On the sequentiality of the successor function

Christiane Frougny

Université Paris 8 and L.I.A.F.A. (LITP) 4 place Jussieu, 75252 Paris Cedex 05, France Email: Christiane.Frougny@litp.ibp.fr Running head: On the successor function.

Proofs to be sent to: Prof. Christiane Frougny L.I.A.F.A. (LITP) 4 place Jussieu 75252 Paris Cedex 05, France.

Abstract

Let U be a strictly increasing sequence of integers. By a greedy algorithm, every nonnegative integer has a greedy U-representation. The successor function maps the greedy U-representation of N onto the greedy U-representation of N+1. We characterize the sequences U such that the successor function associated to U is a left, resp. a right sequential function. We also show that the odometer associated to U is continuous if and only if the successor function is right sequential.

1 Introduction

It is well known that, in the classical K-ary number system, where K is an integer ≥ 2 , the successor function, which maps the K-representation of N onto that of N + 1, is computable by a sequential finite 2-tape automaton (that is to say, deterministic on inputs) working from right to left but not from left to right (there is a carry which propagates from right to left). In Computer Arithmetic, on-line arithmetic consists in performing operations in Most Significant Digit First mode (i.e. from left to right), digit serially after a certain delay of latency (see [Er84]). This mode of doing allows pipelining different operations such as addition, multiplication and division. To be able to perform on-line addition in integer base K, it is necessary to use a redundant number system such as the Avizienis signed-digit representation [Av61], which consists in changing the digit set. Instead of taking digits from the canonical set $\{0, \dots, K-1\}$, they are taken from a balanced set of the form $\{\bar{a}, \dots, a\}$, where \bar{a} denotes the digit -a, a being an integer such that $a + 1 \leq K \leq 2a$.

On the other hand, non-standard numeration systems have been widely studied. Given a strictly increasing sequence of integers U, every nonnegative integer N can be represented with respect to the system U, that is to say, N has a representation $d_k \cdots d_0$ such that $N = \sum_{i=0}^k d_i u_i$. A classical way to obtain such a representation is to use a greedy algorithm ([Fr85]), which gives the greatest representation for the lexicographical ordering. The digits d_i are then elements of a canonical alphabet A_U , denoted by A for short. The set of greedy representations of all the nonnegative integers is denoted by L(U). For instance, taking $U = \{K^n \mid n \ge 0, K \text{ integer } \ge 2\}$ gives the standard K-ary number system with A = $\{0, \dots, K-1\}$. The Fibonacci numeration system is defined from the sequence of Fibonacci numbers with $u_0 = 1, u_1 = 2, u_n = u_{n-1} + u_{n-2}$ for $n \ge 2$, and $A = \{0, 1\}$ (see [K88]). One of the interests in non-standard numeration systems relies in the fact that they are naturally redundant.

The successor function in the numeration system associated to U is the function Succ : $A^* \longrightarrow A^*$ that maps the greedy U-representation of the integer N onto the greedy Urepresentation of N + 1. In [F96] we have proved that the successor function is computable by a finite 2-tape automaton if and only if L(U) is recognizable by a finite automaton (the proof is given in Theorem 4 below). When the set L(U) is recognizable by a finite automaton then U must be a linear recurrent sequence with integral coefficients [Sh92].

These questions are linked to the representation of real numbers in non-integral base $\beta > 1$, and particularly to what is known as the β -expansion of 1, denoted by $d(1,\beta)$ (see Section 2.2). In [Ho95] are given conditions on the β -expansion of 1 and on associated sequences U which imply that the set L(U) is recognizable by a finite automaton.

In this paper we focus on the sequentiality of the finite 2-tape automaton computing the

successor function. We first study the left sequentiality (the sequentiality from left to right) of the successor function in non-standard numeration systems. We show that the successor function associated to U is a left subsequential function if and only if U is one of the following sequences :

Case 1. Let $\beta > 1$ be a number such that $d(1,\beta) = d_1 \cdots d_m$, and let $U = (u_n)_{n \ge 0}$ be defined by

$$u_n = d_1 u_{n-1} + \dots + d_m u_{n-m} + 1$$
, for $n \ge n_0 \ge m$

with $1 = u_0 < u_1 < u_2 < \dots < u_{n_0-1}$.

Case 2. U is the set of positive integers.

In [FSa97] we have written an algorithm which, given a left subsequential 2-tape automaton computing a relation such that the difference between the length of input words and the length of output words is bounded, constructs an equivalent *on-line* finite automaton, that is to say, a left subsequential finite 2-tape automaton which is letter-to-letter after an initial period where it reads the input and outputs nothing. As a corollary, we obtain that, for the above systems U, it is possible to design an on-line finite 2-tape automaton which computes the successor function.

We then consider right sequentiality and prove that the successor function associated to a sequence U is a right subsequential function (on $0^*L(U)$) if and only if L(U) is recognizable by a finite automaton and if the set M of lexicographically maximum words of L(U) is of the form :

$$M = \bigcup_{i=1}^{i=p} y_i^* z_i \cup M_0$$

where M_0 is finite, $|y_i| = p$ and the union is disjoint.

A case which is frequently met is the following one : U is an integral linear recurrent sequence with characteristic polynomial P having a dominant root $\beta > 1$. Then the successor function associated to U is right subsequential if and only if the following conditions are satisfied :

the β-expansion of 1 is finite : d(1,β) = d₁ ··· d_m,
 U is defined by

$$u_n = d_1 u_{n-1} + \dots + d_m u_{n-m}$$
 for $n \ge n_0 \ge m$

and $1 = u_0 < u_1 < \cdots < u_{n_0-1}$ (Theorem 3).

In a dynamical context, the successor function is extended to what is called *odometer* or *adding machine* (see [GLT95]). We make a connection with a result of [GLT95], showing that : Let U such that L(U) is recognizable by a finite automaton. Then the odometer associated to U is continuous if and only if the successor function is right subsequential on $0^*L(U)$.

Recall that the normalization function on an alphabet of integers C is the function ν_C : $C^* \longrightarrow A^*$ which maps any U-representation on C^* of a nonnegative integer onto the greedy U-representation of that integer (see [FSo96]). Addition of nonnegative integers represented with respect to U is a particular case of normalization : let $A = \{0, \dots, a\}$ be the canonical alphabet associated to U, then addition is the normalization $\{0, \dots, 2a\}^* \longrightarrow \{0, \dots, a\}^*$. Here we give an example (Example 1) where the function Succ is left subsequential, although normalization is never computable by a finite 2-tape automaton, and an other one (Example 3) where Succ is right subsequential, and such that for any alphabet $C \supset A$, normalization on C is not computable by a finite 2-tape automaton.

2 Definitions

2.1 Representation of integers

Let $U = (u_n)_{n\geq 0}$ be a strictly increasing sequence of integers with $u_0 = 1$. A representation in the system U — or a U-representation — of a nonnegative integer N is a finite sequence of integers $(d_i)_{0\leq i\leq k}$ such that

$$N = \sum_{i=0}^{k} d_i u_i.$$

Such a representation will be written $d_k \cdots d_0$, most significant digit first.

A word $d = d_k \cdots d_0$ is said to be *lexicographically greater* than a word $f = f_k \cdots f_0$, and this will be denoted by $d >_{lex} f$, if there exists an index $0 \le i \le k$ such that $d_k = f_k, \ldots, d_{i+1} = f_{i+1}$ and $d_i > f_i$. Among all possible U-representations $d_k \cdots d_0$ of a given integer N one is distinguished and called the *greedy* (or the *normal*) U-representation of N: it is the greatest in the lexicographical ordering. It is obtained by the following greedy algorithm (see [Fr85]):

Given integers m and p let us denote by q(m, p) and r(m, p) the quotient and the remainder of the Euclidean division of m by p.

Let $k \ge 0$ such that $u_k \le N < u_{k+1}$ and let $d_k = q(N, u_k)$ and $r_k = r(N, u_k)$, $d_i = q(r_{i+1}, u_i)$ and $r_i = r(r_{i+1}, u_i)$ for $i = k - 1, \dots, 0$. Then $N = d_k u_k + \dots + d_0 u_0$.

The greedy representation of N will be denoted by $\langle N \rangle$. By convention the greedy representation of 0 is the empty word ε . Under the hypothesis that the ratio u_{n+1}/u_n is bounded by a constant as n tends to infinity (that we will assume in this paper), the integers d_i of the greedy U-representation of any integer N are bounded and contained in a canonical finite alphabet A_U associated to U. The set of greedy U-representations of all the nonnegative integers is a subset of the free monoid A_U^* , and is denoted by L(U). The sequence U together with the alphabet A_U defines a numeration system associated to U. In the sequel we denote A_U by A. The numerical value of a word $w = d_k \cdots d_0$, is given by $\pi(w) = \sum_{i=0}^k d_i u_i$.

The successor function in the numeration system associated to U is the function Succ : $A^* \longrightarrow A^*$ that maps the greedy U-representation of the integer N onto the greedy Urepresentation of N + 1.

2.2 Representation of real numbers

Let $\beta > 1$ be a real number. A representation in base β (or a β -representation) of a real number $x \in [0, 1]$ is an infinite sequence $(x_i)_{i \ge 1}$ such that $x = \sum_{i > 1} x_i \beta^{-i}$.

A particular β -representation of x — called the β -expansion — can be computed by the "greedy algorithm" [R57] : Denote by [y] and $\{y\}$ the integer part and the fractional part of a number y. Let $x_1 = [\beta x], r_1 = \{\beta x\}$, and, for $i \ge 2$, $x_i = [\beta r_{i-1}]$, and $r_i = \{\beta r_{i-1}\}$. Then $x = \sum_{i\ge 1} x_i\beta^{-i}$. When β is not an integer, the digits x_i obtained by this algorithm are elements of the set $\{0, \ldots, [\beta]\}$; when β is an integer, the digits x_i of the β -expansion of a number $x \in [0, 1[$ are in $\{0, \ldots, \beta - 1\}$, and the β -expansion of 1 is just $d(1, \beta) = \beta$. If an expansion ends in infinitely many zeros, it is said to be *finite*, and the ending zeros are omitted.

An infinite sequence $s = (s_i)_{i \ge 1}$ is said to be greater in the lexicographical ordering than $t = (t_i)_{i \ge 1}$, and it is denoted by $s >_{lex} t$, if there exists an $i \ge 0$ such that $s_1 = t_1, \ldots, s_i = t_i$ and $s_{i+1} > t_{i+1}$. The β -expansion of 1 is denoted by $d(1,\beta) = (d_i)_{i\ge 1}$. Let D_β be the set of β -expansions of numbers of [0, 1[. We recall the theorem of Parry [P60]: a sequence $s = (s_n)_{n\ge 1}$ is in D_β if and only if for every $i \ge 1$, $s_i s_{i+1} \cdots$ is smaller in the lexicographical ordering than $d(1,\beta)$ when the latter is infinite, respectively smaller than $d^*(1,\beta) = (d_1 \cdots d_{m-1}(d_m-1))^{\omega}$ when $d(1,\beta) = d_1 \cdots d_m$ is finite (where w^{ω} denotes the infinite word $www\cdots$).

2.3 Finite automata and words

We recall some definitions. More details can be found in [E74] or in [HU79]. An automaton over a finite alphabet $A, \mathcal{A} = (Q, A, E, I, T)$ is a directed graph labelled by elements of A; Qis the set of states, $I \subset Q$ is the set of initial states, $T \subset Q$ is the set of terminal states and $E \subset Q \times A \times Q$ is the set of labelled edges. If $(p, a, q) \in E$, we note $p \xrightarrow{a} q$. The automaton is finite if Q is finite, and this will always be the case in this paper. The automaton \mathcal{A} is deterministic if E is the graph of a (partial) function from $Q \times A$ into Q, and if there is a unique initial state. A subset H of A^* is said to be recognizable by a finite automaton (or regular) if there exists a finite automaton \mathcal{A} such that H is equal to the set of labels of paths starting in an initial state and ending in a terminal state. Let $A^{\mathbb{N}}$ be the set of infinite sequences (or infinite words) on A. A subset K of $A^{\mathbf{N}}$ is said to be *recognizable by a finite automaton* if there exists a finite automaton \mathcal{A} such that K is equal to the set of labels of infinite paths starting in an initial state and going infinitely often through a terminal state (Büchi acceptance condition, see [E74]).

A 2-tape automaton is an automaton over the non-free monoid $A^* \times B^*$: $\mathcal{A} = (Q, A^* \times B^*, E, I, T)$ is a directed graph the edges of which are labelled by elements of $A^* \times B^*$. Words of A^* are referred as *input words*, as words of B^* are referred as *output words*. If $(p, (f, g), q) \in E$, we note $p \xrightarrow{f/q} q$. The automaton is finite if the set of edges E is finite (and thus Q is finite). These finite 2-tape automata are also known as *transducers*. A relation R of $A^* \times B^*$ is said to be *computable by a finite 2-tape automaton* if there exists a finite 2-tape automaton \mathcal{A} such that R is equal to the set of labels of paths starting in an initial state and ending in a terminal state. A function is computable by a finite 2-tape automaton if its graph is computable by a finite 2-tape automaton. These definitions extend to relations and functions of infinite words as above.

A 2-tape automaton \mathcal{A} with edges labelled by elements of $A \times B^*$ is said to be *left* sequential if the underlying input automaton obtained by taking the projection over A of the label of every edge is deterministic (see [Ber79]). A *left subsequential* 2-tape automaton is a left sequential automaton $\mathcal{A} = (Q, A \times B^*, E, \{i\}, \omega)$, where ω is the *terminal* function ω : $Q \longrightarrow B^*$, whose value is concatenated to the output word corresponding to a computation in \mathcal{A} .

A 2-tape automaton \mathcal{A} is said to be *letter-to-letter* if the edges are labelled by couples of letters, that is, by elements of $A \times B$.

All the automata considered so far work implicitly from left to right, that is to say, words are processed from left to right. It is possible to define in a dual way *right* automata, where words are processed from right to left. Usual automata are thus *left* automata.

Let H be a subset of A^* . The *left congruence* modulo H is defined on A^* by

 $f \sim_H g \Leftrightarrow [\forall h \in A^*, hf \in H \text{ if and only if } hg \in H].$

It is known that the set H is recognizable by a finite automaton if and only if the left congruence modulo H has finite index (Myhill-Nerode Theorem, see [E74] or [HU79]). Let us denote by $[f]_H$ the class of f modulo \sim_H . Suppose that \sim_H has finite index. One constructs the minimal deterministic right automaton \mathcal{R} recognizing H as follows ([E74]) : • the set of states of \mathcal{R} is the set $\{[f]_H \mid f \in A^*\}$

- the initial state is $[\varepsilon]_H$
- the set of terminal states is equal to $\{[f]_H \mid f \in H\}$
- for every state $[f]_H$ and every $a \in A$, there is an edge $[f]_H \xrightarrow{a} [af]_H$ (words are processed

from right to left!).

Such a construction implies that there might exist a *sink*, i.e. a non-terminal state s such that, for any letter $a \in A$, there is a loop $s \xrightarrow{a} s$. This happens when $s = [w]_H$, w not in H, and there is no w' such that w'w belongs to H.

A factor of a word w is a word f such that there exist words w' and w'' with w = w'fw''. When $w' = \varepsilon$, f is said to be a prefix of w, and when $w'' = \varepsilon$, f is said to be a suffix of w. If H is a subset of A^* we denote by F(H) (resp. PF(H), resp. SF(H)) the set of factors (resp. prefixes, resp. suffixes) of words of H. The length of a word $w = w_1 \cdots w_n$ with w_i in A for $1 \le i \le n$ is denoted by |w| and is equal to n. By w^n is denoted the word obtained by concatenating n times w. The set of words of length n (resp. $\le n$) of A^* is denoted by A^n (resp. $A^{\le n}$). By H^+ is denoted $H^* \setminus \varepsilon$. A word f is a factor of an infinite word s if s = wfs', with $s' \in A^{\mathbb{N}}$. The set of factors of a subset K of $A^{\mathbb{N}}$ is denoted by F(K).

3 Main results

3.1 Preliminaries

First, if the successor function associated to U is computable by a 2-tape automaton, then its domain L = L(U) is recognizable by a finite automaton. So in the sequel we assume that L is recognizable by a finite automaton. Then, by [Sh92], U must be a linear recurrent sequence with integral coefficients. Let us recall the following results.

Proposition 1 (folklore, see [Sa83]) Let H be a subset of A^* , and let M(H) be the union of the lexicographically maximum words of H of each length, as follows :

$$M(H) = \bigcup_{n \ge 0} \{ v \in H \cap A^n \mid \forall w \in H \cap A^n, \ w \leq_{lex} v \}.$$

Then, if H is recognizable by a finite automaton, so is M(H).

Let us denote by M the language M(L) of lexicographically maximum words of L. Let m_n be the word of length n which is maximum in the lexicographical ordering : $m_n = \langle u_n - 1 \rangle$, and $M = \bigcup_{n \ge 0} \{m_n \mid n \in \mathbf{N}\}$. Notice that the empty word $\varepsilon = m_0$ belongs to M. We have

Proposition 2 [Ho95] The language L is equal to $L = \bigcup_{n \ge 0} \{v \in A^n \mid every \text{ suffix of length} i \le n \text{ of } v \text{ is } \le_{lex} m_i\}.$

Proposition 3 [Ho95] Since $|M \cap A^n| = 1$ for all $n \ge 0$, and M is recognizable by a finite automaton, there exist an integer p, words x_i , y_i , and z_i such that

$$M = \bigcup_{i=1}^{i=p} x_i y_i^* z_i \cup M_0$$

where M_0 is finite, $|y_i| = p$, and the union is disjoint.

Lemma 1 The function Suce has the following property : for any word w of L,

$$0 \leq |Succ(w)| - |w| \leq 1.$$

Proof. Let us suppose that $w = w_k \cdots w_0 = \langle N \rangle$. Thus, $N + 1 = 1 + \sum_{i=0}^{i=k} w_i u_i$. As w is greedy, one has $N < u_{k+1}$. Thus $N + 1 \leq u_{k+1}$, and so $|\langle N + 1 \rangle| \leq k + 2$.

Thus, it is more convenient to consider words of 0^*L , denoted by L_0 for short. The function Succ is extended to L_0 in the obvious way. In particular, Succ $(0) = \text{Succ } (\varepsilon) = 1$.

Lemma 2 Let $w = w_k \cdots w_0$ be a word in 0^+L . Let $w_{i-1} \cdots w_0$ be the longest suffix of w which belongs to M. Then Succ $(w) = w_k \cdots w_{i+1}(w_i+1)0^i$.

3.2 Left sequentiality

We begin giving a proof of the well known fact that, in the classical K-ary number system, where K is an integer ≥ 2 , the successor function is not sequentially computable from left to right.

Lemma 3 In the K-ary number system the successor function cannot be realized by a left subsequential 2-tape automaton.

Proof. Recall that in the K-ary system $L_0 = \{0, \dots, K-1\}^*$ and $M = (K-1)^*$. Let d_l be the *left-distance* on A^* defined by

$$d_l(v, w) = |v| + |w| - 2 |v \wedge_l w|$$

where $v \wedge_l w$ denotes the longest common prefix to v and w.

Let $v = 0(K-1)^n$ and $w = 0(K-1)^{n-1}0$. Then Succ $(v) = 10^n$, Succ $(w) = 0(K-1)^{n-1}1$. We have $d_l(v,w) = 2$, $d_l(\text{Succ }(v), \text{Succ }(w)) = 2(n+1)$. Thus the left-distance between Succ (v) and Succ (w) becomes unbounded when n goes to infinity, as the distance between v and w is bounded. By a result of [Ch77], it follows that Succ cannot be realized by a left subsequential 2-tape automaton. **Theorem 1** The successor function associated to U is a left subsequential function if and only if U is one of the following sequences :

Case 1. Let $\beta > 1$ be a number such that $d(1, \beta) = d_1 \cdots d_m$, and let U be defined by

$$u_n = d_1 u_{n-1} + \dots + d_m u_{n-m} + 1, \text{ for } n \ge n_0 \ge m$$

with $1 = u_0 < u_1 < u_2 < \cdots < u_{n_0-1}$.

Case 2. U is the set of positive integers $\mathbf{N} \setminus \mathbf{0}$ (pathological case).

Proof. We split the proof into several parts.

Proposition 4 Let $\beta > 1$ be a number such that $d(1, \beta) = d_1 \cdots d_m$, and let U be defined by

$$u_n = d_1 u_{n-1} + \dots + d_m u_{n-m} + 1, \text{ for } n \ge n_0 \ge m$$

with $1 = u_0 < u_1 < u_2 < \cdots < u_{n_0-1}$. Then the set of lexicographically maximum words is equal to

$$M = d_1 \cdots d_m 0^{k+1-m} 0^* \cup M_0$$

where M_0 is a finite set and k is the length of the longest word of M_0 , and the successor function associated to U is a left subsequential function.

Proof. Let U be defined as above. Then U satisfies the linear recurrence

$$u_{n+1} = (d_1 + 1)u_n + (d_2 - d_1)u_{n-1} + \dots + (d_m - d_{m-1})u_{n+1-m} - d_m u_{n-m}$$

for $n \ge n_0$, and the characteristic polynomial is $P(X) = (X-1)(X^m - d_1X^{m-1} - \cdots - d_m)$, with β for dominant root.

Let $n \ge n_0 + m - 1$. Since $u_n - 1 = d_1 u_{n-1} + \dots + d_m u_{n-m}$, we have to show that $d_1 \dots d_m 0^{n-m}$ is the greedy representation of $u_n - 1$. Suppose the greedy representation of $u_n - 1$ is not that one; since $u_{n-1} \le u_n - 1 < u_n$, the greedy representation of $u_n - 1$ is $>_{lex} d_1 \dots d_m 0^{n-m}$, and thus is of the form $d_1 \dots d_{i-1}(d_i+c)f$, where $1 \le i \le m-1, c \ge 1$ and |f| = n - i. Thus $cu_{n-i} + \pi(f) = d_{i+1}u_{n-i-1} + \dots + d_m u_n$. Hence $d_{i+1}u_{n-i-1} + \dots + d_m u_n \ge u_{n-i} = d_1u_{n-i-1} + \dots + d_m u_{n-i-m} + 1$, which is impossible because $d_1 \dots d_m$ is a beta-expansion and thus $d_{i+1} \dots d_m 0^i <_{lex} d_1 \dots d_m$ (Theorem of Parry [P60], see Section 2.2).

Now, when $n \leq n_0 + m - 2$, the greedy representation of $u_n - 1$ depends on the choice of the initial conditions u_1, \ldots, u_{n_0-1} . For instance, if we take for initial conditions the canonical initial conditions associated to β (see [B-M89])

$$u_0 = 1, \ u_i = d_1 u_{i-1} + \dots + d_i u_0 + 1, \ 1 \le i \le m - 1$$

and $n_0 = m$, then it is easily checked that, in that case,

$$M = d_1 \cdots d_m 0^* \cup \{\varepsilon, d_1, d_1 d_2, \dots, d_1 \cdots d_{m-1}\}.$$

We now show that L_0 is recognizable by a finite automaton. Let A be the canonical alphabet associated to U. Let

$$Y = \{0, \dots, d_1 - 1, d_1 0, \dots, d_1 (d_2 - 1), \dots, d_1 \cdots d_{m-1} 0, \dots, d_1 \cdots d_{m-1} (d_m - 1)\}.$$

Then $L_0 = \{f \in Y^* d_1 \cdots d_m 0^{k+1-m} 0^* \cup A^{\leq k} \mid \text{every suffix of length } j \leq k \text{ of } f \text{ is } \leq_{lex} m_j \}$. This comes from the fact that, if $f \in Y^* d_1 \cdots d_m 0^{k+1-m} 0^*$, $|f| = n \geq k+1$, then $f \leq_{lex} d_1 \cdots d_m 0^{n-m}$ by the theorem of Parry recalled above.

Let $\alpha = k + 1 - m$. So $M = d_1 \cdots d_m 0^{\alpha} 0^* \cup M_0$. If $\alpha = 0$, then $M = d_1 \cdots d_m 0^* \cup M_0$. Let $\mathcal{M} = (Q, A, E, i_0, T)$ be the following deterministic automaton recognizing 0M:

• $Q = \{i_0\} \cup PF(0M_0) \cup PF(0d_1 \cdots d_m 0^{\alpha})$, where PF(H) is the set of prefixes of elements of H.

• The set of edges E is defined by : if $q \in Q$, there is an edge $q \xrightarrow{a} qa$ when $a \in A$ and $qa \in Q$. There is an edge $i_0 \xrightarrow{0} 0$. Let us denote by t the state $t = 0d_1 \cdots d_m 0^{\alpha}$, there is a loop $t \xrightarrow{0} t$.

• The set of terminal states is $T = 0M_0 \cup \{t\}$.

We consider words begining with a 0. Remark that if $f \in L_0$, and if $f = f'ad_1 \cdots d_m 0^n$, where $a \in A$ and $n \ge \alpha$, then Succ $(f) = f'(a+1)0^{m+n}$, and if $f = f'am_i$, where $m_i \in M_0$, $|m_i| = i$, then Succ $(f) = f'(a+1)0^i$ by Lemma 2. So the idea to realize Succ as a left subsequential 2-tape automaton is the following : we construct a 2-tape automaton realizing the identity at the beginning, but with delay one, that is to say, we keep in memory (in the states) the last letter read, until we reach a suffix which is in M, and is transformed as indicated above.

Here is the construction of a left subsequential 2-tape automaton realizing Succ: $S = (R, A \times A^*, F, i_0, \omega)$. The automaton \mathcal{M} is a subautomaton of the underlying input automaton of S. First, let us denote by X the set $X = PF(M_0) \cup PF(d_1 \cdots d_m 0^{\alpha-1})$ if $\alpha \geq 1$, $X = PF(M_0) \cup PF(d_1 \cdots d_{m-1})$ if $\alpha = 0$.

• The set of states R will be a subset of $AX \cup \{i_0\} \cup \{d_1 \cdots d_m 0^{\alpha}\}$, containing Q as a subset, and inductively constructed from Q as indicated below. For notation coherence, the state tof \mathcal{M} is here denoted by $d_1 \cdots d_m 0^{\alpha}$.

• The set of edges F will be defined as follows : first, there is an edge $i_0 \xrightarrow{0/\varepsilon} 0$. Secondly, if $\alpha \geq 1$ (Case 1), and if $rd_1 \cdots d_m 0^{\alpha-1} \in R$, there is an edge $rd_1 \cdots d_m 0^{\alpha-1} \xrightarrow{0/r+1} d_1 \cdots d_m 0^{\alpha}$; and there is a loop $d_1 \cdots d_m 0^{\alpha} \xrightarrow{0/0} d_1 \cdots d_m 0^{\alpha}$. If $\alpha = 0$ (Case 2), we put $rd_1 \cdots d_{m-1} \xrightarrow{d_m/r+1} d_m \cdots d_m 0^{\alpha}$.

 $d_1 \cdots d_m$, and there is a loop $d_1 \cdots d_m \xrightarrow{0/0} d_1 \cdots d_m$.

Now, we give a general rule for defining new edges of the form $q \xrightarrow{a/\lambda(q,a)} \delta(q,a)$ as follows: let $0 \leq n \leq m + \alpha$, and $q = r_0 \cdots r_n$ be a state of R different from i_0 and from the states of the form $rd_1 \cdots d_m 0^{\alpha}$ or $rd_1 \cdots d_m 0^{\alpha-1}$ (Case 1), and $rd_1 \cdots d_{m-1}$ (Case 2) just mentioned above. Let $l \geq 0$ be the minimum index such that $r_{l+1} \cdots r_n a$ is in X, then let the next state be $\delta(q,a) = r_l r_{l+1} \cdots r_n a$ and the output be $\lambda(q,a) = r_0 \cdots r_{l-1}$. When $r_1 \cdots r_n a \in X$ (l = 0), we get $\delta(q,a) = r_0 \cdots r_n a$ and $\lambda(q,a) = \varepsilon$, and when there is no suffix of $r_0 \cdots r_n a$ belonging to X (l = n + 1), we get $\delta(q, a) = a$ and $\lambda(q, a) = r_0 \cdots r_n$.

All we have to do now is to determine for which letters $a \in A$ these edges are valid. Let us consider a state of form $q = rd_1 \cdots d_n$, $n \leq m-1$ if $\alpha \geq 1$, or $n \leq m-2$ when $\alpha = 0$. Then for any letter $a < d_{n+1}$ such that there is no edge labelled by a leaving q in \mathcal{M} , we define an edge $q^{a/\lambda(q,a)} \delta(q,a)$.

For any state of the form $q = r_0 r_1 \cdots r_n$ such that $r_1 \cdots r_n$ is in $PF(M_0)$, and for any letter $a < r_{n+1}$ such that $r_1 \cdots r_n r_{n+1}$ belongs to $PF(M_0)$, there is an edge $q \xrightarrow{a/\lambda(q,a)} \delta(q,a)$.

• The terminal function ω is defined by : $\omega(d_1 \cdots d_m 0^{\alpha}) = 0^{m+\alpha}$. If $r_1 \cdots r_n \in M_0$, then $\omega(r_0r_1 \cdots r_n) = (r_0 + 1)0^n$. If a state $q = r_0 \cdots r_n$ is in $L_0 \setminus M$, then

 $\omega(q) = r_0 \cdots r_{i-1}(r_i + 1)r_{i+1} \cdots r_n \text{ where } r_{i+1} \cdots r_n \text{ is the longest suffix of } q \text{ in } M_0.$

Example 1 Let $\beta = 2$, and $u_n = 2u_{n-1} + 1$ for $n \ge 1$, and $u_0 = 1$. Then $u_n = 2^{n+1} - 1$, $M = 20^* \cup \varepsilon$, $L_0 = \{0, 1\}^* \cup \{0, 1\}^* 20^*$. The sequence U is linearly recurrent, given by $u_n = 3u_{n-1} - 2u_{n-2}$ for $n \ge 2$ and $u_1 = 3$, $u_0 = 1$. Here is the left subsequential 2-tape automaton S realizing Succ.

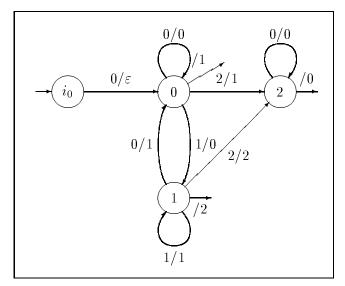


Figure 1. Left-subsequential 2-tape automaton \mathcal{S}

It can be shown that, in this system U, normalization on any alphabet (in particular addition) is never computable by a finite automaton.

Proposition 5 Let U be the set $\mathbf{N} \setminus 0$. Then $L = M = 10^* \cup \varepsilon$, and the successor function is left subsequential.

Proof. Since $u_n = n + 1$ for $n \ge 0$, $L = M = 10^* \cup \varepsilon$. The characteristic polynomial of U is $P(X) = (X - 1)^2$. Below is the left subsequential 2-tape automaton realizing Succ.

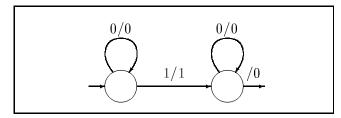


Figure 2. Left-subsequential 2-tape automaton for $\mathbf{N} \setminus \mathbf{0}$

Proposition 6 If U is a sequence such that M is not of the form $s0^* \cup M_0$, where s is a non-empty word not in 0^* , and M_0 is a finite set, then Succ cannot be realized by a left subsequential 2-tape automaton.

Proof. Let us show that, if $M \neq s0^* \cup M_0$, then there exist words x, y, z and g such that, for every $n \geq 1$, $xy^n z$ is in M and $xy^{n-1}g$ is in $L \setminus M$.

1) Let us suppose that there exists an $i, 1 \leq i \leq p$, such that $x_i y_i^* z_i \subseteq M$ with $z_i \neq \varepsilon$, $z_i \notin 0^+$. Then there exists $h <_{lex} z_i$, $|h| = |z_i|$. Thus for every $n \geq 1$, $x_i y_i^n z_i \in M$ and $x_i y_i^n h \in L \setminus M$, by Proposition 2.

2) Otherwise, for every $i, 1 \leq i \leq p, z_i \in 0^*$. First, let us suppose that there exists an i such that $y_i \notin 0^+$. Then let $h <_{lex} y_i, |h| = |y_i|$. Thus for every $n \geq 1, x_i y_i^n z_i \in M$ and $x_i y_i^{n-1} h z_i$ is in $L \setminus M$.

Otherwise, suppose that for every $i, 1 \leq i \leq p, y_i = 0^p$. Then by hypothesis, p must be ≥ 2 . For simplicity, suppose p = 2. Then $M = x_1(00)^* \cup x_2(00)^* \cup M_0$. Suppose that $x_10^{\omega} <_{lex} x_20^{\omega}$. Then there exists $k \geq 0$ such that $x_1(00)^{n-1}0^k <_{lex} x_2(00)^n$, thus for $n \geq 1$, $x_1(00)^{n-1}0^k \in L \setminus M$ and $x_1(00)^n \in M$.

Now let $v = 0xy^n z$ and $w = 0xy^{n-1}g$ be determined as above. We have $d_l(v, w) = |y| + |z| + |g| - 2 |(yz) \wedge_l g| = K$, a constant, and Succ $(v) = 10^{n|y|+|x|+|z|}$. Without loss of generality, we can assume that the longest suffix of w belonging to M_0 is a suffix of g. Let $g = g_m \cdots g_i \cdots g_0$, $i \ge 0$, where $g_{i-1} \cdots g_0$ is the longest suffix of g belonging to

 M_0 . Then Succ $(w) = 0xy^{n-1}g_m \cdots g_{i+1}(g_i+1)g_{i-1} \cdots g_0$. We have $d_l(\text{Succ }(v), \text{Succ }(w)) = (2n-1)|y|+2|x|+|z|+|g|+2$. Thus, as in Lemma 3, Succ cannot be realized by a left subsequential 2-tape automaton.

Proposition 7 The only sequences U such that $M = s0^* \cup M_0$, where s is a non-empty word, are given by :

Case 1. Let $\beta > 1$ be a number such that $d(1, \beta) = d_1 \cdots d_m$, and let U be defined by

$$u_n = d_1 u_{n-1} + \dots + d_m u_{n-m} + 1$$
, for $n \ge n_0 \ge m$

with $1 = u_0 < u_1 < u_2 < \cdots < u_{n_0-1}$. Case 2. U is the set of positive integers $\mathbf{N} \setminus \mathbf{0}$.

Proof. We consider $s \neq 1$, $s = d_1 \cdots d_m 0^{\alpha}$, with $\alpha \ge 0$ and $d_m \ne 0$. Since $d_1 \cdots d_m 0^j \in L$ for $j \ge \alpha + m - 1$, by Proposition 2 we get

$$d_2 \cdots d_m 0 <_{lex} d_1 \cdots d_m$$

 $d_3 \cdots d_m 0 0 <_{lex} d_1 \cdots d_m$
...

 $d_m 0^{m-1} <_{lex} d_1 \cdots d_m$

and by a result of Parry [P60], there exists a unique real number $\beta > 1$ such that $d(1, \beta) = d_1 \cdots d_m$. Now, since $d_1 \cdots d_m 0^n \in M$ for $n \ge \alpha$, we have $d_1 \cdots d_m 0^n = \langle u_{m+n} - 1 \rangle$, so $u_{m+n} = d_1 u_{m+n-1} + \cdots + d_m u_{n-1} + 1$, for $n \ge \alpha$.

As a corollary of Theorem 1 we get the following.

Corollary 1 When U is a sequence satisfying the hypothesis of Theorem 1, the successor function is computable by an on-line finite automaton.

Proof. It is a consequence of Lemma 1 and of [FSa97].

3.3 Right sequentiality

Lemma 4 There exist sequences U such that the function Succ cannot be realized by a right subsequential 2-tape automaton.

Proof. Consider the sequence U defined by the following linear recurrent sequence

$$u_n = 3u_{n-1} - u_{n-2}$$
; $u_0 = 1$, $u_1 = 3$.

 $U = \{1,3,8,21,\cdots\}$ is the sequence of Fibonacci numbers of even index. The canonical alphabet is $A = \{0,1,2\}, L_0 = \{0,1\}^* \cup \{0,1\}^* 21^* \cup (\{0,1\}^* 21^* 0)^*$ and $M = 21^* \cup \varepsilon$. Since L_0 is recognizable by a finite automaton, Succ is computable by a finite 2-tape automaton.

The *right-distance* on A^* is defined by

$$d_r(v, w) = |v| + |w| - 2 |v \wedge_r w|$$

where $v \wedge_r w$ denotes the longest common suffix to v and w.

Let $v = 021^n$ and $w = 01^{n+1}$. Then Succ $(v) = 10^{n+1}$ and Succ $(w) = 01^n 2$. We have $d_r(v, w) = 2(n+2) - 2n = 4$, as $d_r(\text{Succ } (v), \text{Succ } (w)) = 2(n+2)$. From [Ch77] it follows that Succ cannot be realized by a right subsequential 2-tape automaton in the numeration system defined by U.

Theorem 2 The successor function associated to a sequence U is a right subsequential function (on $0^*L(U)$) if and only if L(U) is recognizable by a finite automaton and if the set M of lexicographically maximum words of L(U) is of the form :

$$M = \bigcup_{i=1}^{i=p} y_i^* z_i \cup M_0$$

where M_0 is finite, $|y_i| = p$ and the union is disjoint.

The proof follows from the following results.

Proposition 8 If M contains a set of the form xy^*z , with x and y non empty, then Succ cannot be realized by a right subsequential 2-tape automaton.

Proof. From Proposition 3, we know that

$$M = \bigcup_{i=1}^{i=p} x_i y_i^* z_i \cup M_0$$

where M_0 is finite, $|y_i| = p$, and the union is disjoint. Suppose that there is a set $xy^*z \subseteq M$, with $x \neq \varepsilon$. Let $v = xy^n z \in M$; by assumption on the form of M, there exists $h <_{lex} x$, |h| = |x|, and $w = hy^n z \in L_0 \setminus M$. Without loss of generality, one can suppose that the longest suffix of w belonging to M_0 is a suffix of yz, that is to say, $yz = a_j \cdots a_i \cdots a_0$, with $0 \leq i \leq j - 1$ being maximal such that $a_{i-1} \cdots a_0 \in M_0$. We have : Succ $(v) = 10^{n|y|+|x|+|z|}$, Succ $(w) = hy^{n-1}a_j \cdots a_{i+1}(a_i + 1)a_{i-1} \cdots a_0$, $d_r(v, w) = 2|x| - 2|x \wedge_r h| = H$, a constant, $d_r(\text{Succ } (v), \text{Succ } (w)) \geq 1 + 2(n|y|+|x|+|z|) - 2i$, hence Succ is not right subsequential by [Ch77]. **Proposition 9** If M is of the form

$$M = \bigcup_{i=1}^{i=p} y_i^* z_i \cup M_0$$

where M_0 is finite, $|y_i| = p$ and the union is disjoint, then Succ is a right subsequential function.

Proof. The construction can be followed on Example 2 below. Since L(U) is supposed to be recognizable by a finite automaton, so is L_0 . Let $\mathcal{L} = (Q, A, E, r_0, T)$ be the minimal deterministic right automaton recognizing L_0 as in Section 2.3. But, notice that L_0 is suffixclosed, that is to say, if fg is in L_0 , then g is in L_0 as well (because L is obtained from the greedy algorithm). In particular, for every letter a of A, a is in L_0 . Suppose that f is in L_0 ; then by construction, $[f]_{L_0}$ is a terminal state of \mathcal{L} . If af, for $a \in A$, is not in L_0 , then for every $b \in A$, baf won't be in L_0 either; thus we can suppress the state $[af]_{L_0}$ which is a sink, and the edge $[f]_{L_0} \xrightarrow{a} [af]_{L_0}$, and we can suppose that every state is terminal. Thus the set of states Q is equal to $T = \{[f]_{L_0} \mid f \in L_0\}, r_0 = [\varepsilon]_{L_0}$ is the initial state, every state is terminal, and there is an edge $[f]_{L_0} \xrightarrow{a} [af]_{L_0}$ for every a such that $af \in L_0$.

Let $\mathcal{M} = (Q', A, E', i_0, T')$ be a right deterministic automaton recognizing M, with no sink. Since the empty word is in M, i_0 is also terminal. We say that a set of the form y^*z , where $y \neq \varepsilon$, is a *frying pan*. Let $(b_p \cdots b_1)^* c_n \cdots c_1$ be a frying pan in M. It is recognized in \mathcal{M} as follows : there is a simple path $i_0 \xrightarrow{c_1} q_1 \xrightarrow{c_2} \cdots \xrightarrow{c_n} q_n \xrightarrow{b_1} q_{n+1} \cdots \xrightarrow{b_p} q_{n+p}$, where $q_{n+p} = q_n \in T'$, and there is no other terminal state on the loop between q_n and q_{n+p} .

We construct a right subsequential 2-tape automaton $\mathcal{S} = (Q \cup Q', A \times A^*, F, i_0, \omega)$ containing \mathcal{M} and \mathcal{L} as subautomata of the underlying input automaton of \mathcal{S} .

• The set of states of S is $Q \cup Q'$.

• For every simple path $q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \cdots \xrightarrow{a_{k-1}} q_{k-1} \xrightarrow{a_k} q_k$ in \mathcal{M} , where q_k is a terminal state, and either $q_0 = i_0$ or $q_0 = q_k$, we define in \mathcal{S} a path $q_0 \xrightarrow{a_1/\varepsilon} q_1 \xrightarrow{a_2/\varepsilon} \cdots \xrightarrow{a_{k-1}/\varepsilon} q_{k-1} \xrightarrow{a_k/0^k} q_k$. For each $q_j = [a_j \cdots a_1]_{\mathcal{M}}$, $1 \leq j \leq k-1$, the terminal function ω is defined by $\omega(q_j) = a_j \cdots a_2(a_1+1)$, and $\omega(q_0) = \omega(q_k) = 1$. Now, for each q_j , $1 \leq j \leq k-1$, and for every letter d of A such that there is no edge labelled by d leaving q_j in \mathcal{M} , we create an edge $q_j \xrightarrow{d/da_j \cdots a_2(a_1+1)} [da_j \cdots a_1]_{L_0}$ if that state exists in \mathcal{L} , otherwise the edge is not created. From i_0 and for every letter d of A such that there is no edge labelled by d outgoing from $t = q_k \in T'$, for every letter d of A such that there is no edge labelled by d outgoing from t in \mathcal{M} , we create an edge $q_k \xrightarrow{d/d+1} [da_k \cdots a_1]_{L_0}$ if that state exists.

• For every edge $q \xrightarrow{a} s$ in \mathcal{L} , $q, s \in Q$, an edge $q \xrightarrow{a/a} s$ is created in \mathcal{S} . For $q \in Q$, the terminal function is given by $\omega(q) = \varepsilon$.

There is a funny case where Succ is right subsequential on L but not on 0^*L .

Proposition 10 The sequence U is an arithmetic progression, defined by

$$u_{k+p} = c + dp$$
, for $p \ge 0$

with $1 = u_0 < u_1 < \cdots < u_k = c$ and $0 < d \leq c$, if and only if the set of lexicographically maximum words is of the form $M = 10^* z \cup M_0$. In that case, the function Succ is right subsequential on L but is not right subsequential on 0^*L .

Proof. 1) Let $u_{k+p} = c + dp$, with $u_k = c$ and $0 < d \le c$. Let $M_0 = \{\langle u_i - 1 \rangle \mid 1 \le i \le k\}$. Since $d \le c = u_k$, we set z to be the word of length k equal to $\langle d - 1 \rangle$ prefixed by the adequate number of 0's. We have $\langle u_{k+1} - 1 \rangle = 1z$ and for $n \ge k+1$, $u_n = u_{n-1} + d$, thus $\langle u_n - 1 \rangle = 10^{n-k-1}z$.

2) Let $M = 10^* z \cup M_0$ and $z = z_{k-1} \cdots z_0$. Let $d = z_{k-1}u_{k-1} + \cdots + z_0u_0 + 1$ and let $c = u_k$. Since z is greedy, $0 < d \le c$, and for $p \ge 0$, $u_{k+p} = u_{k+p-1} + d = u_k + pd$. The characteristic polynomial of U is $P(X) = (X - 1)^2$.

3) By Proposition 8 we know that Succ is not right subsequential on 0^*L . We now construct a right subsequential 2-tape automaton realizing Succ on L. First, $L = \{10^n v \mid n \ge 0, |v| = |z| = k, v \le_{lex} z\} \cup \{f \mid |f| \le k, \text{ such that } f \text{ does not begin with } 0$'s and every suffix of length i of f is $\le_{lex} m_i\}$. Let $\mathcal{L} = (Q, A, E, i_0, T)$ be the minimal deterministic right automaton recognizing L_0 , with $Q = \{[f]_L \neq \text{sink }\}, T = \{[f]_L \mid f \in L\}, i_0 = [\varepsilon]_L$, and there is an edge $[f]_L \xrightarrow{a} [af]_L$ for every a such that $af \neq \text{sink}$. We write [f] instead of $[f]_L$ for short.

Let $S = (Q, A \times A^*, F, i_0, \omega)$ be a right subsequential 2-tape automaton having \mathcal{L} as underlying input automaton. F contains a path of the form :

 $\begin{array}{l} i_{0} \xrightarrow{z_{0}/\varepsilon} [z_{0}] \xrightarrow{z_{1}/\varepsilon} \cdots \xrightarrow{z_{k-1}/\varepsilon} [z], \text{ there is a loop } [z] \xrightarrow{0/0} [z], \text{ and an arrow } [z] \xrightarrow{1/10^{k+1}} [1z]. \end{array}$ The other paths are of the following form, for $v = v_{k-1} \cdots v_{0}$ a word $<_{lex} z$: $i_{0} \xrightarrow{v_{0}/\varepsilon} [v_{0}] \xrightarrow{v_{1}/\varepsilon} \cdots \xrightarrow{v_{k-2}/\varepsilon} [v_{k-2} \cdots v_{0}] \xrightarrow{v_{k-1}/v_{k-1} \cdots \underbrace{v_{j+1}(v_{j+1})o^{j}}} [v] \text{ where } 0 \leq j \leq k-1 \text{ is maximal}$ such that $v_{j-1} \cdots v_{0} \in M_{0}$. There is a loop $[v] \xrightarrow{0/0} [v]$ and an arrow $[v] \xrightarrow{1/1} [1v]$.
For words $f_{i} \cdots f_{0}$, with $i \leq k-2$, the edges are of the form $i_{0} \xrightarrow{f_{0}/\varepsilon} [f_{1}] \xrightarrow{f_{1}/\varepsilon} \cdots \xrightarrow{f_{i}/\varepsilon} [f_{i} \cdots f_{0}]$.
The terminal function is defined by $\omega([1z]) = \varepsilon, \omega([1v]) = \varepsilon$, for v as above, $\omega(i_{0}) = 1$, and if $f \in M_{0}, \omega(f) = 10^{|f|}$, and otherwise, for $0 \leq l \leq k-1, \omega(f_{l} \cdots f_{0}) = f_{l} \cdots f_{j+1}(f_{j}+1)0^{j}$

Remark that if we take k = 0, then c = d = 1, $u_p = p + 1$, and we find again the pathological case, which has thus the property that Succ is both left and right subsequential on L.

where $0 \leq j \leq l-1$ is maximal such that $f_{j-1} \cdots f_0 \in M_0$.

We now make an additional hypothesis on the sequence U, which is fulfilled in many cases. Assume that U is an integral linear recurrent sequence with characteristic polynomial P such that P has a *dominant root* $\beta > 1$, that is to say, every other root γ of P is such that $|\gamma| < \beta$. Such a number β is called a *Perron* number.

Theorem 3 Let U be an integral linear recurrent sequence with characteristic polynomial P having a dominant root $\beta > 1$. Then the successor function associated to U is right subsequential if and only if the following conditions are satisfied :

- 1) the β -expansion of 1 is finite : $d(1,\beta) = d_1 \cdots d_m$,
- 2) U is defined by

 $u_n = d_1 u_{n-1} + \dots + d_m u_{n-m}$ for $n \ge n_0 \ge m$

and $1 = u_0 < u_1 < \cdots < u_{n_0 - 1}$.

Proof. The following has to be proved : Conditions 1 and 2 of Theorem 3 are satisfied if and only if the set of lexicographically maximum words is of the form $M = \bigcup_{i=1}^{m} y_i^* z_i \cup M_0$ and L = L(U) is recognizable by a finite automaton. This will be a consequence of the two following lemmas.

Lemma 5 Let $\beta > 1$ with $d(1, \beta) = d_1 \cdots d_m$, and let U be defined by

$$u_n = d_1 u_{n-1} + \dots + d_m u_{n-m} \text{ for } n \ge n_0 \ge m$$

and $1 = u_0 < u_1 < \cdots < u_{n_0-1}$. Then

$$M = \bigcup_{i=1}^{m} (d_1 \cdots d_{m-1} (d_m - 1))^* z_i \cup M_0$$

where M_0 is finite, and L is recognizable by a finite automaton.

Proof. We have to prove that, for *n* large enough, the greedy representation of $u_n - 1$ is of the form $(d_1 \cdots d_{m-1}(d_m - 1))^k z$, which n = mk + |z|, and *k* maximum. If not, suppose that the greedy representation is $\langle u_n - 1 \rangle = (d_1 \cdots d_{m-1}(d_m - 1))^j d_1 \cdots d_{i-1}(d_i + c) w$, with $0 \le j \le k-1, c \ge 1, 1 \le i \le m$, and |w| = n - mj - i. Then $cu_{|w|} + \pi(w) = d_{i+1}u_{|w|-1} + \cdots + d_m u_{|w|-m+i} - 1$, and thus $u_{|w|} = d_1 u_{|w|-1} + \cdots + d_m u_{|w|-m} < d_{i+1}u_{|w|-1} + \cdots + d_m u_{|w|-m+i}$, which is impossible because $d_1 \cdots d_m$ is the β -expansion of 1.

Now, for any $q \ge 0$, $\langle u_{n+qm} - 1 \rangle = (d_1 \cdots d_{m-1}(d_m - 1))^{k+q} z$, with the same word z because z is greedy, and thus there exist m different words z_1, \ldots, z_m such that $M = \bigcup_{i=1}^m (d_1 \cdots d_{m-1}(d_m - 1))^* z_i \cup M_0$.

In [Ho95], it is proved that if $d(1,\beta) = d_1 \cdots d_m$ and $u_n = d_1 u_{n-1} + \cdots + d_m u_{n-m}$, then L is recognizable by a finite automaton. **Lemma 6** Suppose that P has a dominant root $\beta > 1$, $M = \bigcup_{i=1}^{m} y_i^* z_i \cup M_0$ and L is recognizable by a finite automaton. Then $d(1,\beta) = d_1 \cdots d_m$ and $u_n = d_1 u_{n-1} + \cdots + d_m u_{n-m}$ for $n \ge n_0 \ge m$.

Proof. From [Ho95], we know that if L is recognizable by a finite automaton then $d(1,\beta)$ must be finite or eventually periodic. First remark that the case where $d(1,\beta)$ could be purely periodic, i.e. $d(1,\beta) = (d_1 \cdots d_m)^{\omega}$, is impossible, for we would get $1 = d_1 \cdots d_{m-1}(d_m + 1)$, which would be the correct β -expansion of 1.

If $d(1,\beta)$ is eventually periodic, $d(1,\beta) = d_1 \cdots d_l (d_{l+1} \cdots d_{l+m})^{\omega}$, then in $M = \bigcup_{i=1}^m x_i y_i^* z_i \cup M_0$, words x_i are of the form $x_i = d_1 \cdots d_l$ and words y_i are of the form $y_i = (d_{l+1} \cdots d_{l+m})^k$ (Lemma 7.4 of [Ho95]), a contradiction with the hypothesis.

If $d(1,\beta) = d_1 \cdots d_m$, $M = \bigcup_{i=1}^m x_i y_i^* z_i \cup M_0$ can have two forms (Lemma 7.5 of [Ho95]) : **Case 1.** For each $i, x_i = (d_1 \cdots d_{m-1}(d_m - 1))^{k_i}(d_1 \cdots d_m)$ and $y_i = 0^n$. This is in contradiction with our hypothesis.

Case 2. For each $i, x_i = y_i = (d_1 \cdots d_{m-1}(d_m - 1))^k$. Then we get, for n large enough, $\langle u_n - 1 \rangle = (d_1 \cdots d_{m-1}(d_m - 1))^k z$, for some $k, \langle u_{n+m} - 1 \rangle = (d_1 \cdots d_{m-1}(d_m - 1))^{k+1} z$, thus $u_{n+m} = d_1 u_{n+m-1} + \cdots + d_m u_n$.

Example 2 Fibonacci recurrence with non canonical initial conditions.

Let $U = (u_n)_{n>0}$ be the linear recurrent sequence defined by

$$u_n = u_{n-1} + u_{n-2}$$
 for $n \ge 3$, $u_0 = 1$, $u_1 = 4$, $u_2 = 7$.

The characteristic polynomial of U is $P(X) = X^2 - X - 1$ with $(1 + \sqrt{5})/2$ for dominant root. The canonical alphabet is $A = \{0, 1, 2, 3\}$. We have $M = (10)^* 3 \cup (10)^* 12$ and $L_0 = [\{0, 1\}^* \setminus \{0, 1\}^* 11\{0, 1\}^*] \{\varepsilon, 1, 2, 03\}$. On Figure 3, L_0 is recognized by \mathcal{L} , M by \mathcal{M} , and on Figure 4, Succ is computed by \mathcal{S} .

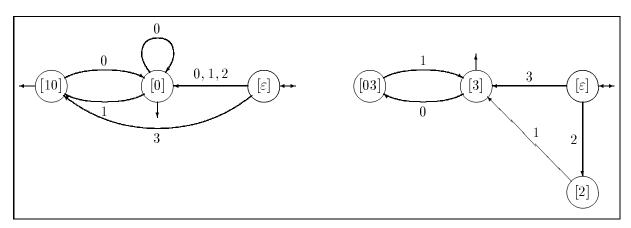


Figure 3. Right automata \mathcal{L} and \mathcal{M} .

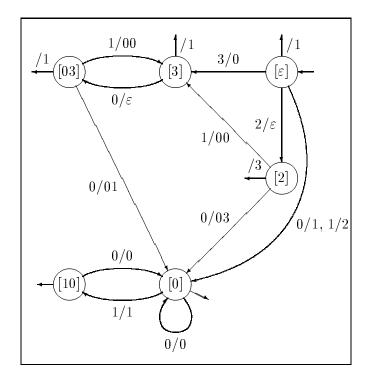


Figure 4. Right subsequential 2-tape automaton \mathcal{S} .

Recall that an algebraic integer is a root of a polynomial $X^d + a_1 X^{d-1} + \cdots + a_d$ with integral coefficients a_i . A *Pisot* number is an algebraic integer > 1 such that the other roots of its minimal polynomial have modulus < 1.

Example 3 Linear recurrence with a dominant root which is a Perron number but not a Pisot number.

Let $u_n = 3u_{n-1} + 2u_{n-2} + 3u_{n-4}$, for $n \ge 4$, with (for instance) $u_0 = 1$, $u_1 = 4$, $u_2 = 15$, $u_3 = 54$. In that case, the canonical alphabet is $A = \{0, \dots, 3\}$, and $M = (3202)^*(\varepsilon, 3, 32, 320)$. The characteristic polynomial has a dominant root β which is a Perron number, but is not a Pisot number. We have $d(1, \beta) = 3203$, and $L_0 = F(D_\beta)$. By Theorem 3, Succ is a right subsequential function, although for any alphabet $D \supseteq \{0, \dots, 4\}$ normalization is not computable by a finite 2-tape automaton because β is not a Pisot number [FS096]. In particular, addition is not computable by a finite 2-tape automaton. \Box

4 Sequentiality and continuity

4.1 Odometer and automata

In this section we make a connection between right sequentiality of the successor function and continuity of the odometer as defined in [GLT95]. Note that in [GLT95] numbers are written the other way round, that is to say with the least significant digit at the left-end of the representation. We keep on writing numbers with the most significant digit at the left. Let A be an alphabet and denote by $^{\mathbf{N}}A$ the set of *left infinite* sequences over A, endowed with the discrete topology. The sequence $\cdots aaa$ is denoted by $^{\omega}a$.

As above, U is a strictly increasing sequence of integers with $u_0 = 1$, and A is the canonical alphabet associated to U, L = L(U) is the set of greedy U-representations of the nonnegative integers, and M is the set of lexicographically maximum words of L. Following [GLT95], the U-compactification of N is the set $C = C(U) = \{s = (\cdots s_2 s_1 s_0) \mid \forall j \ge 0, s_j \cdots s_0 \in 0^* L\}$. Let $C^0 = \{s \in C \mid \exists N_s \forall j \ge N_s, s_j \cdots s_0 \notin M\}$. The odometer is the function τ defined on N_A by :

if $s \in C^0$ and $j \geq N_s$ then $\tau(s) = (\cdots s_{j+2}s_{j+1} \operatorname{Succ} (s_j \cdots s_0))$ (this definition does not depend on the choice of j), and if $s \in C \setminus C^0$, then $\tau(s) = {}^{\omega} 0$.

Remark that, if we take for U the classical K-ary system, where K is an integer ≥ 2 , $u_n = K^n$, and C(U) is the set of K-adic integers.

In the sequel we suppose that L is recognizable by a finite automaton. Let $\mathcal{L} = (Q, A, E, r_0, T)$ be the minimal deterministic right automaton recognizing $L_0 = 0^*L$ and let $\mathcal{M} = (Q_1, A, E_1, i_0, T_1)$ be the minimal deterministic right automaton recognizing M: the set of states is $Q_1 = \{[f]_M \mid f \in A^*\}$ (there might exists a sink σ), $i_0 = \{[\varepsilon]_M\}$, the set of terminal states is $T_1 = \{[f]_M \mid f \in M\}$, and for every a in A, there is an edge $[f]_M \xrightarrow{a} [af]_M$.

Let us denote by $||\mathcal{L}||$ the set of left infinite sequences recognized by \mathcal{L} (Büchi condition, see Section 2.3).

Lemma 7 $C = ||\mathcal{L}||$ and $C^0 = ||\mathcal{L}|| \setminus ||\mathcal{M}||$.

Proof. Since \mathcal{L} is right deterministic and every state is terminal, $||\mathcal{L}|| = \{s = (s_j)_{j \ge 0} | \forall j \ s_j \cdots s_0 \in 0^*L\} = C$. As \mathcal{M} is right deterministic, $||\mathcal{M}|| = \{s \mid s_j \cdots s_0 \in M \text{ for infinitely many } j\text{'s }\} = C \setminus C^0$.

For the sake of completeness, we recall the construction presented in [F96].

Theorem 4 The successor function in the numeration system associated to U is computable by a letter-to-letter finite 2-tape automaton (which is not right subsequential in general) if and only if the set L(U) is recognizable by a finite automaton.

Proof. We construct a right (non deterministic) automaton \mathcal{X} as follows. First, \mathcal{X} contains both \mathcal{L} and \mathcal{M} as subautomata.

Now, according to Lemma 2 we distinguish two cases, according to whether the addition of 1 will produce a carry or not.

Case 1. Addition of 1 doesn't produce a carry : it means that we are considering words w having no nonempty suffix in M. The set of such words is $K = L_0 \setminus A^*(M \setminus \varepsilon)$, which is recognizable by a finite automaton. Let $\mathcal{K} = (Q_2, A, E_2, j_0, T_2)$ be the deterministic right automaton of classes mod \sim_K recognizing K. Since every non empty suffix of K is again in K (the empty word is not in K), we can take $T_2 = Q_2 \setminus j_0$. We join \mathcal{K} and \mathcal{M} be taking $j_0 = i_0 = \{[\varepsilon]_M\}$ for initial state of \mathcal{K} .

Case 2. Addition of 1 produces a carry. We consider any terminal state $t = [f]_M$ of M, $f \in M, t \neq [\varepsilon]_M$.

1) There is no edge outgoing from t. So for any letter $a \in A$, is created a new edge in \mathcal{X} : $t = [f]_M \xrightarrow{a} [af]_{L_0}$, if af is in L_0 , otherwise the edge is not created.

2) There is an edge outgoing from t in \mathcal{M} . If that edge is the first one on a path going from t to the sink σ , there is nothing to do. Otherwise, there is a path going from t to an other terminal state t' (possibly equal to t) in \mathcal{M} . From Proposition 3, we know that the label of any path between t and t' is of the form xy^kz , for $k \ge 0$, that is to say, $t = [f]_M$, $t' = [xy^kzf]_M$, for every $k \ge 0$. Let us rename $z = a_{n-1} \cdots a_0$, $y = a_{n+p-1} \cdots a_n$, $x = a_{n+p+m-1} \cdots a_{n+p}$, where the a_i 's are in A, and $r_i = [a_{i-1} \cdots a_0 f]_M$. Then $t = r_0$, $t' = r_{n+p+m}$, $r_i \xrightarrow{a_i} r_{i+1}$ in \mathcal{M} , for $i \le 0 \le n + p + m - 1$, and $r_{n+p} = r_n$.

We do the following construction : we duplicate the path from t to $r_{n+p+m-1}$, by creating new states q_i and new edges $q_i \xrightarrow{a_i} q_{i+1}$, for $0 \leq i \leq n+p+m-2$, with $q_0 = t$. Then, for any $0 \leq i \leq n+p+m-1$, for any letter $b_i < a_i$, if $[b_i a_{i-1} \cdots a_0 f]_M = \sigma$ (that is to say if $b_i a_{i-1} \cdots a_0 f$ is not left prolongeable in a word of M), and if $b_i a_{i-1} \cdots a_0 f \in L_0$, we define a new edge $q_i \xrightarrow{b_i} [b_i a_{i-1} \cdots a_0 f]_{L_0}$ which goes into the automaton \mathcal{L} , otherwise, we do nothing. Let Q_3 be the set of new states, and E_3 the set of new edges just defined. Now let $\mathcal{X} = (Q \cup Q_1 \cup Q_2 \cup Q_3, A, E \cup E_1 \cup E_2 \cup E_3, q_0 = [\varepsilon]_M, S)$, with the set S of terminal states being defined as follows : every state excepted the states of \mathcal{M} is terminal, $S = Q \cup Q_2 \cup Q_3 \setminus [\varepsilon]_M$.

The right 2-tape automaton S realizing the function Succ is defined with X as underlying input automaton :

• any edge $p \xrightarrow{a} q$ of \mathcal{M} becomes $p \xrightarrow{a/0} q$ in \mathcal{S}

- any edge $[\varepsilon]_M \xrightarrow{a} q$ in \mathcal{K} becomes $[\varepsilon]_M \xrightarrow{a/a+1} q$ in \mathcal{S}
- any new edge in E_3 outgoing from a terminal state t of $\mathcal{M}, t \xrightarrow{a} q$, becomes $t \xrightarrow{a/a+1} q$ in \mathcal{S}
- all the other edges $p \xrightarrow{a} q$ become $p \xrightarrow{a/a} q$.

We claim that S realizes the function Succ : let $w/v = (w_k/v_k) \cdots (w_0/v_0)$, be the label of a path in S going from the initial state $[\varepsilon]_M$ to a terminal state s.

1) s is in Q_2 and w is in K, and thus in L_0 ; by construction of S, $v_0 = w_0 + 1$, and for $1 \le i \le k, v_i = w_i$. Hence v = Succ (w).

2) s is in $Q \cup Q_3$. Let $i \ge 1$ be the greatest index such that $w_{i-1} \cdots w_0$ is in M. Let us denote $m_j = [w_j \cdots w_0]_M$ and $s_j = [w_j \cdots w_0]_{L_0}$.

a) s is in Q and thus w is in L_0 . Then

$$[\varepsilon]_M \xrightarrow{w_0/0} m_0 \xrightarrow{w_1/0} \cdots \xrightarrow{w_{i-2}/0} m_{i-2} \xrightarrow{w_{i-1}/0} m_{i-1} \xrightarrow{w_i/w_i+1} s_i \xrightarrow{w_{i+1}/w_{i+1}} \cdots \xrightarrow{w_k/w_k} s_k = s_i$$

Thus, by Lemma 2, $v = w_k \cdots w_{i+1}(w_i + 1)0^i = \text{Succ } (w)$.

b) s is in Q_3 ; by construction, $w_k \cdots w_i$ is a suffix of a word of M, so w is a suffix of a word of M, every suffix of w is lexicographically smaller than the word of M of same length, and so w is in L_0 by Proposition 1. As above, $v = w_k \cdots w_{i+1}(w_i + 1)0^i = \text{Succ } (w)$.

With the slight modification that every state of S excepted the non-terminal states of \mathcal{M} has to be chosen as terminal, it is easy to show the following.

Proposition 11 The odometer τ is computed by S, that is, $||S|| = \tau$.

Proof. Let S as above, but with set of terminal states taken as $S' = Q \cup Q_2 \cup Q_3 \cup T_1$. Let us consider an infinite path in S going infinitely often through a terminal state of \mathcal{M} . Then the label of this path is of the form $\cdots (0, s_j) \cdots (0, s_0)$ where $s = \cdots s_j \cdots s_0$ and $s_j \cdots s_0 \in \mathcal{M}$ for infinitely many j's. Thus $\tau(s) = {}^{\omega}0$. Any other infinite path in S goes only finitely many times through a terminal state of \mathcal{M} , and is of the form $\cdots (s_{j+2}, s_{j+2})(s_{j+1}, s_{j+1} + 1)(s_j, 0) \cdots (s_0, 0)$, where j is the greatest index such that $s_j \cdots s_0 \in \mathcal{M}$; since Succ $(s_j \cdots s_0) = 10^{j+1}$, we get $\cdots s_{j+2}(s_{j+1} + 1)0^{j+1} = \tau(s)$.

4.2 Continuity

In [GLT95] is proved the following result (without the hypothesis of L being recognizable by a finite automaton). Let $s \in C$, and let $D(s) = \{d \mid s_d \cdots s_0 \in M\}$. Let Δ be the set of finite or empty sequences δ such that there exists $s \in C^0$ with $D(s) = \delta$.

Theorem 5 [GLT95] The odometer τ is continuous if and only if for all finite or empty sequences $(d_0, \dots, d_k) \in \Delta$ the set $\{d > d_k \mid (d_0, \dots, d_k, d) \in \Delta\}$ is finite.

Here we prove the following.

Theorem 6 Let U such that L is recognizable by a finite automaton. Then the odometer τ associated to U is continuous if and only if the successor function Succ is right subsequential on 0^*L .

Proof. By Theorem 2 and Theorem 5, we have to prove that $M = \bigcup_{i=1}^{i=p} y_i^* z_i \cup M_0$ (where M_0 is finite, $|y_i| = p$ and the union is disjoint) if and only if the following condition (\mathcal{D}) holds : for all $(d_0, \dots, d_k) \in \Delta$ the set $\{d > d_k \mid (d_0, \dots, d_k, d) \in \Delta\}$ is finite.

First let us suppose that M contains a subset xy^*z with $x \neq \varepsilon$, and let $s = {}^{\omega}0$. Then $D(s) = \emptyset$. For every $n \geq 0$, let $t^{(n)} = \cdots 00xy^n z$. Then for each $n, xy^n z \in M$ and $\Delta \supseteq \{|x| + np + |z| \mid n \geq 0\}$, thus condition (\mathcal{D}) is not satisfied.

This result is not surprising since sequential functions of infinite words are continuous in some sense (see [E74]).

Example 4 Let $U = (u_n)_{n>0}$ be the linear recurrent sequence defined by

$$u_n = u_{n-1} + 2u_{n-2}, \ u_0 = 1, \ u_1 = 3.$$

The characteristic polynomial of U is P(X) = (X + 1)(X - 2). The canonical alphabet is $A = \{0, 1, 2\}$. The language L is recognizable by a finite automaton, $0^*L = \{0, 1\}^* \cup \{0, 1\}^*02(00)^*$, $M = (11)^* \cup 2(00)^*$, $C \setminus C^0 = -\omega 1 = \tau^{-1}(0)$. Since $\tau^{-1}(0) \neq \emptyset$, the odometer τ is surjective. The successor function is not right subsequential from Theorem 2, and thus τ is not continuous (this fact is also easy to prove directly). The successor function is not left subsequential by Theorem 1. It is computable by a finite 2-tape automaton [F96], although on any alphabet normalization is never computable by a finite 2-tape automaton.

A similar result to Theorem 3, but slightly weaker, is proved in [GLT95], which says : Let $\beta > 1$ and put $(e_i)_{i \ge 1} = d(1, \beta)$ if $d(1, \beta)$ is infinite, $(e_i)_{i \ge 1} = d^*(1, \beta)$ if $d(1, \beta)$ is finite (see Section 2.2). Let U such that for all $n \ge 0$, $u_n = e_1u_{n-1} + \cdots + e_nu_0 + 1$. Then the odometer associated to U is continuous if and only if $d(1, \beta)$ is finite.

5 Conclusion

Let us recall a result from [FSo96] which says that, if U is a linear recurrent sequence of integers such that its characteristic polynomial is the minimal polynomial of a Pisot number, then normalization is computable by a finite 2-tape automaton on any alphabet of integers, and in particular addition also. This is the case for the sequences given in Lemma 4 and in Example 2.

It should be clear that there is a great difference between addition and the successor function. Of course, if addition is computable by a finite 2-tape automaton (c.f.a. for short), so is Succ. Note that addition in the standard K-ary numeration system is right subsequential (see [E74]), but addition in the Fibonacci numeration system is neither left nor right subsequential, but can be obtained as the composition of a left and of a right subsequential function, explicitly given in [Sa81].

Below we summarize the examples considered in this paper. Unless explicitly stated, the results hold for any initial conditions such that $u_0 = 1$ and U is strictly increasing.

• $u_n = 2^{n+1} - 1$ (Example 1). Succ is left subsequential. Addition is not c.f.a.

• $u_n = 3u_{n-1} - u_{n-2}$ (Lemma 4). Succ is c.f.a. but neither left nor right subsequential. Addition is c.f.a.

• $u_n = u_{n-1} + u_{n-2}$ (Example 2). Suce is right subsequential. Addition is c.f.a.

• $u_n = 3u_{n-1} + 2u_{n-2} + 3u_{n-4}$ (Example 3). Succ is right subsequential. Addition is not c.f.a.

• $u_n = u_{n-1} + 2u_{n-2}$, for $n \ge 2$, $u_0 = 1$, $u_1 = 3$ (Example 4). Succ is c.f.a. but neither left nor right subsequential. Addition is not c.f.a.

I thank Paul Gastin for his set of macros "Autograph" for drawing automata.

References

- [Av61] Avizienis, A. (1961), Signed-digit number representations for fast parallel arithmetic, IRE Transactions on electronic computers 10, 389–400.
- [Ber79] Berstel, J. (1979), Transductions and context-free languages. Teubner.
- [B-M89] Bertrand-Mathis, A. (1989), Comment écrire les nombres entiers dans une base qui n'est pas entière, Acta Math. Acad. Sci. Hungar. 54, 237–241.
- [Ch77] Choffrut, Ch. (1977), Une caractérisation des fonctions séquentielles et des fonctions sous-séquentielles en tant que relations rationnelles, *Theoret. Comput. Sci.* 5, 325–337.

- [E74] Eilenberg, S. (1974), Automata, Languages and Machines, vol. A, Academic Press.
- [Er84] Ercegovac, M.D. (1984), On-line arithmetic: An overview, Real time Signal Processing VII SPIE 495, 86-93.
- [Fr85] Fraenkel, A.S. (1985), Systems of numeration, Amer. Math. Monthly 92(2), 105–114.
- [F96] Frougny, Ch. (1996), On the successor function in non-classical numeration systems, Proc. S. T.A.C.S. 96, Lecture Notes in Computer Science 1046, 543-553.
- [FSo96] Frougny, Ch. and Solomyak B. (1996), On Representation of Integers in Linear Numeration Systems, In *Ergodic theory of* Z^d-Actions, edited by M. Pollicott and K. Schmidt, London Mathematical Society Lecture Note Series 228, Cambridge University Press, 345-368.
- [FSa97] Frougny, Ch. et Sakarovitch, J. (1997), Synchronisation déterministe des automates à délai borné, Theoret. Comput. Sci., to appear.
- [GLT95] Grabner, P., Liardet, P. and Tichy, R. (1995), Odometers and systems of numeration, Acta Arithmetica LXXX.2, 103-123.
- [Ho95] Hollander, M. (1995), Greedy Numeration Systems and Recognizability, Preprint.
- [HU79] Hopcroft, J.E. and Ullman, J.D. (1979), Introduction to Automata Theory, Languages, and Computation, Addison-Wesley.
- [K88] Knuth, D.E. (1988), The Art of Computer Programming, vol. 2: Seminumerical Algorithms, 2nd ed., Addison-Wesley.
- [P60] Parry, W. (1960), On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11, 401-416.
- [R57] Rényi, A. (1957), Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8, 477–493.
- [Sa81] Sakarovitch, J. (1981), Description des monoïdes de type fini, E.I.K. 8/9, 417-434.
- [Sa83] Sakarovitch, J. (1983), Deux remarques sur un théorème d'Eilenberg, R.A.I.R.O. Informatique Théorique 17 (1), 23-48.
- [Sh92] Shallit, J. (1992), Numeration Systems, Linear Recurrences, and Regular Sets, Proc. I.C.A.L.P. 92, Lecture Notes in Computer Science 623, 89-100.