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AbstractLet U be a strictly increasing sequence of integers. By a greedy algorithm, everynonnegative integer has a greedy U -representation. The successor function maps thegreedy U -representation of N onto the greedy U -representation of N+1. We characterizethe sequences U such that the successor function associated to U is a left, resp. a rightsequential function. We also show that the odometer associated to U is continuous ifand only if the successor function is right sequential.
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1 IntroductionIt is well known that, in the classical K-ary number system, where K is an integer � 2, thesuccessor function, which maps the K-representation of N onto that of N+1, is computableby a sequential �nite 2-tape automaton (that is to say, deterministic on inputs) workingfrom right to left but not from left to right (there is a carry which propagates from rightto left). In Computer Arithmetic, on-line arithmetic consists in performing operations inMost Signi�cant Digit First mode (i.e. from left to right), digit serially after a certain delayof latency (see [Er84]). This mode of doing allows pipelining di�erent operations such asaddition, multiplication and division. To be able to perform on-line addition in integer baseK, it is necessary to use a redundant number system such as the Avizienis signed-digitrepresentation [Av61], which consists in changing the digit set. Instead of taking digits fromthe canonical set f0; � � � ; K � 1g, they are taken from a balanced set of the form f�a; � � � ; ag,where �a denotes the digit �a, a being an integer such that a+ 1 � K � 2a.On the other hand, non-standard numeration systems have been widely studied. Givena strictly increasing sequence of integers U , every nonnegative integer N can be representedwith respect to the system U , that is to say, N has a representation dk � � �d0 such thatN =Pki=0 diui: A classical way to obtain such a representation is to use a greedy algorithm([Fr85]), which gives the greatest representation for the lexicographical ordering. The digitsdi are then elements of a canonical alphabet AU , denoted by A for short. The set of greedyrepresentations of all the nonnegative integers is denoted by L(U). For instance, takingU = fKn j n � 0, K integer � 2g gives the standard K-ary number system with A =f0; � � � ; K� 1g. The Fibonacci numeration system is de�ned from the sequence of Fibonaccinumbers with u0 = 1, u1 = 2, un = un�1 + un�2 for n � 2, and A = f0; 1g (see [K88]). Oneof the interests in non-standard numeration systems relies in the fact that they are naturallyredundant.The successor function in the numeration system associated to U is the function Succ :A� �! A� that maps the greedy U -representation of the integer N onto the greedy U -representation of N + 1. In [F96] we have proved that the successor function is computableby a �nite 2-tape automaton if and only if L(U) is recognizable by a �nite automaton (theproof is given in Theorem 4 below). When the set L(U) is recognizable by a �nite automatonthen U must be a linear recurrent sequence with integral coe�cients [Sh92].These questions are linked to the representation of real numbers in non-integral base� > 1, and particularly to what is known as the �-expansion of 1, denoted by d(1; �) (seeSection 2.2). In [Ho95] are given conditions on the �-expansion of 1 and on associatedsequences U which imply that the set L(U) is recognizable by a �nite automaton.In this paper we focus on the sequentiality of the �nite 2-tape automaton computing the4



successor function. We �rst study the left sequentiality (the sequentiality from left to right)of the successor function in non-standard numeration systems. We show that the successorfunction associated to U is a left subsequential function if and only if U is one of the followingsequences :Case 1. Let � > 1 be a number such that d(1; �) = d1 � � �dm, and let U = (un)n�0 bede�ned by un = d1un�1 + � � �+ dmun�m + 1; for n � n0 � mwith 1 = u0 < u1 < u2 < � � � < un0�1.Case 2. U is the set of positive integers.In [FSa97] we have written an algorithm which, given a left subsequential 2-tape automa-ton computing a relation such that the di�erence between the length of input words and thelength of output words is bounded, constructs an equivalent on-line �nite automaton, thatis to say, a left subsequential �nite 2-tape automaton which is letter-to-letter after an initialperiod where it reads the input and outputs nothing. As a corollary, we obtain that, for theabove systems U , it is possible to design an on-line �nite 2-tape automaton which computesthe successor function.We then consider right sequentiality and prove that the successor function associated toa sequence U is a right subsequential function (on 0�L(U)) if and only if L(U) is recognizableby a �nite automaton and if the set M of lexicographically maximum words of L(U) is ofthe form : M = i=p[i=1 y�i zi [M0where M0 is �nite, jyij = p and the union is disjoint.A case which is frequently met is the following one : U is an integral linear recurrentsequence with characteristic polynomial P having a dominant root � > 1. Then the successorfunction associated to U is right subsequential if and only if the following conditions aresatis�ed :1) the �-expansion of 1 is �nite : d(1; �) = d1 � � �dm,2) U is de�ned by un = d1un�1 + � � �+ dmun�m for n � n0 � mand 1 = u0 < u1 < � � � < un0�1 (Theorem 3).In a dynamical context, the successor function is extended to what is called odometeror adding machine (see [GLT95]). We make a connection with a result of [GLT95], showingthat : Let U such that L(U) is recognizable by a �nite automaton. Then the odometerassociated to U is continuous if and only if the successor function is right subsequential on0�L(U). 5



Recall that the normalization function on an alphabet of integers C is the function �C :C� �! A� which maps any U -representation on C� of a nonnegative integer onto the greedyU -representation of that integer (see [FSo96]). Addition of nonnegative integers representedwith respect to U is a particular case of normalization : let A = f0; � � � ; ag be the canonicalalphabet associated to U , then addition is the normalization f0; � � � ; 2ag� �! f0; � � � ; ag�.Here we give an example (Example 1) where the function Succ is left subsequential, althoughnormalization is never computable by a �nite 2-tape automaton, and an other one (Example3) where Succ is right subsequential, and such that for any alphabet C � A, normalizationon C is not computable by a �nite 2-tape automaton.2 De�nitions2.1 Representation of integersLet U = (un)n�0 be a strictly increasing sequence of integers with u0 = 1. A representationin the system U | or a U -representation | of a nonnegative integer N is a �nite sequenceof integers (di)0�i�k such that N = kXi=0 diui:Such a representation will be written dk � � �d0, most signi�cant digit �rst.A word d = dk � � �d0 is said to be lexicographically greater than a word f = fk � � �f0, andthis will be denoted by d >lex f , if there exists an index 0 � i � k such that dk = fk , . . . ,di+1 = fi+1 and di > fi. Among all possible U -representations dk � � �d0 of a given integerN one is distinguished and called the greedy (or the normal) U -representation of N : it isthe greatest in the lexicographical ordering. It is obtained by the following greedy algorithm(see [Fr85]):Given integers m and p let us denote by q(m; p) and r(m; p) the quotient and the remainderof the Euclidean division of m by p.Let k � 0 such that uk � N < uk+1 and let dk = q(N; uk) and rk = r(N; uk), di = q(ri+1; ui)and ri = r(ri+1; ui) for i = k � 1; � � � ; 0. Then N = dkuk + � � �+ d0u0.The greedy representation of N will be denoted by hNi. By convention the greedyrepresentation of 0 is the empty word ". Under the hypothesis that the ratio un+1=unis bounded by a constant as n tends to in�nity (that we will assume in this paper), theintegers di of the greedy U -representation of any integer N are bounded and contained ina canonical �nite alphabet AU associated to U . The set of greedy U -representations of allthe nonnegative integers is a subset of the free monoid A�U , and is denoted by L(U). Thesequence U together with the alphabet AU de�nes a numeration system associated to U . In6



the sequel we denote AU by A. The numerical value of a word w = dk � � �d0, is given by�(w) =Pki=0 diui:The successor function in the numeration system associated to U is the function Succ :A� �! A� that maps the greedy U -representation of the integer N onto the greedy U -representation of N + 1.2.2 Representation of real numbersLet � > 1 be a real number. A representation in base � (or a �-representation) of a realnumber x 2 [0; 1] is an in�nite sequence (xi)i�1 such that x =Pi�1 xi��i.A particular �-representation of x | called the �-expansion | can be computed by the\greedy algorithm" [R57] : Denote by [y] and fyg the integer part and the fractional partof a number y. Let x1 = [�x], r1 = f�xg, and, for i � 2, xi = [�ri�1]; and ri = f�ri�1g:Then x = Pi�1 xi��i. When � is not an integer, the digits xi obtained by this algorithmare elements of the set f0; : : : ; [�]g; when � is an integer, the digits xi of the �-expansionof a number x 2 [0; 1[ are in f0; : : : ; � � 1g, and the �-expansion of 1 is just d(1; �) = �. Ifan expansion ends in in�nitely many zeros, it is said to be �nite, and the ending zeros areomitted.An in�nite sequence s = (si)i�1 is said to be greater in the lexicographical ordering thant = (ti)i�1, and it is denoted by s >lex t, if there exists an i � 0 such that s1 = t1, . . . ,si = ti and si+1 > ti+1. The �-expansion of 1 is denoted by d(1; �) = (di)i�1. Let D�be the set of �-expansions of numbers of [0; 1[. We recall the theorem of Parry [P60]: asequence s = (sn)n�1 is in D� if and only if for every i � 1, sisi+1 � � � is smaller in thelexicographical ordering than d(1; �) when the latter is in�nite, respectively smaller thand�(1; �) = (d1 � � �dm�1(dm � 1))! when d(1; �) = d1 � � �dm is �nite (where w! denotes thein�nite word www � � �).2.3 Finite automata and wordsWe recall some de�nitions. More details can be found in [E74] or in [HU79]. An automatonover a �nite alphabet A, A = (Q;A;E; I; T) is a directed graph labelled by elements of A; Qis the set of states, I � Q is the set of initial states, T � Q is the set of terminal states andE � Q�A�Q is the set of labelled edges. If (p; a; q) 2 E, we note p a�! q. The automatonis �nite if Q is �nite, and this will always be the case in this paper. The automaton A isdeterministic if E is the graph of a (partial) function from Q � A into Q, and if there is aunique initial state. A subset H of A� is said to be recognizable by a �nite automaton (orregular) if there exists a �nite automaton A such that H is equal to the set of labels of pathsstarting in an initial state and ending in a terminal state. Let AN be the set of in�nite7



sequences (or in�nite words) on A. A subset K of AN is said to be recognizable by a �niteautomaton if there exists a �nite automaton A such that K is equal to the set of labels ofin�nite paths starting in an initial state and going in�nitely often through a terminal state(B�uchi acceptance condition, see [E74]).A 2-tape automaton is an automaton over the non-free monoid A� � B� : A = (Q;A� �B�; E; I; T ) is a directed graph the edges of which are labelled by elements of A� � B�.Words of A� are referred as input words, as words of B� are referred as output words. If(p; (f; g); q) 2 E, we note p f=g�! q. The automaton is �nite if the set of edges E is �nite (andthus Q is �nite). These �nite 2-tape automata are also known as transducers. A relation Rof A��B� is said to be computable by a �nite 2-tape automaton if there exists a �nite 2-tapeautomaton A such that R is equal to the set of labels of paths starting in an initial stateand ending in a terminal state. A function is computable by a �nite 2-tape automaton if itsgraph is computable by a �nite 2-tape automaton. These de�nitions extend to relations andfunctions of in�nite words as above.A 2-tape automaton A with edges labelled by elements of A � B� is said to be leftsequential if the underlying input automaton obtained by taking the projection over A of thelabel of every edge is deterministic (see [Ber79]). A left subsequential 2-tape automaton is aleft sequential automaton A = (Q;A� B�; E; fig; !), where ! is the terminal function ! :Q �! B�, whose value is concatenated to the output word corresponding to a computationin A.A 2-tape automaton A is said to be letter-to-letter if the edges are labelled by couples ofletters, that is, by elements of A� B.All the automata considered so far work implicitly from left to right, that is to say, wordsare processed from left to right. It is possible to de�ne in a dual way right automata, wherewords are processed from right to left. Usual automata are thus left automata.Let H be a subset of A�. The left congruence modulo H is de�ned on A� byf �H g , [8h 2 A�; hf 2 H if and only if hg 2 H ]:It is known that the set H is recognizable by a �nite automaton if and only if the leftcongruence modulo H has �nite index (Myhill-Nerode Theorem, see [E74] or [HU79]). Letus denote by [f ]H the class of f modulo �H . Suppose that �H has �nite index. Oneconstructs the minimal deterministic right automaton R recognizing H as follows ([E74]) :� the set of states of R is the set f[f ]H j f 2 A�g� the initial state is ["]H� the set of terminal states is equal to f[f ]H j f 2 Hg� for every state [f ]H and every a 2 A, there is an edge [f ]H a�! [af ]H (words are processed8



from right to left!).Such a construction implies that there might exist a sink, i.e. a non-terminal state s suchthat, for any letter a 2 A, there is a loop s a�! s. This happens when s = [w]H , w not inH , and there is no w0 such that w0w belongs to H .A factor of a word w is a word f such that there exist words w0 and w00 with w = w0fw00.When w0 = ", f is said to be a pre�x of w, and when w00 = ", f is said to be a su�x of w.If H is a subset of A� we denote by F (H) (resp. PF (H), resp. SF (H)) the set of factors(resp. pre�xes, resp. su�xes) of words of H . The length of a word w = w1 � � �wn with wi inA for 1 � i � n is denoted by jwj and is equal to n. By wn is denoted the word obtainedby concatenating n times w. The set of words of length n (resp. � n) of A� is denoted byAn (resp. A�n). By H+ is denoted H� n ". A word f is a factor of an in�nite word s ifs = wfs0, with s0 2 AN. The set of factors of a subset K of AN is denoted by F (K).3 Main results3.1 PreliminariesFirst, if the successor function associated to U is computable by a 2-tape automaton, thenits domain L = L(U) is recognizable by a �nite automaton. So in the sequel we assumethat L is recognizable by a �nite automaton. Then, by [Sh92], U must be a linear recurrentsequence with integral coe�cients. Let us recall the following results.Proposition 1 (folklore, see [Sa83]) Let H be a subset of A�, and let M(H) be the unionof the lexicographically maximum words of H of each length, as follows :M(H) = [n�0fv 2 H \ An j 8w 2 H \An; w �lex vg:Then, if H is recognizable by a �nite automaton, so is M(H).Let us denote byM the languageM(L) of lexicographically maximum words of L. Letmnbe the word of length n which is maximum in the lexicographical ordering : mn = hun � 1i,and M = [n�0fmn j n 2 Ng. Notice that the empty word " = m0 belongs to M . We haveProposition 2 [Ho95] The language L is equal to L = [n�0fv 2 An j every su�x of lengthi � n of v is �lex mig. 9



Proposition 3 [Ho95] Since jM \ Anj = 1 for all n � 0, and M is recognizable by a �niteautomaton, there exist an integer p, words xi, yi, and zi such thatM = i=p[i=1 xiy�i zi [M0where M0 is �nite, jyij = p, and the union is disjoint.Lemma 1 The function Succ has the following property : for any word w of L,0 � jSucc (w)j � jwj � 1:Proof. Let us suppose that w = wk � � �w0 = hNi. Thus, N + 1 = 1 +Pi=ki=0 wiui. As w isgreedy, one has N < uk+1. Thus N + 1 � uk+1, and so jhN + 1ij � k + 2.Thus, it is more convenient to consider words of 0�L, denoted by L0 for short. Thefunction Succ is extended to L0 in the obvious way. In particular, Succ (0) = Succ (") = 1.Lemma 2 Let w = wk � � �w0 be a word in 0+L. Let wi�1 � � �w0 be the longest su�x of wwhich belongs to M . Then Succ (w) = wk � � �wi+1(wi + 1)0i.3.2 Left sequentialityWe begin giving a proof of the well known fact that, in the classical K-ary number system,where K is an integer � 2, the successor function is not sequentially computable from leftto right.Lemma 3 In the K-ary number system the successor function cannot be realized by a leftsubsequential 2-tape automaton.Proof. Recall that in the K-ary system L0 = f0; � � � ; K � 1g� and M = (K � 1)�. Let dlbe the left-distance on A� de�ned bydl(v; w) = jvj+ jwj � 2 j v ^l w jwhere v ^l w denotes the longest common pre�x to v and w.Let v = 0(K�1)n and w = 0(K�1)n�10. Then Succ (v) = 10n, Succ (w) = 0(K�1)n�11.We have dl(v; w) = 2, dl(Succ (v); Succ (w)) = 2(n + 1). Thus the left-distance betweenSucc (v) and Succ (w) becomes unbounded when n goes to in�nity, as the distance betweenv and w is bounded. By a result of [Ch77], it follows that Succ cannot be realized by a leftsubsequential 2-tape automaton. 10



Theorem 1 The successor function associated to U is a left subsequential function if andonly if U is one of the following sequences :Case 1. Let � > 1 be a number such that d(1; �) = d1 � � �dm, and let U be de�ned byun = d1un�1 + � � �+ dmun�m + 1; for n � n0 � mwith 1 = u0 < u1 < u2 < � � �< un0�1.Case 2. U is the set of positive integers N n 0 (pathological case).Proof. We split the proof into several parts.Proposition 4 Let � > 1 be a number such that d(1; �) = d1 � � �dm, and let U be de�ned byun = d1un�1 + � � �+ dmun�m + 1; for n � n0 � mwith 1 = u0 < u1 < u2 < � � � < un0�1. Then the set of lexicographically maximum words isequal to M = d1 � � �dm0k+1�m0� [M0where M0 is a �nite set and k is the length of the longest word of M0, and the successorfunction associated to U is a left subsequential function.Proof. Let U be de�ned as above. Then U satis�es the linear recurrenceun+1 = (d1 + 1)un + (d2 � d1)un�1 + � � �+ (dm � dm�1)un+1�m � dmun�mfor n � n0, and the characteristic polynomial is P (X) = (X � 1)(Xm�d1Xm�1�� � ��dm),with � for dominant root.Let n � n0 + m � 1. Since un � 1 = d1un�1 + � � � + dmun�m, we have to show thatd1 � � �dm0n�m is the greedy representation of un � 1. Suppose the greedy representation ofun � 1 is not that one; since un�1 � un � 1 < un, the greedy representation of un � 1 is>lex d1 � � �dm0n�m, and thus is of the form d1 � � �di�1(di+c)f , where 1 � i � m�1, c � 1 andjf j = n� i. Thus cun�i+�(f) = di+1un�i�1+ � � �+dmun. Hence di+1un�i�1+ � � �+dmun �un�i = d1un�i�1 + � � � + dmun�i�m + 1, which is impossible because d1 � � �dm is a beta-expansion and thus di+1 � � �dm0i <lex d1 � � �dm (Theorem of Parry [P60], see Section 2.2).Now, when n � n0 +m � 2, the greedy representation of un � 1 depends on the choiceof the initial conditions u1, . . . , un0�1. For instance, if we take for initial conditions thecanonical initial conditions associated to � (see [B-M89])u0 = 1; ui = d1ui�1 + � � �+ diu0 + 1; 1 � i � m� 111



and n0 = m, then it is easily checked that, in that case,M = d1 � � �dm0� [ f"; d1; d1d2; : : : ; d1 � � �dm�1g:We now show that L0 is recognizable by a �nite automaton. Let A be the canonicalalphabet associated to U . LetY = f0; : : : ; d1 � 1; d10; : : : ; d1(d2 � 1); : : : ; d1 � � �dm�10; : : : ; d1 � � �dm�1(dm � 1)g:Then L0 = ff 2 Y �d1 � � �dm0k+1�m0� [A�k j every su�x of length j � k of f is �lex mjg.This comes from the fact that, if f 2 Y �d1 � � �dm0k+1�m0�, jf j = n � k + 1, then f �lexd1 � � �dm0n�m by the theorem of Parry recalled above.Let � = k + 1�m. So M = d1 � � �dm0�0� [M0. If � = 0, then M = d1 � � �dm0� [M0.Let M = (Q;A;E; i0; T ) be the following deterministic automaton recognizing 0M :� Q = fi0g [ PF (0M0) [ PF (0d1 � � �dm0�), where PF (H) is the set of pre�xes of elementsof H .� The set of edges E is de�ned by : if q 2 Q, there is an edge q a�! qa when a 2 A andqa 2 Q. There is an edge i0 0�! 0. Let us denote by t the state t = 0d1 � � �dm0�, there is aloop t 0�! t.� The set of terminal states is T = 0M0 [ ftg.We consider words beginig with a 0. Remark that if f 2 L0, and if f = f 0ad1 � � �dm0n,where a 2 A and n � �, then Succ (f) = f 0(a+ 1)0m+n, and if f = f 0ami, where mi 2M0,jmij = i, then Succ (f) = f 0(a + 1)0i by Lemma 2. So the idea to realize Succ as a leftsubsequential 2-tape automaton is the following : we construct a 2-tape automaton realizingthe identity at the beginning, but with delay one, that is to say, we keep in memory (inthe states) the last letter read, until we reach a su�x which is in M , and is transformed asindicated above.Here is the construction of a left subsequential 2-tape automaton realizing Succ: S =(R;A�A�; F; i0; !). The automatonM is a subautomaton of the underlying input automatonof S. First, let us denote by X the set X = PF (M0) [ PF (d1 � � �dm0��1) if � � 1,X = PF (M0) [ PF (d1 � � �dm�1) if � = 0.� The set of states R will be a subset of AX [fi0g[fd1 � � �dm0�g, containing Q as a subset,and inductively constructed from Q as indicated below. For notation coherence, the state tof M is here denoted by d1 � � �dm0�.� The set of edges F will be de�ned as follows : �rst, there is an edge i0 0="�! 0. Secondly, if� � 1 (Case 1), and if rd1 � � �dm0��1 2 R, there is an edge rd1 � � �dm0��1 0=r+1�! d1 � � �dm0�;and there is a loop d1 � � �dm0� 0=0�! d1 � � �dm0�. If � = 0 (Case 2), we put rd1 � � �dm�1 dm=r+1�!12



d1 � � �dm, and there is a loop d1 � � �dm 0=0�! d1 � � �dm.Now, we give a general rule for de�ning new edges of the form q a=�(q;a)�! �(q; a) as follows :let 0 � n � m+ �, and q = r0 � � �rn be a state of R di�erent from i0 and from the states ofthe form rd1 � � �dm0� or rd1 � � �dm0��1 (Case 1), and rd1 � � �dm�1 (Case 2) just mentionedabove. Let l � 0 be the minimum index such that rl+1 � � �rna is in X , then let the nextstate be �(q; a) = rlrl+1 � � �rna and the output be �(q; a) = r0 � � �rl�1. When r1 � � �rna 2 X(l = 0), we get �(q; a) = r0 � � �rna and �(q; a) = ", and when there is no su�x of r0 � � �rnabelonging to X (l = n+ 1), we get �(q; a) = a and �(q; a) = r0 � � �rn.All we have to do now is to determine for which letters a 2 A these edges are valid.Let us consider a state of form q = rd1 � � �dn, n � m� 1 if � � 1, or n � m� 2 when � = 0.Then for any letter a < dn+1 such that there is no edge labelled by a leaving q in M, wede�ne an edge q a=�(q;a)�! �(q; a).For any state of the form q = r0r1 � � �rn such that r1 � � �rn is in PF (M0), and for any lettera < rn+1 such that r1 � � �rnrn+1 belongs to PF (M0), there is an edge q a=�(q;a)�! �(q; a).� The terminal function ! is de�ned by : !(d1 � � �dm0�) = 0m+�. If r1 � � �rn 2 M0, then!(r0r1 � � �rn) = (r0 + 1)0n. If a state q = r0 � � �rn is in L0 nM , then!(q) = r0 � � �ri�1(ri + 1)ri+1 � � �rn where ri+1 � � �rn is the longest su�x of q in M0.Example 1 Let � = 2, and un = 2un�1 + 1 for n � 1, and u0 = 1. Then un = 2n+1 � 1,M = 20� [ ", L0 = f0; 1g� [ f0; 1g�20�. The sequence U is linearly recurrent, given byun = 3un�1 � 2un�2 for n � 2 and u1 = 3, u0 = 1. Here is the left subsequential 2-tapeautomaton S realizing Succ.i0����- 0���� 2����1����/
0=0 /0=0
71=1
-0=" -2=1� 1=0�0=1 ��������2=2-=2"""3=1 -=0

Figure 1. Left-subsequential 2-tape automaton S13



It can be shown that, in this system U , normalization on any alphabet (in particularaddition) is never computable by a �nite automaton. 2Proposition 5 Let U be the set N n 0. Then L = M = 10� [ ", and the successor functionis left subsequential.Proof. Since un = n + 1 for n � 0, L = M = 10� [ ". The characteristic polynomial of Uis P (X) = (X � 1)2. Below is the left subsequential 2-tape automaton realizing Succ.����- ����/0=0 /0=0-1=1 -=0Figure 2. Left-subsequential 2-tape automaton for N n 0Proposition 6 If U is a sequence such that M is not of the form s0� [ M0, where s isa non-empty word not in 0�, and M0 is a �nite set, then Succ cannot be realized by a leftsubsequential 2-tape automaton.Proof. Let us show that, if M 6= s0� [M0, then there exist words x, y, z and g such that,for every n � 1, xynz is in M and xyn�1g is in L nM .1) Let us suppose that there exists an i, 1 � i � p, such that xiy�i zi � M with zi 6= ",zi 62 0+. Then there exists h <lex zi, jhj = jzij. Thus for every n � 1, xiyni zi 2 M andxiyni h 2 L nM , by Proposition 2.2) Otherwise, for every i, 1 � i � p, zi 2 0�. First, let us suppose that there exists an i suchthat yi 62 0+. Then let h <lex yi, jhj = jyij. Thus for every n � 1, xiyni zi 2M and xiyn�1i hziis in L nM .Otherwise, suppose that for every i, 1 � i � p, yi = 0p. Then by hypothesis, p must be� 2. For simplicity, suppose p = 2. Then M = x1(00)� [ x2(00)� [ M0. Suppose thatx10! <lex x20!. Then there exists k � 0 such that x1(00)n�10k <lex x2(00)n, thus for n � 1,x1(00)n�10k 2 L nM and x1(00)n 2M .Now let v = 0xynz and w = 0xyn�1g be determined as above. We have dl(v; w) =jyj+ jzj + jgj � 2 j (yz) ^l g j= K, a constant, and Succ (v) = 10njyj+jxj+jzj. Without lossof generality, we can assume that the longest su�x of w belonging to M0 is a su�x ofg. Let g = gm � � �gi � � �g0, i � 0, where gi�1 � � �g0 is the longest su�x of g belonging to14



M0. Then Succ (w) = 0xyn�1gm � � �gi+1(gi+1)gi�1 � � �g0. We have dl(Succ (v); Succ (w)) =(2n � 1)jyj+ 2jxj + jzj + jgj + 2. Thus, as in Lemma 3, Succ cannot be realized by a leftsubsequential 2-tape automaton.Proposition 7 The only sequences U such that M = s0� [M0, where s is a non-emptyword, are given by :Case 1. Let � > 1 be a number such that d(1; �) = d1 � � �dm, and let U be de�ned byun = d1un�1 + � � �+ dmun�m + 1; for n � n0 � mwith 1 = u0 < u1 < u2 < � � �< un0�1.Case 2. U is the set of positive integers N n 0.Proof. We consider s 6= 1, s = d1 � � �dm0�, with � � 0 and dm 6= 0. Since d1 � � �dm0j 2 Lfor j � �+m� 1, by Proposition 2 we getd2 � � �dm0 <lex d1 � � �dmd3 � � �dm00 <lex d1 � � �dm� � �dm0m�1 <lex d1 � � �dmand by a result of Parry [P60], there exists a unique real number � > 1 such that d(1; �) =d1 � � �dm. Now, since d1 � � �dm0n 2 M for n � �, we have d1 � � �dm0n = hum+n � 1i, soum+n = d1um+n�1 + � � �+ dmun�1 + 1, for n � �.As a corollary of Theorem 1 we get the following.Corollary 1 When U is a sequence satisfying the hypothesis of Theorem 1, the successorfunction is computable by an on-line �nite automaton.Proof. It is a consequence of Lemma 1 and of [FSa97].3.3 Right sequentialityLemma 4 There exist sequences U such that the function Succ cannot be realized by a rightsubsequential 2-tape automaton.Proof. Consider the sequence U de�ned by the following linear recurrent sequenceun = 3un�1 � un�2 ; u0 = 1 ; u1 = 3:15



U = f1; 3; 8; 21; � � �g is the sequence of Fibonacci numbers of even index. The canonicalalphabet is A = f0; 1; 2g, L0 = f0; 1g� [ f0; 1g�21� [ (f0; 1g�21�0)� and M = 21� [ ". SinceL0 is recognizable by a �nite automaton, Succ is computable by a �nite 2-tape automaton.The right-distance on A� is de�ned bydr(v; w) = jvj+ jwj � 2 j v ^r w jwhere v ^r w denotes the longest common su�x to v and w.Let v = 021n and w = 01n+1. Then Succ (v) = 10n+1 and Succ (w) = 01n2. We havedr(v; w) = 2(n + 2)� 2n = 4, as dr(Succ (v); Succ (w)) = 2(n+ 2). From [Ch77] it followsthat Succ cannot be realized by a right subsequential 2-tape automaton in the numerationsystem de�ned by U .Theorem 2 The successor function associated to a sequence U is a right subsequential func-tion (on 0�L(U)) if and only if L(U) is recognizable by a �nite automaton and if the set Mof lexicographically maximum words of L(U) is of the form :M = i=p[i=1 y�i zi [M0where M0 is �nite, jyij = p and the union is disjoint.The proof follows from the following results.Proposition 8 If M contains a set of the form xy�z, with x and y non empty, then Succcannot be realized by a right subsequential 2-tape automaton.Proof. From Proposition 3, we know thatM = i=p[i=1 xiy�i zi [M0where M0 is �nite, jyij = p, and the union is disjoint. Suppose that there is a set xy�z �M ,with x 6= ". Let v = xynz 2 M ; by assumption on the form of M , there exists h <lex x,jhj = jxj, and w = hynz 2 L0 nM . Without loss of generality, one can suppose that thelongest su�x of w belonging to M0 is a su�x of yz, that is to say, yz = aj � � �ai � � �a0, with0 � i � j � 1 being maximal such that ai�1 � � �a0 2M0. We have : Succ (v) = 10njyj+jxj+jzj,Succ (w) = hyn�1aj � � �ai+1(ai + 1)ai�1 � � �a0, dr(v; w) = 2jxj � 2jx ^r hj = H , a constant,dr(Succ (v); Succ (w)) � 1+ 2(njyj+ jxj+ jzj)� 2i, hence Succ is not right subsequential by[Ch77]. 16



Proposition 9 If M is of the formM = i=p[i=1 y�i zi [M0where M0 is �nite, jyij = p and the union is disjoint, then Succ is a right subsequentialfunction.Proof. The construction can be followed on Example 2 below. Since L(U) is supposed tobe recognizable by a �nite automaton, so is L0. Let L = (Q;A;E; r0; T ) be the minimaldeterministic right automaton recognizing L0 as in Section 2.3. But, notice that L0 is su�x-closed, that is to say, if fg is in L0, then g is in L0 as well (because L is obtained from thegreedy algorithm). In particular, for every letter a of A, a is in L0. Suppose that f is inL0; then by construction, [f ]L0 is a terminal state of L. If af , for a 2 A, is not in L0, thenfor every b 2 A, baf won't be in L0 either; thus we can suppress the state [af ]L0 which is asink, and the edge [f ]L0 a�! [af ]L0 , and we can suppose that every state is terminal. Thusthe set of states Q is equal to T = f[f ]L0 j f 2 L0g, r0 = ["]L0 is the initial state, every stateis terminal, and there is an edge [f ]L0 a�! [af ]L0 for every a such that af 2 L0.Let M = (Q0; A; E 0; i0; T 0) be a right deterministic automaton recognizing M , with nosink. Since the empty word is in M , i0 is also terminal. We say that a set of the form y�z,where y 6= ", is a frying pan. Let (bp � � � b1)�cn � � � c1 be a frying pan in M . It is recognized inM as follows : there is a simple path i0 c1�! q1 c2�! � � � cn�! qn b1�! qn+1 � � � bp�! qn+p, whereqn+p = qn 2 T 0, and there is no other terminal state on the loop between qn and qn+p.We construct a right subsequential 2-tape automaton S= (Q [Q0; A� A�; F; i0; !) con-taining M and L as subautomata of the underlying input automaton of S.� The set of states of S is Q [ Q0.� For every simple path q0 a1�! q1 a2�! � � � ak�1�! qk�1 ak�! qk inM, where qk is a terminal state,and either q0 = i0 or q0 = qk , we de�ne in S a path q0 a1="�! q1 a2="�! � � � ak�1="�! qk�1 ak=0k�! qk .For each qj = [aj � � �a1]M , 1 � j � k � 1, the terminal function ! is de�ned by !(qj) =aj � � �a2(a1 + 1), and !(q0) = !(qk) = 1. Now, for each qj , 1 � j � k � 1, and for everyletter d of A such that there is no edge labelled by d leaving qj in M, we create an edgeqj d=daj ���a2(a1+1)�! [daj � � �a1]L0 if that state exists in L, otherwise the edge is not created.From i0 and for every letter d of A such that there is no edge labelled by d outgoing fromi0 in M, we create an edge i0 d=d+1�! [d]L0 if that state exists. Similarly, from t = qk 2 T 0, forevery letter d of A such that there is no edge labelled by d outgoing from t in M, we createan edge qk d=d+1�! [dak � � �a1]L0 if that state exists.� For every edge q a�! s in L, q, s 2 Q, an edge q a=a�! s is created in S.For q 2 Q, the terminal function is given by !(q) = ".17



There is a funny case where Succ is right subsequential on L but not on 0�L.Proposition 10 The sequence U is an arithmetic progression, de�ned byuk+p = c+ dp; for p � 0with 1 = u0 < u1 < � � � < uk = c and 0 < d � c, if and only if the set of lexicographicallymaximum words is of the form M = 10�z [M0. In that case, the function Succ is rightsubsequential on L but is not right subsequential on 0�L.Proof. 1) Let uk+p = c+ dp, with uk = c and 0 < d � c. Let M0 = fhui � 1i j 1 � i � kg.Since d � c = uk, we set z to be the word of length k equal to hd � 1i pre�xed by theadequate number of 0's. We have huk+1 � 1i = 1z and for n � k + 1, un = un�1 + d, thushun � 1i = 10n�k�1z.2) Let M = 10�z [M0 and z = zk�1 � � �z0. Let d = zk�1uk�1 + � � �+ z0u0 + 1 and letc = uk. Since z is greedy, 0 < d � c, and for p � 0, uk+p = uk+p�1 + d = uk + pd. Thecharacteristic polynomial of U is P (X) = (X � 1)2.3) By Proposition 8 we know that Succ is not right subsequential on 0�L. We nowconstruct a right subsequential 2-tape automaton realizing Succ on L. First, L = f10nv jn � 0; jvj = jzj = k; v �lex zg [ ff j jf j � k; such that f does not begin with 0's and everysu�x of length i of f is �lex mig. Let L = (Q;A;E; i0; T ) be the minimal deterministicright automaton recognizing L0, with Q = f[f ]L 6= sink g, T = f[f ]L j f 2 Lg, i0 = ["]L, andthere is an edge [f ]L a�! [af ]L for every a such that af 6= sink. We write [f ] instead of [f ]Lfor short.Let S = (Q;A � A�; F; i0; !) be a right subsequential 2-tape automaton having L asunderlying input automaton. F contains a path of the form :i0 z0="�! [z0] z1="�! � � � zk�1="�! [z], there is a loop [z] 0=0�! [z], and an arrow [z] 1=10k+1�! [1z].The other paths are of the following form, for v = vk�1 � � �v0 a word <lex z :i0 v0="�! [v0] v1="�! � � � vk�2="�! [vk�2 � � �v0] vk�1=vk�1���vj+1(vj+1)0j�! [v] where 0 � j � k�1 is maximalsuch that vj�1 � � �v0 2M0. There is a loop [v] 0=0�! [v] and an arrow [v] 1=1�! [1v].For words fi � � �f0, with i � k�2, the edges are of the form i0 f0="�! [f1] f1="�! � � � fi="�! [fi � � �f0].The terminal function is de�ned by !([1z]) = ", !([1v]) = ", for v as above, !(i0) = 1, andif f 2M0, !(f) = 10jf j, and otherwise, for 0 � l � k � 1, !(fl � � �f0) = fl � � �fj+1(fj + 1)0jwhere 0 � j � l � 1 is maximal such that fj�1 � � �f0 2M0.Remark that if we take k = 0, then c = d = 1, up = p + 1, and we �nd again thepathological case, which has thus the property that Succ is both left and right subsequentialon L. 18



We now make an additional hypothesis on the sequence U , which is ful�lled in manycases. Assume that U is an integral linear recurrent sequence with characteristic polynomialP such that P has a dominant root � > 1, that is to say, every other root  of P is such thatjj< �. Such a number � is called a Perron number.Theorem 3 Let U be an integral linear recurrent sequence with characteristic polynomialP having a dominant root � > 1. Then the successor function associated to U is rightsubsequential if and only if the following conditions are satis�ed :1) the �-expansion of 1 is �nite : d(1; �) = d1 � � �dm,2) U is de�ned by un = d1un�1 + � � �+ dmun�m for n � n0 � mand 1 = u0 < u1 < � � �< un0�1.Proof. The following has to be proved : Conditions 1 and 2 of Theorem 3 are satis�ed ifand only if the set of lexicographically maximum words is of the form M = [mi=1y�i zi [M0and L = L(U) is recognizable by a �nite automaton. This will be a consequence of the twofollowing lemmas.Lemma 5 Let � > 1 with d(1; �) = d1 � � �dm, and let U be de�ned byun = d1un�1 + � � �+ dmun�m for n � n0 � mand 1 = u0 < u1 < � � �< un0�1. ThenM = m[i=1(d1 � � �dm�1(dm � 1))�zi [M0where M0 is �nite, and L is recognizable by a �nite automaton.Proof. We have to prove that, for n large enough, the greedy representation of un � 1 isof the form (d1 � � �dm�1(dm � 1))kz, whith n = mk + jzj, and k maximum. If not, supposethat the greedy representation is hun � 1i = (d1 � � �dm�1(dm � 1))jd1 � � �di�1(di + c)w, with0 � j � k�1, c � 1, 1 � i � m, and jwj = n�mj� i. Then cujwj+�(w) = di+1ujwj�1+ � � �+dmujwj�m+i � 1, and thus ujwj = d1ujwj�1+ � � �+ dmujwj�m < di+1ujwj�1+ � � �+ dmujwj�m+i,which is impossible because d1 � � �dm is the �-expansion of 1.Now, for any q � 0, hun+qm � 1i = (d1 � � �dm�1(dm � 1))k+qz, with the same word zbecause z is greedy, and thus there exist m di�erent words z1, . . . , zm such that M =[mi=1(d1 � � �dm�1(dm � 1))�zi [M0.In [Ho95], it is proved that if d(1; �) = d1 � � �dm and un = d1un�1 + � � �+ dmun�m, thenL is recognizable by a �nite automaton. 19



Lemma 6 Suppose that P has a dominant root � > 1, M = Smi=1 y�i zi [ M0 and L isrecognizable by a �nite automaton. Then d(1; �) = d1 � � �dm and un = d1un�1 + � � � +dmun�m for n � n0 � m.Proof. From [Ho95], we know that if L is recognizable by a �nite automaton then d(1; �)must be �nite or eventually periodic. First remark that the case where d(1; �) could be purelyperiodic, i.e. d(1; �) = (d1 � � �dm)!, is impossible, for we would get 1 = d1 � � �dm�1(dm + 1),which would be the correct �-expansion of 1.If d(1; �) is eventually periodic, d(1; �) = d1 � � �dl(dl+1 � � �dl+m)!, then inM = [mi=1xiy�i zi [M0, words xi are of the form xi = d1 � � �dl and words yi are of the formyi = (dl+1 � � �dl+m)k (Lemma 7.4 of [Ho95]), a contradiction with the hypothesis.If d(1; �) = d1 � � �dm, M = [mi=1xiy�i zi [M0 can have two forms (Lemma 7.5 of [Ho95]) :Case 1. For each i, xi = (d1 � � �dm�1(dm � 1))ki(d1 � � �dm) and yi = 0n. This is in contra-diction with our hypothesis.Case 2. For each i, xi = yi = (d1 � � �dm�1(dm � 1))k. Then we get, for n large enough,hun�1i = (d1 � � �dm�1(dm�1))kz, for some k, hun+m�1i = (d1 � � �dm�1(dm�1))k+1z, thusun+m = d1un+m�1 + � � �+ dmun.Example 2 Fibonacci recurrence with non canonical initial conditions.Let U = (un)n�0 be the linear recurrent sequence de�ned byun = un�1 + un�2 for n � 3; u0 = 1; u1 = 4; u2 = 7:The characteristic polynomial of U is P (X) = X2 � X � 1 with (1 + p5)=2 for dominantroot. The canonical alphabet is A = f0; 1; 2; 3g. We have M = (10)�3 [ (10)�12 andL0 = [f0; 1g� n f0; 1g�11f0; 1g�]f"; 1; 2; 03g. On Figure 3, L0 is recognized by L, M by M,and on Figure 4, Succ is computed by S.["]���������-[0]����?[10]����� /0 � 0; 1; 2k 1 s0 ["]���������-[2]����[3]����6[03]���� � 3 @@@@@@@I 1 ?2k 0 s1} 3 Figure 3. Right automata L and M.20
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9 0=1; 1=2Figure 4. Right subsequential 2-tape automaton S. 2Recall that an algebraic integer is a root of a polynomial Xd + a1Xd�1 + � � �+ ad withintegral coe�cients ai. A Pisot number is an algebraic integer > 1 such that the other rootsof its minimal polynomial have modulus < 1.Example 3 Linear recurrence with a dominant root which is a Perron number but not aPisot number.Let un = 3un�1 + 2un�2 + 3un�4, for n � 4, with (for instance) u0 = 1, u1 = 4,u2 = 15, u3 = 54. In that case, the canonical alphabet is A = f0; � � � ; 3g, and M =(3202)�("; 3; 32; 320). The characteristic polynomial has a dominant root � which is a Per-ron number, but is not a Pisot number. We have d(1; �) = 3203, and L0 = F (D�). ByTheorem 3, Succ is a right subsequential function, although for any alphabet D � f0; � � � ; 4gnormalization is not computable by a �nite 2-tape automaton because � is not a Pisotnumber [FSo96]. In particular, addition is not computable by a �nite 2-tape automaton. 221



4 Sequentiality and continuity4.1 Odometer and automataIn this section we make a connection between right sequentiality of the successor functionand continuity of the odometer as de�ned in [GLT95]. Note that in [GLT95] numbers arewritten the other way round, that is to say with the least signi�cant digit at the left-end ofthe representation. We keep on writing numbers with the most signi�cant digit at the left.Let A be an alphabet and denote by NA the set of left in�nite sequences over A, endowedwith the discrete topology. The sequence � � �aaa is denoted by !a.As above, U is a strictly increasing sequence of integers with u0 = 1, and A is the canonicalalphabet associated to U , L = L(U) is the set of greedy U -representations of the nonnegativeintegers, and M is the set of lexicographically maximum words of L. Following [GLT95], theU -compacti�cation of N is the set C = C(U) = fs = (� � �s2s1s0) j 8j � 0; sj � � �s0 2 0�Lg.Let C0 = fs 2 C j 9Ns 8j � Ns; sj � � �s0 =2 Mg. The odometer is the function � de�ned onNA by :if s 2 C0 and j � Ns then �(s) = (� � �sj+2sj+1Succ (sj � � �s0)) (this de�nition does notdepend on the choice of j), and if s 2 C n C0, then �(s) = !0.Remark that, if we take for U the classical K-ary system, where K is an integer � 2,un = Kn, and C(U) is the set of K-adic integers.In the sequel we suppose that L is recognizable by a �nite automaton. Let L =(Q;A;E; r0; T ) be the minimal deterministic right automaton recognizing L0 = 0�L andlet M = (Q1; A; E1; i0; T1) be the minimal deterministic right automaton recognizing M :the set of states is Q1 = f[f ]M j f 2 A�g (there might exists a sink �), i0 = f["]Mg, theset of terminal states is T1 = f[f ]M j f 2 Mg, and for every a in A, there is an edge[f ]M a�! [af ]M .Let us denote by jjLjj the set of left in�nite sequences recognized by L (B�uchi condition,see Section 2.3).Lemma 7 C = jjLjj and C0 = jjLjj n jjMjj.Proof. Since L is right deterministic and every state is terminal, jjLjj = fs = (sj)j�0 j8j sj � � �s0 2 0�Lg = C. As M is right deterministic, jjMjj = fs j sj � � �s0 2M for in�nitelymany j's g = C n C0.For the sake of completeness, we recall the construction presented in [F96].22



Theorem 4 The successor function in the numeration system associated to U is computableby a letter-to-letter �nite 2-tape automaton (which is not right subsequential in general) ifand only if the set L(U) is recognizable by a �nite automaton.Proof. We construct a right (non deterministic) automaton X as follows. First, X containsboth L and M as subautomata.Now, according to Lemma 2 we distinguish two cases, according to whether the additionof 1 will produce a carry or not.Case 1. Addition of 1 doesn't produce a carry : it means that we are considering wordsw having no nonempty su�x in M . The set of such words is K = L0 n A�(M n "), whichis recognizable by a �nite automaton. Let K = (Q2; A; E2; j0; T2) be the deterministic rightautomaton of classes mod �K recognizing K. Since every non empty su�x of K is again inK (the empty word is not in K), we can take T2 = Q2 n j0. We join K and M be takingj0 = i0 = f["]Mg for initial state of K.Case 2. Addition of 1 produces a carry. We consider any terminal state t = [f ]M of M ,f 2M , t 6= ["]M .1) There is no edge outgoing from t. So for any letter a 2 A, is created a new edge in X :t = [f ]M a�! [af ]L0 , if af is in L0, otherwise the edge is not created.2) There is an edge outgoing from t in M. If that edge is the �rst one on a path going fromt to the sink �, there is nothing to do. Otherwise, there is a path going from t to an otherterminal state t0 (possibly equal to t) inM. FromProposition 3, we know that the label of anypath between t and t0 is of the form xykz, for k � 0, that is to say, t = [f ]M , t0 = [xykzf ]M ,for every k � 0. Let us rename z = an�1 � � �a0, y = an+p�1 � � �an, x = an+p+m�1 � � �an+p,where the ai's are in A, and ri = [ai�1 � � �a0f ]M . Then t = r0, t0 = rn+p+m, ri ai�! ri+1 inM, for i � 0 � n+ p+m� 1, and rn+p = rn.We do the following construction : we duplicate the path from t to rn+p+m�1, by creatingnew states qi and new edges qi ai�! qi+1, for 0 � i � n + p + m � 2, with q0 = t. Then,for any 0 � i � n + p + m � 1, for any letter bi < ai, if [biai�1 � � �a0f ]M = � (that is tosay if biai�1 � � �a0f is not left prolongeable in a word of M), and if biai�1 � � �a0f 2 L0, wede�ne a new edge qi bi�! [biai�1 � � �a0f ]L0 which goes into the automaton L, otherwise, wedo nothing. Let Q3 be the set of new states, and E3 the set of new edges just de�ned.Now let X = (Q [ Q1 [ Q2 [ Q3; A; E [ E1 [ E2 [ E3; q0 = ["]M ; S), with the set S ofterminal states being de�ned as follows : every state excepted the states of M is terminal,S = Q [Q2 [Q3 n ["]M .The right 2-tape automaton S realizing the function Succ is de�ned with X as underlyinginput automaton :� any edge p a�! q of M becomes p a=0�! q in S23



� any edge ["]M a�! q in K becomes ["]M a=a+1�! q in S� any new edge in E3 outgoing from a terminal state t of M, t a�! q, becomes t a=a+1�! q in S� all the other edges p a�! q become p a=a�! q.We claim that S realizes the function Succ : let w=v = (wk=vk) � � �(w0=v0), be the labelof a path in S going from the initial state ["]M to a terminal state s.1) s is in Q2 and w is in K, and thus in L0; by construction of S, v0 = w0 + 1, and for1 � i � k, vi = wi. Hence v = Succ (w).2) s is in Q [ Q3. Let i � 1 be the greatest index such that wi�1 � � �w0 is in M . Let usdenote mj = [wj � � �w0]M and sj = [wj � � �w0]L0 .a) s is in Q and thus w is in L0. Then["]M w0=0�! m0 w1=0�! � � � wi�2=0�! mi�2 wi�1=0�! mi�1 wi=wi+1�! si wi+1=wi+1�! � � � wk=wk�! sk = sThus, by Lemma 2, v = wk � � �wi+1(wi + 1)0i = Succ (w).b) s is in Q3; by construction, wk � � �wi is a su�x of a word of M , so w is a su�x of a wordof M , every su�x of w is lexicographically smaller than the word of M of same length, andso w is in L0 by Proposition 1. As above, v = wk � � �wi+1(wi + 1)0i = Succ (w).With the slight modi�cation that every state of S excepted the non-terminal states ofM has to be chosen as terminal, it is easy to show the following.Proposition 11 The odometer � is computed by S, that is, jjSjj = � .Proof. Let S as above, but with set of terminal states taken as S0 = Q[Q2[Q3[T1. Let usconsider an in�nite path in S going in�nitely often through a terminal state ofM. Then thelabel of this path is of the form � � � (0; sj) � � �(0; s0) where s = � � �sj � � �s0 and sj � � �s0 2 Mfor in�nitely many j's. Thus �(s) = !0. Any other in�nite path in S goes only �nitelymany times through a terminal state of M, and is of the form � � � (sj+2; sj+2)(sj+1; sj+1 +1)(sj; 0) � � �(s0; 0), where j is the greatest index such that sj � � �s0 2M ; since Succ (sj � � �s0) =10j+1, we get � � �sj+2(sj+1 + 1)0j+1 = �(s).4.2 ContinuityIn [GLT95] is proved the following result (without the hypothesis of L being recognizableby a �nite automaton). Let s 2 C, and let D(s) = fd j sd � � �s0 2 Mg. Let � be the set of�nite or empty sequences � such that there exists s 2 C0 with D(s) = �.Theorem 5 [GLT95] The odometer � is continuous if and only if for all �nite or emptysequences (d0; � � � ; dk) 2 � the set fd > dk j (d0; � � � ; dk; d) 2 �g is �nite.24



Here we prove the following.Theorem 6 Let U such that L is recognizable by a �nite automaton. Then the odometer �associated to U is continuous if and only if the successor function Succ is right subsequentialon 0�L.Proof. By Theorem 2 and Theorem 5, we have to prove that M = Si=pi=1 y�i zi [M0 (whereM0 is �nite, jyij = p and the union is disjoint) if and only if the following condition (D)holds : for all (d0; � � � ; dk) 2 � the set fd > dk j (d0; � � � ; dk; d) 2 �g is �nite.First let us suppose that M contains a subset xy�z with x 6= ", and let s = !0. ThenD(s) = ;. For every n � 0, let t(n) = � � �00xynz. Then for each n, xynz 2 M and� � fjxj+ np+ jzj j n � 0g, thus condition (D) is not satis�ed.Conversely, let M = Si=pi=1 y�i zi [M0. Let us take t 2 C0, t = � � � tj+1tj � � � tdk � � � td0 � � � t0,where D(t) = (d0; � � � ; dk). We have that, for each 0 � l � k, tdl � � � t0 2 M . Because of theform of M and the fact that the union is disjoint, there exists an i, 1 � i � p such thattd0 � � � t0 = zi, td1 � � � t0 = yizi, . . . , tdk � � � t0 = yki zi, with for 0 � l � k, dl + 1 = pl + jzij.Thus for all (d0; � � � ; dk) 2 � the set fd > dk j (d0; � � � ; dk; d) 2 �g = fp(k + 1) + jzij � 1g,and thus condition (D) is satis�ed. One can remark that, when M = Si=pi=1 y�i zi [ M0,C n C0 = Si=pi=1 !yizi.This result is not surprising since sequential functions of in�nite words are continuous insome sense (see [E74]).Example 4 Let U = (un)n�0 be the linear recurrent sequence de�ned byun = un�1 + 2un�2; u0 = 1; u1 = 3:The characteristic polynomial of U is P (X) = (X + 1)(X � 2). The canonical alphabetis A = f0; 1; 2g. The language L is recognizable by a �nite automaton, 0�L = f0; 1g� [f0; 1g�02(00)�, M = (11)�[ 2(00)�, C nC0 = !1 = ��1(0). Since ��1(0) 6= ;, the odometer� is surjective. The successor function is not right subsequential from Theorem 2, and thus �is not continuous (this fact is also easy to prove directly). The successor function is not leftsubsequential by Theorem 1. It is computable by a �nite 2-tape automaton [F96], althoughon any alphabet normalization is never computable by a �nite 2-tape automaton. 2A similar result to Theorem 3, but slightly weaker, is proved in [GLT95], which says :Let � > 1 and put (ei)i�1 = d(1; �) if d(1; �) is in�nite, (ei)i�1 = d�(1; �) if d(1; �) is �nite(see Section 2.2). Let U such that for all n � 0, un = e1un�1 + � � �+ enu0 + 1. Then theodometer associated to U is continuous if and only if d(1; �) is �nite.25



5 ConclusionLet us recall a result from [FSo96] which says that, if U is a linear recurrent sequence ofintegers such that its characteristic polynomial is the minimal polynomial of a Pisot number,then normalization is computable by a �nite 2-tape automaton on any alphabet of integers,and in particular addition also. This is the case for the sequences given in Lemma 4 and inExample 2.It should be clear that there is a great di�erence between addition and the successorfunction. Of course, if addition is computable by a �nite 2-tape automaton (c.f.a. forshort), so is Succ. Note that addition in the standard K-ary numeration system is rightsubsequential (see [E74]), but addition in the Fibonacci numeration system is neither leftnor right subsequential, but can be obtained as the composition of a left and of a rightsubsequential function, explicity given in [Sa81].Below we summarize the examples considered in this paper. Unless explicitely stated,the results hold for any initial conditions such that u0 = 1 and U is strictly increasing.� un = 2n+1 � 1 (Example 1). Succ is left subsequential. Addition is not c.f.a.� un = 3un�1 � un�2 (Lemma 4). Succ is c.f.a. but neither left nor right subsequential.Addition is c.f.a.� un = un�1 + un�2 (Example 2). Succ is right subsequential. Addition is c.f.a.� un = 3un�1 + 2un�2 + 3un�4 (Example 3). Succ is right subsequential. Addition is notc.f.a.� un = un�1 + 2un�2, for n � 2, u0 = 1, u1 = 3 (Example 4). Succ is c.f.a. but neither leftnor right subsequential. Addition is not c.f.a.I thank Paul Gastin for his set of macros \Autograph" for drawing automata.References[Av61] Avizienis, A. (1961), Signed-digit number representations for fast parallel arithmetic,IRE Transactions on electronic computers 10, 389{400.[Ber79] Berstel, J. (1979), Transductions and context-free languages. Teubner.[B-M89] Bertrand-Mathis, A. (1989), Comment �ecrire les nombres entiers dans une base quin'est pas enti�ere, Acta Math. Acad. Sci. Hungar. 54, 237{241.[Ch77] Cho�rut, Ch. (1977), Une caract�erisation des fonctions s�equentielles et des fonctionssous-s�equentielles en tant que relations rationnelles, Theoret. Comput. Sci. 5, 325{337.26
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