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Abstract. A unicellular map is the embedding of a connected graph in a surface in such a way that the complement
of the graph is a topological disk. In this paper we give a bijective operation that relates unicellular maps on a non-
orientable surface to unicellular maps of a lower topological type, with distinguished vertices. From that we obtain a
recurrence equation that leads to (new) explicit counting formulas for non-orientable precubic (all vertices of degree
1 or 3) unicellular maps of fixed topology. We also determine asymptotic formulas for the number of all unicellular
maps of fixed topology, when the number of edges goes to infinity. Our strategy is inspired by recent results obtained
for the orientable case [Chapuy, PTRF, to appear], but significant novelties are introduced: in particular we construct
an involution which, in some sense, ”averages” the effects of non-orientability.

Résuḿe.Une carte unicellulaire est le plongement d’un graphe connexe dans une surface, tel que le complémentaire
du graphe est un disque topologique. On décrit une opération bijective qui relie les cartes unicellulaires sur une surface
non-orientable aux cartes unicellulaires de type topologique inférieur, avec des sommets marqués. On en déduit une
récurrence qui conduit à de (nouvelles) formules closes d’énumération pour les cartes unicellulaires précubiques
(sommets de degré1 ou 3) de topologie fixée. On obtient aussi des formules asymptotiques pour le nombre total de
cartes unicellulaires de topologie fixée, quand le nombre d’arêtes tend vers l’infini. Notre stratégie est motivée par de
récents résultats dans le cas orientable [Chapuy, PTRF, `a paraı̂tre], mais d’importantes nouveautés sont introduites:
en particulier, on construit une involution qui, en un certain sens, ”moyenne” les effets de la non-orientabilité.
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1 Introduction
A mapis an embedding of a connected graph in a (2-dimensional, compact, connected) surface considered
up to homeomorphism. Byembedding, we mean that the graph is drawn on the surface in such a way that
the edges do not intersect and thefaces(connected components of the complementary of the graph) are
simply connected. Maps are sometimes referred to asribbon graphs, fat-graphs, and can be defined
combinatorially rather than topologically as is recalled in Section 2. A map isunicellular if is has a single
face. For instance, the unicellular maps on the sphere are the plane trees.
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In this paper we consider the problem of counting unicellular maps by the number of edges, when the
topology of the surface is fixed. In the orientable case, thisquestion has a respectable history. The first
formula for the numberǫg(n) of orientable unicellular maps withn edges andn + 1− 2g vertices (hence
genusg) was given by Lehman and Walsh in [WL72], as a sum over the integer partitions of sizeg.
Independently, Harer and Zagier found a simple recurrence formula for the numbersǫg(n) [HZ86]. Part
of their proof relied on expressing the generating functionof unicellular maps as a matrix integral. Other
proofs of Harer-Zagier’s formula were given in [Las01, GN05]. Recently, Chapuy [Cha09], extending
previous results for cubic maps [Cha10], gave a bijective construction that relates unicellular maps of a
given genus to unicellular maps of a smaller genus, hence leading to a new recurrence equation for the
numbersǫg(n). In particular, the construction in[Cha09] gives a combinatorial interpretation of the fact
that for eachg the numberǫg(n) is the product of a polynomial inn times then-th Catalan number.

For non-orientable surfaces, results are more recent. The interpretation of matrix integrals over the
Gaussian Orthogonal Ensemble (space of real symmetric matrices) in terms of maps was made explicit in
[GJ97]. Ledoux [Led09], by means of matrix integrals and orthogonal polynomials, obtained for unicel-
lular maps on general surfaces a recurrence relation which is similar to the Harer-Zagier one. As far as we
know, no direct combinatorial nor bijective technique havesuccessfully been used for the enumeration of
a family of non-orientable maps until now.

A unicellular map isprecubicif it has only vertices of degree1 and3: precubic unicellular maps are
a natural generalization of binary trees to general surfaces. In this paper, we show that for allh ∈ 1

2N,
the number of precubic unicellular maps of sizem on the non-orientable surface of Euler Characteristic
2 − 2h is given by an explicit formula, which has the form of a polynomial in m times themth Catalan
number forh ∈ N, and of a polynomial times4m if h 6∈ N. These formulas, and our main results, are
presented in Section 3. Our approach, which is completely combinatorial, is based on two ingredients.
The first one, inspired from the orientable case [Cha10, Cha09], is to consider some special vertices called
intertwined nodes, whose deletion reduces the topological typeh of a map. The second ingredient is of
a different nature: we show that, among non-orientable mapsof a given topology and size, theaverage
numberof intertwined nodes per map can be determined explicitly. This is done thanks to anaveraging
involution, which is described in Section 4. This enables us to find a simple recurrence equation for the
number of precubic unicellular maps by the number of edges and the topological type. As in the orientable
case, an important feature of our recurrence is that it is recursiveonly on the topological type, contrarily
to equations of the Harer-Zagier type [HZ86, Led09], where also the number of edges vary. It is then easy
to iterate the recurrence, to obtain the promised counting formulas for precubic maps.

In the case ofgeneral(not necessarily precubic) unicellular maps, our approachdoes not workexactly,
but it does work, in some sense,asymptotically. We obtain, with the same technique, the asymptotic
number of non-orientable unicellular maps of fixed topology, when the number of edges tends to infinity.
As far as we know, these formulas, and the ones for precubic maps, never appeared before in the literature.

2 Topological considerations
2.1 Classical definitions of surfaces and maps
Surfaces. Our surfacesare compact, connected, 2-dimensional manifolds. We consider surfaces up to
homeomorphism. For any non-negative integerg, we denote bySg the g-torus, that is, the orientable
surface obtained by addingg handlesto the sphere. For any positivehalf-integerh, we denote byNh
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the non-orientable surface obtained by adding2h cross-capsto the sphere. Hence,S0 is the sphere,S1

is the torus,N1/2 is the projective plane andN1 is the Klein bottle. Thetypeof the surfaceSh or Nh is
the numberh ∈ {0, 1

2 , 1, 3
2 , . . .} By the theorem of classification, each orientable surface ishomeomor-

phic to one of theSg and each non-orientable surface is homeomorphic to one of theNh (see e.g. [MT01]).

Maps as graphs embedding.Ourgraphsare finite and undirected; loops and multiple edges are allowed.
A mapis an embedding (without edge-crossings) of a connected graph into a surface, in such a way that
thefaces(connected components of the complement of the graph) are simply connected. Maps are always
considered up to homeomorphism. A map isunicellular if it has a single face.

Each edge in a map is made of twohalf-edges, obtained by removing its middle-point. Thedegreeof a
vertex is the number of incident half-edges. Aleaf is a vertex of degree 1. Acornerin a map is an angular
sector determined by a vertex, and two half-edges which are consecutive around it. The total number of
corners in a map equals the number of half-edges which is twice the number of edges. A map isrooted
if it carries a distinguished half-edge called theroot, together with a distinguished side of this half-edge.
The vertex incident to the root is theroot vertex. The unique corner incident to the root half-edge and its
distinguished side is theroot corner. From now on, all maps are rooted.

The typeof a map is the type of the underlying surface. Ifm is a map, we letv(m), e(m), f(m) and
h(m) be its numbers of vertices, edges, faces, and its type. Thesequantities satisfy theEuler formula:

e(m) = v(m) + f(m) + 2 − 2h(m). (1)

Maps as graphs with rotation systems and twists.Let G be a graph. To each edgee of G correspond
two half-edges, each of them incident to an endpoint ofe (they are both incident to the same vertex if
e is a loop). Arotation systemfor G is the choice, for each vertexv of G, of a cyclic ordering of the
half-edges incident tov. We now explain the relation between maps and rotation systems. Our surfaces
are locally orientable and anorientation conventionfor a mapm is the choice of an orientation, called
counterclockwise orientation, in the vicinity of each vertex. Any orientation conventionfor the mapm
induces a rotation system on the underlying graph, by takingthe counterclockwise ordering of appearance
of the half-edges around each vertex. Given an orientation convention, an edgee = (v1, v2) of m is atwist
if the orientation conventions in the vicinity of the endpointsv1 andv2 are not simultaneously extendable
to an orientation of a vicinity of the edgee; this happens exactly when the two sides ofe appear in the
same order when crossed clockwise aroundv1 and clockwise aroundv2. Therefore a map together with
an orientation convention defines both a rotation system anda subset of edges (the twists). Theflip of a
vertexv consists in inverting the orientation convention at that vertex. This changes the rotation system
at v by inverting the cyclic order on the half-edges incident tov, and changes the set of twists by the fact
that non-loop edges incident toe become twist if and only if they were not twist (while the status of the
other edges remain unchanged). The next lemma is a classicaltopological result (see e.g. [MT01]).

Lemma 1 A map (and the underlying surface) is entirely determined bythe triple consisting of its (con-
nected) graph, its rotation system, and the subset of its edges which are twists. Conversely, two triples
define the same map if and only if one can be obtained from the other by flipping some vertices.

By the lemma above, we can represent maps of positive types ona sheet of paper as follows: we draw
the graph (with possible edge crossings) in such a way that the rotation system at each vertex is given by
the counterclockwise order of the half-edges, and we indicate the twists by marking them by a cross (see
e.g. Figure 1). The faces of the map are in bijection with thebordersof that drawing, which are obtained
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by walking along the edge-sides of the graph, and using the crosses in the middle of twisted edges as
”crosswalks” that change the side of the edge along which oneis walking (Figure 1). Observe that the
number of faces of the map gives the type of the underlying surface using Euler formula.

Fig. 1: A representation of a map on the Klein bottle with three
faces. The border of one of them is distinguished in dotted lines.

tour

tour

(a) (b)

(c)

border of
the face

Fig. 2: (a) a twist; (b) a left corner; (c) a right
corner.

2.2 Unicellular maps, tours, and canonical rotation system
Tours of unicellular maps. Let m be a unicellular map. By definition,m has a unique face. Thetour of
the mapm is done by following the edges ofm starting from the root corner along the distinguished side
of the root half-edge, until returning to the root-corner. Sincem is unicellular, every corner is visited once
during the tour. An edge is saidtwo-waysif it is followed in two different directions during the tourof
the map (this is always the case on orientable surfaces), andis saidone-wayotherwise. The tour induces
anorder of appearanceon the set of corners, for which the root corner is the least element. We denote by
c < d if the cornerc appears before the cornerd along the tour. Lastly, given an orientation convention,
a corner is saidleft if it lies on the left of the walker during the tour of map, andright otherwise (Figure 2).

Canonical rotation-system.As explained above, the rotation system associated to a map is defined up
to the choice of an orientation convention. We now explain how to choose a particular convention which
will be well-suited for our purposes. A map is saidprecubicif all its vertices have degree1 or 3, and its
root-vertex has degree 1. Letm be a precubic unicellular map. Since the vertices ofm all have an odd
degree, there exists a unique orientation convention at each vertex such that the number of left corners is
more than the number of right corners (indeed, by flipping a vertex we exchange its left and right corners).
We callcanonicalthis orientation convention. From now on,we will always use the canonical orientation
convention. This defines canonically a rotation system, a set oftwists, and a set ofleft/right corners.
Observe that the root corner is a left corner (as is any cornerincident to a leaf) and that vertices of degree
3 are incident to either2 or 3 left corners. We have the following additional property.

Lemma 2 In a (canonically oriented) precubic unicellular map, two-ways edges are incident to left cor-
ners only and are not twists.

Proof: Let e be a two-ways edge, and letc1, c2 be two corners incident to the same vertex and separated
bye (c1 andc2 coincide ifv has degree 1). Sincee is two-ways, the cornersc1, c2 are either simultaneously
left or simultaneously right. By definition of the canonicalorientation, they have to be simultaneously
left. Thus two-way edges are only incident to left corners. Therefore two-ways edges are not twists since
following a twisted edge always leads from a left corner to a right corner or the converse. 2
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2.3 Intertwined nodes.
We now define a notion ofintertwined nodewhich generalizes the definition given in [Cha10] for precubic
maps on orientable surfaces.

Definition 1 Let m be a (canonically oriented) precubic unicellular map, letv be a vertex of degree 3,
and letc1, c2, c3 be the incident corners in counterclockwise order aroundv, with the convention thatc1

is the first of these corners to appear during the tour ofm.

• The vertexv is an intertwined nodeif c3 appears beforec2 during the tour ofm.
• Moreover, we say thatv has flavorA if it is incident to three left corners. Otherwise,v is incident to

exactly one right corner, and we say thatv is of flavorB, C, or D respectively, according to whether
the right corner isc1, c2 or c3.

Observe that the definition of the canonical orientation wasa prerequisite to define intertwined nodes. We
will now show that intertwined nodes are exactly the ones whose deletion decreases the type of the map
without disconnecting it.

Theopeningof an intertwined node of a mapm is the operation consisting in splitting this vertex into
three (marked) vertices of degree1, as in Figure 3. That is, we define a rotation system and set of twists
of the embedded graphn obtained in this way (we refrain from calling it a map yet, since it is unclear that
it is connected) as the rotation system and set of twists inherited from the original mapm.

v

opening

map m map n

Fig. 3: Opening an intertwined node.

c1

c3
c2 d1

d3
d2

from w1

to w2

to w3

to w4

from w2

from w3

from w1

to w3to w2

from w3

to w4

from w2

w(m)=w1c1w2c3w3c2w4 w(n)=w1d1w3d2w2d3w4

Fig. 4: The tours ofm andn, in the case of flavorB.

Proposition 1 Let n be a positive integer and letg be in {1, 3/2, 2, 5/2, . . .}. For each flavorF in
{A,B,C,D}, the opening operation gives a bijection between the set of precubic unicellular maps with
n edges, typeh, and a distinguished intertwined node of flavorF , and the set of precubic unicellular maps
with n edges, typeh− 1 and three distinguished vertices of degree1. The converse bijection is called the
gluing of flavorF .

Moreover, if a precubic unicellular mapm is obtained from a precubic unicellular mapn of lower type
by a gluing of flavorF , thenm is orientable if and only ifn is orientable andF = A.

We omit the proof of the Proposition. However, let us give a ”picture” of what happens, in the case of
flavorB. If m is a unicellular map, andv is an intertwined node ofm, then the sequence of corners appear-
ing during the tour ofm has the formw(m) = w1c1w2c3w3c2w4, wherec1, c2, c3 are as in Definition 1,
andw1, w2, w3, w4 are sequences of corners. Now, letn be the map obtained by openingm at v. If v
has flavorB, then by following the edges of the mapn, starting from the root, one gets the sequence of
cornersw(n) = w1d1w3d2w2d3w4, wherew3 is themirror word of w3, as can be seen from Figure 4
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(we used three new lettersd1, d2, d3 for the three corners of degree1 appearing after the opening). Since
this sequence contains all the corners ofn, we know thatn is a unicellular map, and since it has two more
vertices thanm, its type ish(n) = h(m) − 1 (by Euler’s formula).

Conversely, given a unicellular mapn with three distinguished leavesd1, d2, d3, the gluing of flavor
B can be defined by identifying these three vertices to a singlevertexv, and then choosing the rotation
system and the twisted edges atv appropriately to ensure that the resulting mapm is unicellular, and that
v is an intertwined node of flavorB in m.

The last statement of the Proposition is a consequence of thefact that a precubic unicellular map is
orientable if and only if it has left-corners only in its canonical orientation.

3 Main results.
3.1 The number of precubic unicellular maps.
In this section, we present our main results, which rely on two facts. The first one is Proposition 1, which
enables us to express the number of precubic unicellular maps of typeh carrying a distinguished inter-
twined node in terms of the number of maps of a smaller type. The second one is the fact that, among
maps of typeh and fixed size, the average number of intertwined nodes in a map is 2h − 1. This last
fact, which is technically the most difficult part of this paper, relies on the existence of an ” averaging
involution”, which will be described in Section 4.

Leth ≥ 1 be an element of12N, and letm ≥ 1 be an integer. Givenm andh, we letn = 2m+1h∈N, and
we letOh(m) andNh(m), respectively, be the sets of orientable and non-orientable precubic unicellular
maps of typeh with n edges. We letξh(m) andηh(m), respectively, be the cardinality ofOh(m) and
Nh(m).

In order to use Proposition 1, we first need the following easyconsequence of Euler’s formula:

Lemma 3 Let l ∈ 1
2N and letm be a precubic unicellular map of typel with n = 2m+1l∈N edges. Then

m hasm + (−1)2l − 3⌊l⌋ non-root leaves, where⌊l⌋ = l − 1
21l 6∈N denotes the integer part ofl.

From the lemma and Proposition 1, the numberηinter
h (m) of non-orientableunicellular precubic maps

of typeh with n edges carrying a distinguished intertwined node equals:

ηinter
h (m) = 4

(

m′ − 3⌊h− 1⌋
3

)

ηh−1(m) + 3

(

m′ − 3⌊h − 1⌋
3

)

ξh−1(m), (2)

wherem′ = m + (−1)2h. Here, the first term accounts for intertwined nodes obtained by gluing three
leaves in anon-orientablemap of typeh − 1 (in which case the flavor of the gluing can be eitherA, B, C
or D), and the second term corresponds to the case where the starting map of typeh − 1 is orientable(in
which case the gluing has to be of flavorB, C or D to destroy the orientability).

The keystone of this paper, which will be discussed in the next section, is the following result:

Proposition 2 There exists and involutionΦ of Nh(m) such that for all mapsm ∈ Nh(m), the total
number of intertwined nodes in the mapsm andΦ(m) is 4h − 2. In particular, the average number of
intertwined nodes of elements ofNh(m) is (2h − 1), and one hasηinter

h (m) = (2h − 1)ηh(m).

It is interesting to compare Proposition 2 with the analogous result in [Cha10]: in the orientable case,
eachmap of genush has exactly2h intertwined nodes, whereas here the quantity(2h − 1) is only an
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average value. For example, Figure 5 shows two maps on the Klein bottle (h = 1) which are related by
the involutionΦ: they have respectively2 and0 intertwined nodes.

As a direct corollary of Proposition 2 and Equation (2), we can state our main result:

Theorem 1 The numbersηh(m) of non-orientable precubic unicellular maps of typeh with 2m + 1h∈N

edges obey the following recursion:

(2h − 1) · ηh(m) = 4

(

m′ − 3⌊h − 1⌋
3

)

ηh−1(m) + 3

(

m′ − 3⌊h − 1⌋
3

)

ξh−1(m), (3)

wherem′ = m+(−1)2h, and whereξh(m) is the number of orientable precubic unicellular maps of genus
h with 2m + 1h∈N edges, which is0 if h 6∈ N, and is given by the following formula otherwise [Cha09]:

ξh(m) =
1

(2h)!!

(

m + 1

3, 3, . . . , 3, m + 1 − 3h

)

Cat(m) =
(2m)!

12hh!m!(m + 1 − 3h)!
. (4)

The theorem implies explicit formulas for the numbersηh(m), as shown by the two next corollaries:

Corollary 1 (the caseh ∈ N) Let h ∈ N andm ∈ N, m ≥ 3h − 1. Then the number of non-orientable
precubic unicellular maps of typeh with 2m + 1 edges equals:

ηh(m) = ch

(

m + 1

3, 3, . . . , 3, m + 1 − 3h

)

Cat(m) =
ch · (2m)!

6hm!(m + 1 − 3h)!
(5)

wherech = 3 · 23h−2 h!

(2h)!

h−1
∑

l=0

(

2l

l

)

16−l.

Corollary 2 (the caseh 6∈ N) Leth ∈ 1
2 +N andm ∈ N, m ≥ 3⌊h⌋. Then the number of non-orientable

precubic unicellular maps of typeh with 2m edges equals:

ηh(m) =
4⌊h⌋

(2h − 1)(2h − 3) . . . 2

(

m − 1

3, 3, . . . , 3, m − 1 − 3⌊h⌋

)

× η1/2(m)

=
4m+⌊h⌋−1(m − 1)!

6⌊h⌋(2h − 1)!!(m − 1 − 3⌊h⌋)! .

Proof of Corollary 1: I follows by induction and Equations (3) and (4) that the statement of Equation (5)
holds, with the constantch defined by the recurrencec0 = 0 andch = ah−1 + bh−1ch−1, with ah−1 =

3
2h−1(h−1)!(2h−1)

andbh−1 = 4
2h−1 . The solution of this recurrence isch =

∑h−1
l=0 albl+1bl+2 . . . bh−1.

Now, by definition, we havealbl+1bl+2 . . . bh−1 =
3 · 4h−1−l

2ll!(2l + 1)(2l + 3)(2l + 5) . . . (2h − 1)
. Using the

expression
1

(2l + 1)(2l + 3) . . . (2h − 1)
=

2hh!(2l)!

(2h)!2ll!
and reporting it in the sum yields the expression

of ch given in the lemma. 2

Proof of Corollary 2: Since for non-integerh we haveξh−1(m) = 0, the first equality is a direct
consequence of an iteration of the theorem. Therefore the only thing to prove is thatη1/2(m) = 4m−1.
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This can be done easily by induction via an adaptation of Rémy’s bijection [Rém85], as follows. For
m = 1, we haveη1/2(m) = 1, since the only precubic projective unicellular map with two edges is ”the
twisted loop with a hanging leaf”. For the induction step, observe that precubic projective unicellular
maps with one distinguished non-root leaf are in bijection with precubic projective unicellular maps with
one leaf less and a distinguished edge-side: too see that, delete the distinguished leaf, transform the
remaining vertex of degree2 into an edge, and remember the side of that edge on which the original leaf
was attached. Since a projective precubic unicellular map with 2k edges hask− 1 non-root leaves and4k
edge-sides, we obtain for allm ≥ 1 thatm η1/2(m + 1) = 4m η1/2(m), and the result follows. 2

left-to-right

right-to-left

root
root

(a) (b)

Fig. 5: Two maps on the Klein Bottle. (a)TLR(m) = 1, TRL(m) = 1; (b)
TLR(m) = 2, TRL(m) = 0.

opening

m n

Fig. 6: The opening, in the case of
dominant unicellular maps.

3.2 The asymptotic number of rooted unicellular maps.

Though our results do not apply to the general case ofall unicellular maps of given type (i.e., not neces-
sarily precubic), they do hold, in some sense,asymptotically. This is what we explain in this section.

If m is a unicellular map, itscore is the map obtained by deleting recursively all the leaves ofm, until
having only vertices of degree2 or more left. Therefore the core is a unicellular map formed by chains of
vertices of degree2 attached together at vertices of degree at least3. Theschemeof m is the map obtained
by replacing each of these chains by an edge. Hence, in the scheme, all vertices have degree at least3. We
say that a unicellular map isdominantif all the vertices of its scheme have degree3. This terminology,
borrowed from [Cha10], comes from the next proposition.

Proposition 3 ([CMS09, BR09]) Let h ∈ 1
2N. Then, among non-orientable unicellular maps of typeh

with n edges, the proportion of maps which are dominant tends to1 whenn tends to infinity.

The idea behind that proposition is the following. Given a schemes, one can easily compute the generat-
ing series of all unicellular maps of schemes, by observing that these maps are obtained by substituting
each edge of the scheme with a ”branch of tree”. From that, it follows that this generating series has a
unique principal singularity atz = 1

4 , with dominating term(1 − 4z)−e(s)/2−1, up to a multiplicative
constant. Therefore, the schemes with the greatest contribution are those which have the maximal number
of edges, which for a given type, is achieved by schemes whoseall vertices have degree3.

Now, most of the combinatorics defined in this paper still apply to dominant unicellular maps. Given
a dominant mapm of typeh and schemes, andv an intertwined node ofs, we can define the opening
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operation ofm at v by splitting the vertexv in three, and deciding on a convention on the redistribution
of the three ”subtrees” attached to the scheme at this point (Figure 6): one obtains a dominant mapn of
typeh − 1 with three distinguished vertices. These vertices are notany three vertices: they have to be
in ”general position” inn (i.e., they cannot be part of the core, and none can lie on a path from one to
another), but again, in the asymptotic case this does not make a big difference: whenn tends to infinity,
the proportion of triples of vertices which are in ”general position” tends to1. We do not state here the
asymptotic estimates that can make the previous claims precise (they can be copied almost verbatim from
the orientable case [Cha10]), but rather we state now our asymptotic theorem:

Theorem 2 Let κh(n) be the number of non-orientable rooted unicellular maps of typeh with n edges.
Then one has, whenn tends to infinity:

(2h − 1)κh(n) ∼ 4
n3

3!
κh−1(n) + 3

n3

3!
ǫh−1(n)

whereǫh(n) denotes the number of orientable rooted unicellular maps oftypeh with n edges.

Using thatǫh(n) = 0 if h 6∈ N, thatǫh(n) ∼ 1
12hh!

√
π
n3h− 3

2 otherwise, and thatκ1/2(n) ∼ 1
24n [BCR88],

we obtain:

Corollary 3 Leth ∈ 1
2N. Then one has, whenn tends to infinity:

κh(n) ∼ ch√
π6h

n3h− 3

2 4n if h ∈ N , κh(n) ∼ 4⌊h⌋

2 · 6⌊h⌋(2h − 1)!!
n3h− 3

2 4n if h 6∈ N.

where the constantch is defined in Corollary 1.

4 The average number of intertwined nodes
In this section we prove Proposition 2, and in particular thekey result that the average number of inter-
twined nodes per map, among precubic unicellular maps of typeh and sizem is (2h − 1):

ηinter
h (m) = (2h − 1)ηh(m). (6)

Let us emphasize the fact that the number of intertwined nodes is not a constant over the set of unicel-
lular precubic maps of given type and number of edges. For instance among the six maps with 5 edges
on the Klein bottleN1, three maps have 2 intertwined nodes, and three maps have none; see Figure 7. As
stated in Proposition 2, our strategy to prove Equation (6) is to exhibit a bijectionΦ from the setNh(m)
to itself, such that for any given mapm, the total number of intertwined nodes in the mapsm, Φ(m) is
4h(m) − 2. Observe from Figure 7 that the involutionΦ cannot be a simple re-rooting of the mapm.

Before defining the mappingΦ, we relate the number of intertwined nodes of a map to certainproperties
of its twists. Letm be a (canonically oriented) precubic map, and lete be an an edge ofm which is a twist.
Let c be the corner incident toe which appears first in the tour ofm. We say thate is left-to-right if c is a
left-corner, and that it isright-to-leftotherwise (see Figure 5). In other words, the twiste is left-to-right if
it changes the side of the corners from left, to right, when itis crossed for the first time in the tour of the
map (and the converse is true for right-to-left twists). We omit the proof of the next lemma:
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Fig. 7: The precubic unicellular maps with 5 edges on the Klein bottle (the root in the unique leaf corner). Intertwined
nodes are indicated as white vertices.

Lemma 4 Let m be a precubic unicellular map of typeh(m), considered in its canonical orientation.
Then its numbersτ(m) of intertwined nodes,TLR(m) of left-to-right twists, andTRL(m) of right-to-left
twists are related by the formula:

2h(m) = τ(m) + TLR(m) − TRL(m). (7)

We now define the promised mappingΦ averaging the number of intertwined nodes. Letm be a unicel-
lular precubic map on a non-orientable surface. We considerthe canonical orientation convention for the
mapm, which defines a rotation system and set of twists. The set of twists is non-empty since the mapm
lives on a non-orientable surface. By cutting every twist ofm at their middle point, one obtains a graph
together with a rotation system and somedangling half-edgesthat we callbuds. The resulting embedded
graph with buds, which we denote bŷm, can have several connected components and each component
(which is a map with buds) can have several faces; see Figure 8. We set a convention for the direction in
which oneturns around a faceof m̂: the edges are followed in such a way that every corner is left(this is
possible sincêm has no twist). For any budb of m̂, we letσ(b) be the bud followingb when turning around
the face ofm̂ containingb. Clearly, the mappingσ is a permutation on the set of buds. We now define
Φ(m) to be the graph with rotation system and twists obtained fromm̂ by gluing together into a twist the
budsσ(b) andσ(b′) for every pair of budsb, b′ forming a twist ofm. The mappingΦ is represented in
Figure 8.

Before proving thatΦ(m) is a unicellular map, we set some additional notations. We denote byk the
number of twists ofm and we denote byw(m) = w1w2 · · ·w2k+1 the sequence of corners encountered
during the tour ofm, where the subsequenceswi andwi+1 are separated by the traversal of a twist for
i = 1 . . . 2k. Observe that corners inwi are left corners ofm if i is odd, and right corners ifi is even
(since following a twist leads from a left to a right corner orthe converse). Hence, the sequence of
corners encountered between two buds around a face ofm̂ are one of the sequencesw′

1, w
′
2, . . . , w

′
2k,

wherew′
1 = w2k+1w1, and fori > 1, w′

i = wi if i is odd andw′
i = wi otherwise (wherewi is themirror

sequence ofwi obtained by readingwi backwards). We identify the buds of̂m (i.e. the half-twists ofm
or m̂) with the integers in{1, . . . , 2k} by calling i the bud following the sequence of cornersw′

i around
the faces of̂m. The permutationσ can then be considered as a permutation of{1, . . . , 2k} and we denote
r = σ−1(1). The map in Figure 8 givesσ = (1, 8, 13, 2, 9, 14, 3, 10)(4, 11, 6, 5)(7, 12) andr = 10.

Lemma 5 The embedded graphΦ(m) is a unicellular map. Moreover, the rotation system and set of
twists ofΦ(m) inherited fromm correspond to the canonical orientation convention ofΦ(m). Lastly, the
sequence of corners encountered during the tour ofΦ(m) readsv1v2 . . . v2k+1, where the subsequences
vi separated twist traversals are given byvi = wσ(r+1−i) for i = 1, . . . , r, vi = wσ(2n+r+1−i) for
i = r+1, . . . , 2k, and v2k+1 = w2k+1.
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Fig. 8: A unicellular mapm and its image by the mappingΦ. The twists are indicated by (partially) dotted lines,
while the mapm̂ is represented in solid lines.

Lemma 6 Letm be a positive integer andh be in{1/2, 1, 3/2, . . .}. The mappingΦ is a bijection from
the setNh(m) to itself. Moreover, for every mapm in Nh(m), the total number of intertwined nodes in
the mapsm andΦ(m) is 4h − 2.

Proof of Lemma 6: Clearly, the mapsm andΦ(m) have the same number of edges and vertices. Hence,
they have the same type by Euler formula. Moreover, they bothhavek > 0 twists (for their canonical
convention) hence are non-orientable. Thus,Φ maps the setNh(m) to itself. To prove the bijectivity (i.e.

injectivity) of Φ, observe that for any mapm, the embedded graphŝm andΦ̂(m) are equal; this is because
the canonical rotation system and set of twists ofm andΦ(m) coincide. In particular, the permutationσ
on the half-twists ofm can be read fromΦ(m). Hence, the twists ofm are easily recovered from those of
Φ(m): the budsi andj form a twist ofm if σ(i) andσ(j) form a twist ofΦ(m).

We now proceed to prove that the total number of intertwined nodes inm andΦ(m) is 4h − 2. By
Lemma 4, this amounts to proving thatTLR(m) − TRL(m) + TLR(Φ(m)) − TRL(Φ(m)) = 2. Sincem and
Φ(m) both havek twists,TLR(m)−TRL(m)+TLR(Φ(m))−TRL(Φ(m)) = 2(TLR(m)+TLR(Φ(m))− k).
Hence, we have to proveTLR(m) + TLR(Φ(m)) = k + 1.

Let i be a bud ofm̂, let t be the twist ofm containingi, and letc, c′ be the corners preceding and
following i in counterclockwise order around the vertex incident toi. By definition, the twistt of m is
left-to-right if and only ifc appears beforec′ during the tour ofm. Given that the cornersc andc′ belong
respectively to the subsequenceswi andwσ(i) (except ifi = r in which caseσ(i) = 1 andc′ is in w2k+1),
the twistt is left-to right if and only ifi < σ(i) or i = r.

Before going on, let us introduce a notation: for an integeri we denote byi the representative of
i modulo2k belonging to{1, . . . , 2k}. Let us now examine under which circumstances the budσ(i)
is part of a left-to-right twist ofΦ(m). The cornersd andd′ preceding and following the budσ(i) in
counterclockwise order around the vertex incident toσ(i) belong respectively towσ(i) andwσσ(i) (except
if σ(i) = r, in which caseσσ(i) = 1 and c′ belongs tow2k+1). By Lemma 5,wσ(i) = vr+1−i for
i = 1 . . . 2k. Therefore, the twistt′ of Φ(m) containingσ(i) is left-to-right if and only ifr + 1 − i <
r + 1 − σ(i) or σ(i) = r.

The two preceding points gives the numberTLR(m) + TLR(Φ(m)) of left-to right twists as

TLR(m) + TLR(Φ(m)) = 1 + 1
2

∑2k
i=1 δ(i),
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whereδ(i) = 1i<σ(i)+1r+1−i<r+1−σ(i) is the sum of two indicator functions (the factor1/2 accounts for
the fact that a twist has two halves). The contributionδ(i) is equal to 2 ifi ≤ r < σ(i), 0 if σ(i) ≤ r < i,
and 1 otherwise. Finally, there are as many integersi such thati ≤ r < σ(i) as integers such that
σ(i) ≤ r < i (true for each cycle ofσ). Thus,

∑2k
i=1 δ(i) = 2k, andTLR(m) + TLR(Φ(m)) = k + 1. 2

The last lemma is sufficient to establish Equation (6), and the enumerative results of Section 3. How-
ever, Proposition 2 was saying a little bit more, namely thatthe bijectionΦ can be chosen as aninvolution:

Proof of Proposition 2: Observe that, as we defined it, the bijectionΦ is not an involution. But one
can easily define an involution fromΦ, as the mapping acting asΦ on elementsm of Nh(m) such that
τ(m) > 2h− 1, acting asΦ−1 if τ(m) < 2h − 1, and as the identity ifτ(m) = 2h − 1. 2
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