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Exercise 0 � Warmup

1. How many faces do the following maps have? What is their genus?

2. Can you add one edge (and no vertex) to the �rst map on the left to create a map of genus 1?
a map with 4 faces? a map of genus 1 with 4 faces?

3. Can you add one edge to the second map to create a map with 2 faces? a map of genus 2?

4. Draw the 2 (resp. 9) rooted planar maps with 1 (resp. 2) edges.

Exercise 1 � Warmup - generating functions

1. Let A be a family of combinatorial objects with a size function | · | : A → N, and let A(z) =∑
α∈A z

|α|. Let B be a second such family and de�ne B(z) similarly. Show that A(z)B(z) =∑
(α,β)∈A×B z

|α|+|β|. Explain to the members of your group why this can be useful to do combi-

natorics.

2. Let A,B as in the previous question and let A(z) =
∑

α∈A
z|α|

|α|! =
∑

n≥0
zn

n! an, where an is

the number of objects of size n in A. De�ne B(z) and bn similarly. Show that A(z)B(z) =∑
n≥0

zn

n!

(∑n
k=0

(
n
k

)
akbn−k

)
. Explain to the members of your group why this can be useful to

do combinatorics.

3. Let as in the lecture C(z) = 1 + z + 2z2 + 5z3 + · · · =
∑

n cnz
n be the (ordinary) generating

function of rooted planes trees by the number of edges. Deduce from the isomorphism C ≈
{•}+ {edge} × C2 that C(z) = 1 + zC(z)2.

4. (confusing and unnatural) We consider rooted plane trees as in the previous question, but in

which moreover the edges are labelled. Let D(z) =
∑

n dn
zn

n! be the (exponential) generating

function of these objects, where dn is the number of rooted plane trees with n labelled edges.

Deduce from the isomorphism D ≈ {•} + {edge} × D2 that D(z) = 1 + zD(z)2. Show that

dn = n!cn in two di�erent ways (one bijective, one with generating functions).

5. Think about this: in generating functions, everything works the same if I replace α 7→ z|α| by α 7→
z|α|wα where wα is some weight associated to the objects in A which behaves multiplicatively

under the cartesian product. What are typical examples of such weights?
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Exercise 2 � The Tutte equation for planar maps.

The historical starting point of the decomposition equations we write in the lectures are the
equations written by Tutte in a series of papers in the 1960's dedicated to the enumeration of
planar maps. Let's look at the most famous one now.

1. We let an,k be the number of rooted (connected) planar maps with n edges whose root face (face

containing the root corner) has degree k, and we let1

F (t, x) :=
∑

n≥0
k≥0

an,kt
nxk = 1 + t(x+ x2) + . . .

be the corresponding generating function. Show that

F (t, x) = 1 + tx2F (t, x)2 + t∆F (t, x),

where ∆ is the linear operator ∆ : xk 7→ x+ x2 + · · ·+ xk+1.

2. Show that ∆G(t, x) = xxG(t,x)−G(t,1)
x−1 for any G ∈ Q[x][[t]]. Rewrite the previous equation for

F (t, x) in explicit form. Does this equation determine F (t, x)? Is it an algebraic equation?

3. Write the previous quadratic equation in the form (g1F +g2)
2 = g3, with F = F (t, x) and where

g1, g2, g3 may depend on the (unknown) univariate function F (t, 1). Show that there is a unique

formal power series X(t) such that g1F + g2 vanishes for x = X(t).

4. Deduce that g3

∣∣∣
x=X(t)

and
(
∂
∂xg3

) ∣∣∣
x=X(t)

vanish. Explain how to compute F (t, 1) from there.

5. If you can, do it explicitly with Maple or you favourite computer algebra software. If you reach

the end without mistake you will �nd the amazing formula, due to Tutte:

[tn]F (t, 1)
2 · 3n
n+ 2

Cat(n),

which is the founding stone of map enumeration! Or, equivalently, 27f2t2− 18ft+ f + 16t− 1.

6. Re�ne the equation of question 1 by taking all face degrees into account (i.e. introduce a variable

pk for each k ≥ 1, marking faces of degree k).

Cultural note 1: The equation of this exercise is a fundamental example of a polynomial "equa-

tion with one catalytic variable", i.e. an equation for a bivariate function F (t, x) involving not

only F (t, x) but also F (t, 1). The method of resolution we employed is the "quadratic method"

of Tutte and Brown, which is a special case of the very general method of Bousquet-Mélou and

Jehanne, which says that solutions are always algebraic for any such equation, under reasonable

hypotheses. It also contains many examples, in particular the case of face-degrees of question 6

(�rst solved by Bender and Can�eld). Reading (parts of) the BMJ paper is highly recommended!

The solution of the present equation is also nicely presented in the book of Flajolet-Sedgewick,

page 529 (also recommended!).

Cultural note2: One can write similar equations for the generating function Fg(t;x1, . . . , xk) of
maps of genus g having "k root faces", and compute them (in principle) by induction on k+ 2g.
This was done by Bender and Can�eld in 1986 who proved in this way that the number of

rooted maps with n edges and genus g grows as tgn
5
2
(g−1)12n for some constant tg > 0. The

subject has been revived in mathematical physics with the Eynard-Orantin theory of topological

recursion which is a very e�cient way to compute these functions by induction, see e.g. the book

"Counting surfaces" by Eynard. Only once you have solved all exercises you can try to write

these equations (see my AEC lectures notes if you don't manage).

Exercise 3 � Permutation counting

1We conventionnally admit an "empty map" with 1 isolated vertex, 0 edge, and 1 (root) face of degree 0,
hence the term 1 in the expansion.
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1. Show that the number of labelled bipartite maps with n edges is n!2.

2. Show that there is a 1-to-(n− 1)! correspondence between rooted2 bipartite maps with n edges,

and connected labelled bipartite maps with n edges.

3. Deduce that the ordinary generating function of rooted (connected) bipartite maps by the num-

ber of edges is
td

dt
ln
∑

n≥0
n!tn.

Exercise 4 � Some leftovers from the lectures

1. As in the lectures, for a partition λ ` n, let Cλ be the set of permutations of cycle-type λ, and
let Kλ ∈ C[Sn] de�ned by

Kλ :=
∑

σ∈Cλ

σ.

Show that the Kλ for λ ` n commute with any other element of C[Sn].

2. For 1 ≤ i ≤ n, let C[Sn] 3 Ji := (1, i) +(2, i) + · · ·+ (i−1, i) be the i-th Jucys-Murphy element.

Show that the Ji commute with each other. Show that

n∏

i=1

(u+ Ji) =
∑

σ∈Sn

u`(σ)σ.

3. Let M ∈ Matk×k and let (M ·) be the linear operator acting on Matk×k by multiplication by

M :

(M ·) : A 7−→MA.

Show that Tr(M ·) = kTrM.

Exercise 5 � Symmetric functions

To learn symmetric function theory, a very good read is Stanley, Enumerative Combinatorics,
vol 2, Chapter 7. This exercise contains the minimal steps to make the lectures self-contained.
In particular we prove the rules to multiply/di�erentiate a Schur function by pm, starting only
from the SSYT de�nition.

1. Prove that Schur functions, de�ned as generating functions of semistandard Young tableaux,

are symmetric. (Hint: show that they are symmetric under xi ↔ xi+1 for any i ≥ 1.)

2. Show that the Schur basis is triangular (in some sense) w.r.t. the monomial basis, and deduce

that (sλ)λ`n is a basis of Λn, the space of homogeneous symmetric functions of degree n (and

in fact even a Z-basis, if one works with Z rather than Q or C).

3. In this question and the next we work with a �nite number k of variables, i.e. we assume

x = (x1, . . . , xk, 0, 0, . . . ). For a sequence (β1, . . . , βk) of integers we let aβ := det((xi)
βj )1≤i,j≤k.

We let ρ := (k − 1, k − 2, . . . , 0).

Let µ = (µ1, . . . , µk) be a partition with at most k parts, and let s̃µ :=
aρ+µ
aµ

. Our goal is to

prove that, as claimed in the lectures, sµ(x) = s̃µ(x), where we recall

sµ(x) =
∑

T∈SSY T (µ)

∏

i

x
mTi
i ,

where mT
i is the number of entries equal to i in the tableau T . First prove that

aρsµ =
∑

T∈SSY T (µ)

aρ+mT .

2We recall that by convention a rooted map is always connected. Moreover by convention let us say that the
root vertex of a rooted bipartite map is always white.

3



4. Let Tµ be the tableau in which the i-th row is �lled only with the letter i, for any i ≥ 1. Prove
that all the tableaux T ∈ SSY T (µ) \ {Tµ} can be grouped together in pairs {T, T̂} such that

aρ+mT + a
ρ+mT̂

= 0.

Hint: Scan the tableau from right to left and �nd the �rst column, then �rst row, where the
tableau di�ers from Tµ. Then be creative!

5. Deduce that sµ = s̃µ. You have just proved that the "tableau de�nition" and "bialternant
de�nition" of Schur functions are equivalent! Congratulations!

6. Using the bialternant de�nition of Schur functions, prove the rule to multiply a Schur function

by a powersum pm, called the Murnaghan-Nakayama rule:

pmsλ =
∑

R

ε(R)sλ]R

where the sum is taken over all ribbons R of size m that can be added to λ to form a larger

partition, and ε(R) = (−1)h(R)−1 where h(R) is the number of rows of R.

(Hint: what does adding a ribbon of size m do to the sequence (λi − i) ??)

7. Let S ∈ {0, 1}Z be an in�nite word, such that S−i = 1 and Si = 0 for i > n0, for some n0 ≥ 0.
Let m ≥ 1 and let a = |{j, Sj = 1, Sj+m = 0}|, b = |{j, Sj = 0, Sj+m = 1}. Show that

a− b = m.

8. (*) Deduce from the two previous questions the dual rule that we use in the lectures:

m
∂

∂pm
sλ =

∑

R

ε(R)sλ\R,

where the sum is taken over all ribbons R of size m that can be removed from λ to form a

smaller partition.

(Hint: introduce the operators g+, g−, that act on Schur functions by adding/removing a ribbon
of size m as in the RHS of the last two equations. Show (bijectively!) that [g−, g+] = m (the
multiplication by m). Show also that [m ∂

∂pm
, pm] = m and conclude.

Exercise 6 � Rooted maps, labelled maps

Recall that for partitions λ, µ, ν of the same integer n, Bλ,µ,ν counts labelled bipartite maps with
n edges of pro�le (λ, µ, ν). Equivalently,

Bλ,µ,ν = |{(σ◦, σ•, σ�) ∈ Cλ × Cµ × Cν , σ◦σ•σ� = 1}|.

As in the lecture we let F ≡ F (t;p,q, r) be the exponential generating function of these numbers:

F :=
∑

n≥0

tn

n!

∑

λ,µ,ν`n
Bλ,µ,νpλqµrν .

Here we recall that variables are extended multiplicatively from integers to partitions, i.e. pλ :=∏
i pλi , etc. In the generating function F , the variables pi, qj , rk mark respectively the white

vertices of degree i, black vertices of degree j, faces of degree 2k of the underlying bipartite maps,
while t marks the edges.

1. Let Bconn
λ,µ,ν counts the same (labelled) objects as Bλ,µ,ν , but with the additional condition that

the map is connected, and let F conn the corresponding generating function. Give a relation

between F conn and F .

2. We let Broot
λ,µ,ν be the number of rooted (connected, and not labelled) bipartite maps of pro�le

λ, µ, ν, and F root their ordinary generating function:

F root :=
∑

n≥0
tn

∑

λ,µ,ν`n
Broot
λ,µ,νpλqµrν .
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Show that

F root =
td

dt
lnF.

Deduce that τ root = td
dt ln τ , where τ, τ root are obtained from F, F root by the substitution r =

(u, u, . . . ).

3. In the lecture we obtained an equation of the form md
dqm

τ = tmBmτ for a certain operator Bm.
Deduce from this that

td

dt
τ = Λτ

for an operator Λ explicitly expressed in terms of the Bm.

4. (*) In the lecture we show that the operators Bm are computable inductively by mBm =
[Ω, Bm−1] for an explicit operator Ω. Show that in fact B1 and Ω belong to the Lie algebra gen-

erated by p1 and the "cut and join" operator D =
∑

i,j≥1 ijpi+j∂
2/(∂pi∂pj)+(i+j)pipj∂/∂pi+j .

Show that we have τ = exp (Γ(t)) where the operator Γ(t) belongs to the formal Lie algebra

generated by p1 and D.

Cultural note: p1 and D both belong to a very special in�nite dimensional Lie algebra of di�er-

ential operators called ĝl(∞), therefore Γ also does. A function of the form exp (Γ) is called a

tau-function of the Kadomstev-Petiashvili (KP) hierarchy. Such functions are characterised by

an in�nite set of partial di�erential equations. For example the �rst one is:

− ∂2

∂p3∂p1
f +

∂2

∂p2∂p2
f +

1

12

∂4

(∂p1)4
f +

1

2

(
∂2

(∂p1)2
f

)2

= 0,

written here in terms of f = ln τ . This equation, in the case of our function τ counting bipartite

maps, has stunning consequences, but no direct combinatorial interpretation!!! See e.g. C.-

Carrell 2014 and the discussion in conclusion of that paper.

5. (*) Write a (very non linear) equation directly for τ conn.

5


