync word of length $\leq n^{3}$
(synchronize 1,2 with a word w of length $\leq n^{2}$ by pigeonhole on pairs of visited vertices then repeat $n-1$ times)

- Černý's conjecture (1960's) If A is synchronizable, then there is a sync word of length $\leq(n-1)^{2}$
(one of the biggest open problems in automata theory!!!)

Shortest synchronizing words?

- Remark (Czerny 1960's)

If A is synchronizable, there is sync word of length $\leq n^{3}$
(synchronize 1,2 with a word w of length $\leq n^{2}$ by pigeonhole on pairs of visited vertices then repeat $n-1$ times)

- Černý's conjecture (1960's) If A is synchronizable, then there is a sync word of length $\leq(n-1)^{2}$
(one of the biggest open problems in automata theory!!!)

Best results are $\mathrm{cn}{ }^{3}$: [Pin-Frankl 1983] $c=\frac{1}{6}$; [Szykuła 2018] $c=0.1666$ [Shitov 2019] $c=0.1654$

Shortest synchronizing words?

- Remark (Czerny 1960's)

If A is synchronizable, there is sync word of length $\leq n^{3}$
(synchronize 1,2 with a word w of length $\leq n^{2}$ by pigeonhole on pairs of visited vertices then repeat $n-1$ times)

- Černý's conjecture (1960's) If A is synchronizable, then there is a sync word of length $\leq(n-1)^{2}$
(one of the biggest open problems in automata theory!!!)

Best results are $c n^{3}$: [Pin-Frankl 1983] $c=\frac{1}{6}$; [Szykuła 2018] $c=0.1666$ [Shitov 2019] $c=0.1654$

- What about random automata ???
- Conjecture [Cameron 2013] A random automaton is synchronizable w.h.p.

Proved! [Berlinkov 2016] " abstract" proof
[Nicaud 2016] quantitative bound $O\left(n \log (n)^{3}\right)$ for shortest word!

Shortest sync words in random automata (main result!)

- Experiments and...

Conjecture [Kisielewicz, Kowalski, and Szykuła 2013]
The length of the shortest sync word in a uniform random automaton is $\approx \sqrt{n}$ w.h.p !!!
??!! probabilist's view: we should understand where the \sqrt{n} comes from!!! (and prove it!))

Shortest sync words in random automata (main result!)

- Experiments and...

Conjecture [Kisielewicz, Kowalski, and Szykuła 2013] The length of the shortest sync word in a uniform random automaton is $\approx \sqrt{n}$ w.h.p !!!
??!! probabilist's view: we should understand where the \sqrt{n} comes from!!! (and prove it!))

Theorem [GC+ Guillem Perarnau, July 2022]
The conjecture of Kisielewicz, Kowalski, and Szykuła is true! up to a log factor. With high probability, a uniform random automaton has a synchronizing word of length at most $100 \sqrt{n} \log (n)$

Rest of the talk: heuristic of the proof one-letter automata!

One-letter automata (!)

One-letter automata!!!

- A one-letter automata is just a function $a:[n] \longrightarrow[n]$
(i.e. a one-outregular digraph on $[n]$)
- Such an object is a collection of directed cycles with trees attached to them.

One-letter automata!!!

- A one-letter automata is just a function $a:[n] \longrightarrow[n]$
(i.e. a one-outregular digraph on $[n]$)
- Such an object is a collection of directed cycles with trees attached to them.

- It is synchronizable if and only if it is a (cycle-rooted) tree!!!

One-letter automata!!!

- A one-letter automata is just a function $a:[n] \longrightarrow[n]$ (i.e. a one-outregular digraph on $[n]$)
- Such an object is a collection of directed cycles with trees attached to them.

- It is synchronizable if and only if it is a (cycle-rooted) tree!!!

This is happens with probability
$\frac{\mathrm{nb} \text {. of trees }}{\mathrm{nb} \text {. of automata }}=\frac{n^{n-1}}{n^{n}}=\frac{1}{n}$
(this is Cayley's formula!)

One-letter automata!!!

- A one-letter automata is just a function $a:[n] \longrightarrow[n]$ (ie. a one-outregular digraph on $[n]$)
- Such an object is a collection of directed cycles with trees attached to them.

- It is synchronizable if and only if it is a (cycle-rooted) tree!!!

This is happens with probability
$\frac{\mathrm{nb} . \text { of trees }}{\mathrm{nb} . \text { of automata }}=\frac{n^{n-1}}{n^{n}}=\frac{1}{n}$

$$
101
$$

(this is Cayley's formula!)

$$
H \cong \sqrt{n} \text { w.h.p. (!!??) }
$$

A dream....

- Let A be a random 2-letter automaton.

Let A_{w} be the one-letter automaton induced by w-transitions (for some word w)

- Maybe....
A_{w} somehow behaves as a uniform random one-letter automaton...

A dream....

- Let A be a random 2-letter automaton.

Let A_{w} be the one-letter automaton induced by w-transitions (for some word w)

- Maybe....
A_{w} somehow behaves as a uniform random one-letter automaton...
- so maybe...
A_{w} might be a tree with probability $\frac{1}{n}$

A dream....

- Let A be a random 2-letter automaton.

Let A_{w} be the one-letter automaton induced by w-transitions (for some word w)

- Maybe....
A_{w} somehow behaves as a uniform random one-letter automaton...
- so maybe....
A_{w} might be a tree with probability $\frac{1}{n}$
- and maybe....
combinatorics is messy enough so the A_{w} for different w are "somehow independent" (hum...)

A dream....

- Let A be a random 2-letter automaton.

Let A_{w} be the one-letter automaton induced by w-transitions (for some word w)

- Maybe....
A_{w} somehow behaves as a uniform random one-letter automaton...
- so maybe....

$$
A_{w} \text { might be a tree with probability } \frac{1}{n}
$$

- and maybe....
combinatorics is messy enough so the A_{w} for different w are "somehow independent"
- so maybe...

If I try all the words w of length $(1+\epsilon) \log (n)$ (there are $n^{1+\epsilon} \gg n$ of these)
... one w will work.

A dream....

- Let A be a random 2-letter automaton.

Let A_{w} be the one-letter automaton induced by w-transitions (for some word w)

- Maybe....
A_{w} somehow behaves as a uniform random one-letter automaton...
- so maybe....

$$
A_{w} \text { might be a tree with probability } \frac{1}{n}
$$

- and maybe....
combinatorics is messy enough so the A_{w} for different w are "somehow independent"
- so maybe..

If I try all the words w of length $(1+\epsilon) \log (n)$ (there are $n^{1+\epsilon} \gg n$ of these) ... one w will work.

- and maybe...

The automaton A_{w} is not too far from a uniform tree, its height will be $\approx \sqrt{n}$ so the word w^{H} of length $\approx \sqrt{n} \log (n)$ will be synchronizing in $A!!!$

This works!

- Say that the 2-letter automaton A is a w-tree if (the 1-letter aut.) A_{w} is a tree
- Let $N_{k}(A)$ the number of w of length k such that A is a w-tree*.

This works!

- Say that the 2-letter automaton A is a w-tree if (the 1 -letter aut.) A_{w} is a tree
- Let $N_{k}(A)$ the number of w of length k such that A is a w-tree*.

Theorem [GC+ Guillem Perarnau 2022]
For a random 2-letter automaton A on n.

$$
\mathbf{P}\left(N_{k}(A)>0\right) \longrightarrow \begin{cases}0 & , k \leq(1-\epsilon) \log n \\ 1 & , k \geq(1+\epsilon) \log n\end{cases}
$$

This works!

- Say that the 2 -letter automaton A is a w-tree if (the 1 -letter aut.) A_{w} is a tree
- Let $N_{k}(A)$ the number of w of length k such that A is a w-tree*.

Theorem [GC+ Guillem Perarnau 2022]

For a random 2-letter automaton A on n.

$$
\mathbf{P}\left(N_{k}(A)>0\right) \longrightarrow \begin{cases}0, & k \leq(1-\epsilon) \log n \\ 1, & k \geq(1+\epsilon) \log n\end{cases}
$$

so whp there exists w of length $(1+\epsilon) \log (n)$ such that A is a w-tree.
In fact we have $\mathbf{E} N_{k}(A) \sim \frac{n^{1+\epsilon}}{n}=n^{\epsilon}$ and second moment concentration (this is how the pf works)

This works!

- Say that the 2-letter automaton A is a w-tree if (the 1-letter aut.) A_{w} is a tree
- Let $N_{k}(A)$ the number of w of length k such that A is a w-tree*.

Theorem [GC+ Guillem Perarnau 2022]

For a random 2-letter automaton A on n.

$$
\mathbf{P}\left(N_{k}(A)>0\right) \longrightarrow \begin{cases}0, & k \leq(1-\epsilon) \log n \\ 1, & k \geq(1+\epsilon) \log n\end{cases}
$$

so whp there exists w of length $(1+\epsilon) \log (n)$ such that A is a w-tree.
In fact we have $\mathbf{E} N_{k}(A) \sim \frac{n^{1+\epsilon}}{n}=n^{\epsilon}$ and second moment concentration (this is how the pf works)

- It is easy to see that any branch $v \longrightarrow^{*}$ in A_{w} has length $\leq 100 \sqrt{n}$ with probability at least $1-o\left(n^{-3}\right)$ so we can take union bound on all w and on all v to deduce that the height of A_{w} is smaller than $100 \sqrt{n}$.
- we get a synchronizing word w^{H} of length $H \cdot|w|=100(1+\epsilon) \log (n) \sqrt{n}$.

Two proofs from the book of Cayley's formula

New (?) proof of n^{n-1} by exploration - telescopic argument

(related to [Foata-Fuchs 1970])

- Let $a:[n] \longrightarrow[n]$ be a uniform random function.

We reveal a iteratively:

- pick vertex 1 and reveal its future until a cycle is made (at some random time T_{1})
- pick smallest unexplored and reveal its future until it merges with the previous graph or a cycle is made (at some random time T_{2})
...repeat
- until last vertex future is revealed (at some time $T_{k}=n$)

New (?) proof of n^{n-1} by exploration - telescopic argument

(related to [Foata-Fuchs 1970])

- Let $a:[n] \longrightarrow[n]$ be a uniform random function.

We reveal a iteratively:

- pick vertex 1 and reveal its future until a cycle is made (at some random time T_{1})
- pick smallest unexplored and reveal its future until it merges with the previous graph or a cycle is made (at some random time T_{2})
...repeat
- until last vertex future is revealed (at some time $T_{k}=n$)

New (?) proof of n^{n-1} by exploration - telescopic argument

(related to [Foata-Fuchs 1970])

- Let $a:[n] \longrightarrow[n]$ be a uniform random function.

We reveal a iteratively:

- pick vertex 1 and reveal its future until a cycle is made (at some random time T_{1})
- pick smallest unexplored and reveal its future until it merges with the previous graph or a cycle is made (at some random time T_{2})
...repeat
- until last vertex future is revealed (at some time $T_{k}=n$)

New (?) proof of n^{n-1} by exploration - telescopic argument

(related to [Foata-Fuchs 1970])

- Let $a:[n] \longrightarrow[n]$ be a uniform random function.

We reveal a iteratively:

- pick vertex 1 and reveal its future until a cycle is made (at some random time T_{1})
- pick smallest unexplored and reveal its future until it merges with the previous graph or a cycle is made (at some random time T_{2})
...repeat
- until last vertex future is revealed (at some time $T_{k}=n$)

New (?) proof of n^{n-1} by exploration - telescopic argument

(related to [Foata-Fuchs 1970])

- Let $a:[n] \longrightarrow[n]$ be a uniform random function.

We reveal a iteratively:

- pick vertex 1 and reveal its future until a cycle is made (at some random time T_{1})
- pick smallest unexplored and reveal its future until it merges with the previous graph or a cycle is made (at some random time T_{2})
...repeat
- until last vertex future is revealed (at some time $T_{k}=n$)

New (?) proof of n^{n-1} by exploration - telescopic argument

(related to [Foata-Fuchs 1970])

- Let $a:[n] \longrightarrow[n]$ be a uniform random function.

We reveal a iteratively:

- pick vertex 1 and reveal its future until a cycle is made (at some random time T_{1})
- pick smallest unexplored and reveal its future until it merges with the previous graph or a cycle is made (at some random time T_{2})
...repeat
- until last vertex future is revealed (at some time $T_{k}=n$)

New (?) proof of n^{n-1} by exploration - telescopic argument
(related to [Foata-Fuchs 1970])

- Let $a:[n] \longrightarrow[n]$ be a uniform random function.

We reveal a iteratively:

- pick vertex 1 and reveal its future until a cycle is made (at some random time T_{1})
- pick smallest unexplored and reveal its future until it merges with the previous graph or a cycle is made (at some random time T_{2})
...repeat
- until last vertex future is revealed (at some time $T_{k}=n$)

$$
\mathbb{P}\left(\text { get a } r_{\text {nee }} \mid T_{1}, \ldots, T_{k}, k\right)=\frac{1}{T_{1}} \times \frac{T_{1}}{T_{2}} \times \frac{T_{2}}{T_{3}} \cdots \times \frac{T_{k-1}}{T_{k}}=\frac{1}{n} \operatorname{ged}\binom{1}{0}
$$

New (?) proof of n^{n-1} by exploration - telescopic argument

(related to [Foata-Fuchs 1970])

- Let $a:[n] \longrightarrow[n]$ be a uniform random function.

We reveal a iteratively:

- pick vertex 1 and reveal its future until a cycle is made (at some random time T_{1})
- pick smallest unexplored and reveal its future until it merges with the previous graph or a cycle is made (at some random time T_{2})
...repeat
- until last vertex future is revealed (at some time $T_{k}=n$)

$\mathbb{P}\left(\right.$ grakeel $\left.T_{1}, \cdots T_{k}, k\right)=\frac{1}{T_{1}} \times \frac{T_{1}}{T_{2}} \times \frac{T_{2}}{T_{3}} \cdots \cdots \times \frac{T_{k-1}}{T_{k}}=\frac{1}{n} \quad \operatorname{ged}(!)$

Joyal's bijection

- Let $a:[n] \longrightarrow[n]$ be a function.

Remove the edge after the minimum in each cycle and concatenate by decreasing minima.

Joyal's bijection

- Let $a:[n] \longrightarrow[n]$ be a function.

Remove the edge after the minimum in each cycle and concatenate by decreasing minima.

Joyal's bijection

- Let $a:[n] \longrightarrow[n]$ be a function.

Remove the edge after the minimum in each cycle and concatenate by decreasing minima.

One obtains a doubly marked tree (rewired edges = lower records on the branch) so $n \times$ rooted trees $=n^{n}$

Joyal's bijection

- Let $a:[n] \longrightarrow[n]$ be a function.

Remove the edge after the minimum in each cycle and concatenate by decreasing minima.

One obtains a doubly marked tree (rewired edges = lower records on the branch) so $n \times$ rooted trees $=n^{n}$

- This is super powerful: a random tree and a random function differ only on $O(\log (n))$ edges!

Our proof

- First moment $=$ count w-trees. Apply w-variant of Joyal bijection.

Our proof

- First moment $=$ count w-trees. Apply w-variant of Joyal bijection.

- PROBLEM: The w-version of the Joyal bijection is only approximate
- rewiring one edge in fact rewires many edges!!!!
- could create new cycles by accident!
- no independence!

Our proof

- First moment $=$ count w-trees. Apply w-variant of Joyal bijection.

- PROBLEM: The w-version of the Joyal bijection is only approximate
- rewiring one edge in fact rewires many edges!!!!
- could create new cycles by accident!
- no independence!
- Second moment: count things which are both w_{1} and w_{2} trees.

Apply w-variant of Joyal bijection twice in a row!!!

Our proof

- First moment $=$ count w-trees. Apply w-variant of Joyal bijection.

- PROBLEM: The w-version of the Joyal bijection is only approximate
- rewiring one edge in fact rewires many edges!!!!
- could create new cycles by accident!
- no independence!
- Second moment: count things which are both w_{1} and w_{2} trees.

Apply w-variant of Joyal bijection twice in a row!!!

- SOLUTION:

We need to control certain bad events under which the bijection fails. Example: a w_{1}-lower record contains a w_{2}-lower record in its future Final proof is suprisingly messy (with many case disjunctions) using the w-variant of the exploration process.

Open problems

- Exact counting of w-trees? (start e.g. with $w=a a b$)
- Do random w-trees converge to the CRT ?
- Problem: improve bounds on the height of a random w-tree and (hopefully) improve our result to something like $\sqrt{n} \sqrt{\log n} \times O_{P}(1)$.
- Statistics question: I give you a sample of A_{w}, can you tell me w ?
(e.g. discriminate $a a$ from $a b$)

Open problems

- Exact counting of w-trees? (start e.g. with $w=a a b$)
- Do random w-trees converge to the CRT ?
- Problem: improve bounds on the height of a random w-tree and (hopefully) improve our result to something like $\sqrt{n} \sqrt{\log n} \times O_{P}(1)$.
- Statistics question: I give you a sample of A_{w}, can you tell me w ?
(e.g. discriminate $a a$ from $a b$)
- Fun fact: we prove the conjecture of Kisielewicz, Kowalski, and Szykuła (2013) about the $n^{0.5}$ exponent. But almost the same day we put our paper on arxiv, Szykuła and Zyzik put a paper going much further in the simulations and saying that the estimate is probably wrong, suggesting $n^{0.55}$ instead...

Open problems

- Exact counting of w-trees? (start e.g. with $w=a a b$)
- Do random w-trees converge to the CRT ?
- Problem: improve bounds on the height of a random w-tree and (hopefully) improve our result to something like $\sqrt{n} \sqrt{\log n} \times O_{P}(1)$.
- Statistics question: I give you a sample of A_{w}, can you tell me w ?
(e.g. discriminate $a a$ from $a b$)
- Fun fact: we prove the conjecture of Kisielewicz, Kowalski, and Szykuła (2013) about the $n^{0.5}$ exponent. But almost the same day we put our paper on arxiv, Szykuła and Zyzik put a paper going much further in the simulations and saying that the estimate is probably wrong, suggesting $n^{0.55}$ instead...

Open problems

- Exact counting of w-trees? (start e.g. with $w=a a b$)
- Do random w-trees converge to the CRT ?
- Problem: improve bounds on the height of a random w-tree and (hopefully) improve our result to something like $\sqrt{n} \sqrt{\log n} \times O_{P}(1)$.
- Statistics question: I give you a sample of A_{w}, can you tell me w ?
(e.g. discriminate $a a$ from $a b$)

