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Abstract

Let U be a strictly increasing sequence of integers. By a greedy algorithm, every
nonnegative integer has a greedy U-representation. The successor function maps the
greedy U-representation of N onto the greedy U-representation of N4+1. We characterize
the sequences U such that the successor function associated to U is a left, resp. a right
sequential function. We also show that the odometer associated to U is continuous if

and only if the successor function is right sequential.



1 Introduction

It is well known that, in the classical K-ary number system, where K is an integer > 2, the
successor function, which maps the K-representation of N onto that of N + 1, is computable
by a sequential finite 2-tape automaton (that is to say, deterministic on inputs) working
from right to left but not from left to right (there is a carry which propagates from right
to left). In Computer Arithmetic, on-line arithmetic consists in performing operations in
Most Significant Digit First mode (i.e. from left to right), digit serially after a certain delay
of latency (see [Er84]). This mode of doing allows pipelining different operations such as
addition, multiplication and division. To be able to perform on-line addition in integer base
K, it is necessary to use a redundant number system such as the Avizienis signed-digit
representation [Av61], which consists in changing the digit set. Instead of taking digits from
the canonical set {0,---, K — 1}, they are taken from a balanced set of the form {a,---,a},
where a denotes the digit —a, @ being an integer such that a + 1 < K < 2a.

On the other hand, non-standard numeration systems have been widely studied. Given
a strictly increasing sequence of integers U, every nonnegative integer N can be represented
with respect to the system U, that is to say, N has a representation d ---dy such that
N = Zf:o d;u;. A classical way to obtain such a representation is to use a greedy algorithm
([Fr85]), which gives the greatest representation for the lexicographical ordering. The digits
d; are then elements of a canonical alphabet Ay, denoted by A for short. The set of greedy
representations of all the nonnegative integers is denoted by L(U). For instance, taking
U={K"|n >0, K integer > 2} gives the standard K-ary number system with A =
{0,---, K — 1}. The Fibonacci numeration system is defined from the sequence of Fibonacci
numbers with ug =1, uy = 2, u,, = wy—1 + Up—2 for n > 2, and A = {0, 1} (see [K88]). One
of the interests in non-standard numeration systems relies in the fact that they are naturally
redundant.

The successor function in the numeration system associated to U is the function Succ :
A® — A* that maps the greedy U-representation of the integer N onto the greedy U-
representation of N 4+ 1. In [FF96] we have proved that the successor function is computable
by a finite 2-tape automaton if and only if L(U) is recognizable by a finite automaton (the
proof is given in Theorem 4 below). When the set L(U) is recognizable by a finite automaton
then U must be a linear recurrent sequence with integral coefficients [Sh92].

These questions are linked to the representation of real numbers in non-integral base
> 1, and particularly to what is known as the [-expansion of 1, denoted by d(1,3) (see
Section 2.2). In [Ho95] are given conditions on the (-expansion of 1 and on associated
sequences U which imply that the set L(U) is recognizable by a finite automaton.

In this paper we focus on the sequentiality of the finite 2-tape automaton computing the



successor function. We first study the left sequentiality (the sequentiality from left to right)
of the successor function in non-standard numeration systems. We show that the successor
function associated to U is a left subsequential function if and only if U is one of the following
sequences :
Case 1. Let # > 1 be a number such that d(1,3) = dy---d,,, and let U = (u,),>0 be
defined by

Up = dithyy_1 + -+ dpttn_m + 1, forn > ng >m

with 1 =ug < uyp <ug <+ < Upy_1.
Case 2. U is the set of positive integers.

In [FSa97] we have written an algorithm which, given a left subsequential 2-tape automa-
ton computing a relation such that the difference between the length of input words and the
length of output words is bounded, constructs an equivalent on-line finite automaton, that
is to say, a left subsequential finite 2-tape automaton which is letter-to-letter after an initial
period where it reads the input and outputs nothing. As a corollary, we obtain that, for the
above systems U, it is possible to design an on-line finite 2-tape automaton which computes
the successor function.

We then consider right sequentiality and prove that the successor function associated to
asequence U is a right subsequential function (on 0*L(U)) if and only if L(U) is recognizable
by a finite automaton and if the set M of lexicographically maximum words of L(U) is of
the form : '

i=p
M= U Yz U My
=1
where My is finite, |y;| = p and the union is disjoint.

A case which is frequently met is the following one : U is an integral linear recurrent
sequence with characteristic polynomial P having a dominant root 3 > 1. Then the successor
function associated to U is right subsequential if and only if the following conditions are
satisfied :

1) the p-expansion of 1 is finite : d(1,8) =dy - -dp,
2) U is defined by

Up = dlun—l +---+ dmun—m for n Z o Z m

and 1 =wup < ug < -+ < Upy—1 (Theorem 3).

In a dynamical context, the successor function is extended to what is called odometer
or adding machine (see [GLT95]). We make a connection with a result of [GLT95], showing
that : Let U such that L(U) is recognizable by a finite automaton. Then the odometer
associated to U is continuous if and only if the successor function is right subsequential on

0*L(U).



Recall that the normalization function on an alphabet of integers C' is the function v¢ :
C* — A” which maps any U-representation on C* of a nonnegative integer onto the greedy
U-representation of that integer (see ['S096]). Addition of nonnegative integers represented
with respect to U is a particular case of normalization : let A = {0,---,a} be the canonical
alphabet associated to U, then addition is the normalization {0,---,2a}* — {0,---,a}*.
Here we give an example (Example 1) where the function Succ is left subsequential, although
normalization is never computable by a finite 2-tape automaton, and an other one (Example
3) where Succ is right subsequential, and such that for any alphabet C' O A, normalization

on C'is not computable by a finite 2-tape automaton.

2 Definitions

2.1 Representation of integers

Let U = (un)nZO be a strictly increasing sequence of integers with ug = 1. A representation
in the system U — or a U-representation — of a nonnegative integer N is a finite sequence

of integers (d;)o<i<k such that
k
N = Z d;u;.
1=0

Such a representation will be written dj, - - - dg, most significant digit first.

A word d = dj, - - - dy is said to be lexicographically greater than a word f = fi--- fo, and
this will be denoted by d >, f, if there exists an index 0 < ¢ < k such that dp = fz, ...,
div1 = fiy1 and d; > f;. Among all possible U-representations dy - - -dy of a given integer
N one is distinguished and called the greedy (or the normal) U-representation of N: it is
the greatest in the lexicographical ordering. It is obtained by the following greedy algorithm
(see [Fr85]):

Given integers m and p let us denote by ¢(m, p) and r(m, p) the quotient and the remainder
of the Euclidean division of m by p.

Let k£ > 0 such that upy < N < ugyq and let d = ¢(N, ug) and ri = r(N,ug), di = q(riz1, w;)
and r; = r(rip1,u;) for i =k —1,---,0. Then N = dyup + -- -+ douo.

The greedy representation of N will be denoted by (N). By convention the greedy
representation of 0 is the empty word . Under the hypothesis that the ratio w,4q/u,
is bounded by a constant as n tends to infinity (that we will assume in this paper), the
integers d; of the greedy U-representation of any integer N are bounded and contained in
a canonical finite alphabet Ay associated to U. The set of greedy U-representations of all
the nonnegative integers is a subset of the free monoid Aj;, and is denoted by L(U). The

sequence U together with the alphabet Ay defines a numeration system associated to U. In



the sequel we denote Ay by A. The numerical value of a word w = dj - - -dy, is given by
m(w) = Yo dius.

The successor function in the numeration system associated to U is the function Succ :
A* — A* that maps the greedy U-representation of the integer N onto the greedy U-
representation of N + 1.

2.2 Representation of real numbers

Let 5 > 1 be a real number. A representation in base 3 (or a (-representation) of a real
number z € [0, 1] is an infinite sequence (z;);>1 such that z = 3,5, z,87".

A particular §-representation of ¥ — called the B-expansion ~can be computed by the
“greedy algorithm” [R57] : Denote by [y] and {y} the integer part and the fractional part
of a number y. Let 2y = [Bz], ry = {Ba}, and, for i > 2, a; = [fr;_1], and r; = {Br;_1}.
Then # = 3,5, 2;6~". When 3 is not an integer, the digits z; obtained by this algorithm
are elements of the set {0,...,[f]}; when j is an integer, the digits z; of the -expansion
of a number x € [0,1] are in {0,...,3 — 1}, and the f-expansion of 1 is just d(1,5) = 3. If
an expansion ends in infinitely many zeros, it is said to be finite, and the ending zeros are
omitted.

An infinite sequence s = (s;);>1 is said to be greater in the lexicographical ordering than
t = (ti)i>1, and it is denoted by s >, t, if there exists an 7 > 0 such that s; = 1, ...,
5; = t; and 5,41 > tiy1. The (-expansion of 1 is denoted by d(1,3) = (d;)i>1. Let Dg
be the set of F-expansions of numbers of [0,1[. We recall the theorem of Parry [P60]: a
sequence s = (Sn)nZI is in Dg if and only if for every ¢ > 1, s;5;41 --- is smaller in the
lexicographical ordering than d(1,3) when the latter is infinite, respectively smaller than
d*(1,8) = (d1---dpm-1(dy, — 1)) when d(1,8) = dy---d,, is finite (where w* denotes the

infinite word www - - ).

2.3 Finite automata and words

We recall some definitions. More details can be found in [E74] or in [HU79]. An automaton
over a finite alphabet A, A= (Q, A, E,1,T)is a directed graph labelled by elements of 4; @
is the set of states, I C () is the set of initial states, T C @) is the set of terminal states and
F CQ x AxQ is the set of labelled edges. If (p,a,q) € F, we note p — q. The automaton
is finite if () is finite, and this will always be the case in this paper. The automaton A is
deterministic if I is the graph of a (partial) function from ¢ x A into @, and if there is a
unique initial state. A subset H of A* is said to be recognizable by a finite automaton (or
regular) if there exists a finite automaton A such that H is equal to the set of labels of paths

starting in an initial state and ending in a terminal state. Let AN be the set of infinite



sequences (or infinite words) on A. A subset K of AN i5 said to be recognizable by a finite
automaton if there exists a finite automaton A such that K is equal to the set of labels of
infinite paths starting in an initial state and going infinitely often through a terminal state
(Biichi acceptance condition, see [E74]).

A 2-tape automaton is an automaton over the non-free monoid A* x B* : A = (Q, A* X
B*,E,I,T) is a directed graph the edges of which are labelled by elements of A* x B*.
Words of A* are referred as input words, as words of B* are referred as output words. If
(p, (f,9),q) € E, we note p i q. The automaton is finite if the set of edges F is finite (and
thus @ is finite). These finite 2-tape automata are also known as transducers. A relation R
of A* x B* is said to be computable by a finite 2-tape automaton if there exists a finite 2-tape
automaton A such that R is equal to the set of labels of paths starting in an initial state
and ending in a terminal state. A function is computable by a finite 2-tape automaton if its
graph is computable by a finite 2-tape automaton. These definitions extend to relations and
functions of infinite words as above.

A 2-tape automaton A with edges labelled by elements of A x B* is said to be left
sequential if the underlying input automaton obtained by taking the projection over A of the
label of every edge is deterministic (see [Ber79]). A left subsequential 2-tape automaton is a
left sequential automaton A = (Q, A x B*, E, {i},w), where w is the terminal function w :
) — B*, whose value is concatenated to the output word corresponding to a computation
in A.

A 2-tape automaton A is said to be letter-to-letter if the edges are labelled by couples of
letters, that is, by elements of 4 X B.

All the automata considered so far work implicitly from left to right, that is to say, words
are processed from left to right. It is possible to define in a dual way right automata, where
words are processed from right to left. Usual automata are thus left automata.

Let H be a subset of A*. The left congruence modulo H is defined on A* by

f~oge [Yhe A", hf € Hif and only if hg € H].

It is known that the set H is recognizable by a finite automaton if and only if the left
congruence modulo H has finite index (Myhill-Nerode Theorem, see [E74] or [HU79]). Let
us denote by [f]gy the class of f modulo ~p. Suppose that ~py has finite index. One
constructs the minimal deterministic right automaton R recognizing H as follows ([E74]) :
e the set of states of R is the set {[f]y | f € A*}

e the initial state is [¢]y

e the set of terminal states is equal to {[f]lu | f € H}

o for every state [f]y and every a € A, there is an edge [f]y — [af]y (words are processed



from right to left!).

Such a construction implies that there might exist a sink, i.e. a non-terminal state s such
that, for any letter a € A, there is a loop s — s. This happens when s = [w]y, w not in
H, and there is no w’ such that w'w belongs to H.

A factor of a word w is a word f such that there exist words w’ and w” with w = w’ fw”.
When w' = ¢, f is said to be a prefiz of w, and when w” = ¢, f is said to be a suffiz of w.
If H is a subset of A* we denote by F/(H) (resp. PF(H), resp. SF(H)) the set of factors
(resp. prefixes, resp. suffixes) of words of H. The length of a word w = wy - - -w,, with w; in
A for 1 < i < nis denoted by |w| and is equal to n. By w” is denoted the word obtained
by concatenating n times w. The set of words of length n (resp. < n) of A* is denoted by
A" (resp. AS"). By H7t is denoted H* \ . A word f is a factor of an infinite word s if
s=wfs, with s’ € AN The set of factors of a subset K of AN is denoted by F(K).

3 Main results

3.1 Preliminaries

First, if the successor function associated to U is computable by a 2-tape automaton, then
its domain L = L(U) is recognizable by a finite automaton. So in the sequel we assume
that L is recognizable by a finite automaton. Then, by [Sh92], U must be a linear recurrent

sequence with integral coeflicients. Let us recall the following results.

Proposition 1 (folklore, see [Sa83]) Let H be a subset of A*, and let M(H) be the union

of the lexicographically mazimum words of H of each length, as follows :

MH)=|J{ve HNA" |Yw € HNA", w <1y v}
n>0

Then, if H is recognizable by a finite automaton, so is M (H).
Let us denote by M the language M (L) of lexicographically maximum words of L. Let m,,

be the word of length n which is maximum in the lexicographical ordering : m,, = (u, — 1),
and M = U,>0{m, | n € N}. Notice that the empty word ¢ = mg belongs to M. We have

Proposition 2 [Ho95] The language L is equal to L = U,>o{v € A™ | every suffiz of length

i <nofvis<pep mi}.



Proposition 3 [Ho95] Since |M N A™| =1 for all n > 0, and M is recognizable by a finite
automaton, there exist an integer p, words x;, y;, and z; such that
i=p
M = U xyr 2 U My
=1

where My is finite, |y;| = p, and the union is disjoint.
Lemma 1 The function Succ has the following property : for any word w of L,
0 < |Suce (w)| — |w| < 1.

Proof. Let us suppose that w = wy---wo = (N). Thus, N+ 1=1+ S =R wiug. As w is
greedy, one has N < ugt1. Thus N 4+ 1 < ugyq, and so [(N + 1)| < k + 2. [
Thus, it is more convenient to consider words of 0*L, denoted by Lg for short. The

function Succ is extended to Lg in the obvious way. In particular, Succ (0) = Succ (¢) = 1.

Lemma 2 Let w = wy---wgy be a word in 0T L. Let w;_y ---wy be the longest suffiz of w
which belongs to M. Then Succ (w) = wy, - w41 (w; + 1)0%.

3.2 Left sequentiality

We begin giving a proof of the well known fact that, in the classical K-ary number system,
where K is an integer > 2, the successor function is not sequentially computable from left

to right.

Lemma 3 In the K-ary number system the successor function cannot be realized by a left

subsequential 2-tape automaton.

Proof. Recall that in the K-ary system Lo ={0,---, K —1}* and M = (K — 1)*. Let d;
be the left-distance on A* defined by

di(v,w)=|v|+|w| =2 |vAw|

where v A; w denotes the longest common prefix to v and w.

Let v = 0(K—1)" and w = 0(K —1)""10. Then Succ (v) = 107, Succ (w) = 0(K—1)""11.
We have d;(v,w) = 2, d;(Succ (v),Succ (w)) = 2(n 4 1). Thus the left-distance between
Suce (v) and Succ (w) becomes unbounded when n goes to infinity, as the distance between
v and w is bounded. By a result of [Ch77], it follows that Succ cannot be realized by a left

subsequential 2-tape automaton. [
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Theorem 1 The successor function associated to U is a left subsequential function if and
only if U is one of the following sequences :
Case 1. Let 5 > 1 be a number such that d(1,5) =dy---d,,, and let U be defined by

un:dlun—1+"'+dmun—m+17 fOrnZROZm

withl:uo<u1<uz<---<un0_1.

Case 2. U is the set of positive integers N \ 0 (pathological case).

Proof. We split the proof into several parts.

Proposition 4 Let 5 > 1 be a number such that d(1,3) = dy -+ -d,,, and let U be defined by
Up = ditty_1 + -+ dpttp_m + 1, forn >ng>m

with 1 = up < uyp < ug < +++ < Upy—1. Then the set of lexicographically marimum words s

equal to
M =dy - d, 05T m0" U My

where My is a finite set and k is the length of the longest word of My, and the successor

Sfunction associated to U is a left subsequential function.
Proof. Let U be defined as above. Then U satisfies the linear recurrence
Up4+1 = (dl + 1)un + (d2 - dl)un—l +--+ (dm - dm—l)un—l—l—m - dmun—m

for n > ng, and the characteristic polynomial is P(X) = (X — 1)(X™ —d; X"t — ... —d,,),
with § for dominant root.

Let n > ng+m — 1. Since u, — 1 = dyup_1 + -+ + dttp_m, we have to show that
dy---d, 0" is the greedy representation of u,, — 1. Suppose the greedy representation of
u, — 1 is not that one; since u,_; < u, — 1 < u,, the greedy representation of u, — 1 is
>iew dy -+ -d, 077 and thus is of the form dy - - - d;—1(d;+¢) f, where 1 <i¢ < m—1,¢>1and
|f| =n—1. Thus cup—;+7(f) = dij1tp—i—1 +- - -+ dpuy,. Hence dijquy—joq +- -+ dpuy, >
Up_; = dithy_j_1 + -+ + dpttn_i_ym + 1, which is impossible because dy---d,, is a beta-
expansion and thus d;yy -+ -d;,0° <jep dy - - -d,, (Theorem of Parry [P60], see Section 2.2).

Now, when n < ng 4+ m — 2, the greedy representation of w,, — 1 depends on the choice
of the initial conditions uy, ..., %,,—1. For instance, if we take for initial conditions the

canonical initial conditions associated to 3 (see [B-M89])

g =1, us = dui_1+---+dug+1, 1 <i<m-1
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and ng = m, then it is easily checked that, in that case,

M = d1"'dmo*U{e’f,dl,dldQ,...7d1"'dm_1}.

We now show that Lg is recognizable by a finite automaton. Let A be the canonical
alphabet associated to U. Let

Y =40,...,d; —1,d10, ... di(dy — 1), ..., dy - dp10,....dy - dp_i(dy — 1)}

Then Lo = {f € Y*dy ---d,,0Ft1=m0* U ASF | every suffix of length j < k of fis <jep m;}.
This comes from the fact that, if f € Y*d;---d,,0Ft1=™0%, |f| = n > k + 1, then f <.,
dy---d,0""™ by the theorem of Parry recalled above.

Let a=k+1—m. SoM =dy---d,,090" U My. If « =0, then M = dy---d,,0" U M,.
Let M = (Q, A, E, i, T) be the following deterministic automaton recognizing 0M :

o () ={ig} UPF(0My) U PF(0dy - --d,,0%), where PF(H) is the set of prefixes of elements
of H.

o The set of edges E is defined by : if ¢ € @, there is an edge ¢ —*+ ga when a € A and
ga € (). There is an edge i %5 0. Let us denote by t the state t = 0dy - - - d,,0%, there is a
loop ¢ N

e The set of terminal states is T' = 0Mo U {t}.

We consider words beginig with a 0. Remark that if f € Lo, and if f = f'ady ---d,,0",
where @ € A and n > «, then Suce (f) = f'(a+ 1)0™*", and if f = f'am;, where m; € My,
|m;| = i, then Succ (f) = f'(a 4+ 1)0' by Lemma 2. So the idea to realize Succ as a left
subsequential 2-tape automaton is the following : we construct a 2-tape automaton realizing
the identity at the beginning, but with delay one, that is to say, we keep in memory (in
the states) the last letter read, until we reach a suffix which is in M, and is transformed as
indicated above.

Here is the construction of a left subsequential 2-tape automaton realizing Sucec: § =
(R, Ax A*, F,ig,w). The automaton M is a subautomaton of the underlying input automaton
of §. First, let us denote by X the set X = PF(My) U PF(dy---d,0°7Y) if a > 1,
X =PF(My)UPF(dy---dp—1) if «a=0.

e The set of states R will be a subset of AX U{io}U{d;---d,,0%}, containing ) as a subset,
and inductively constructed from () as indicated below. For notation coherence, the state ¢
of M is here denoted by dy - - -d,,0°.

e The set of edges I’ will be defined as follows : first, there is an edge ¢ 0—/6> 0. Secondly, if
a > 1 (Case 1), and if rdy - - -d,,0°"" € R, there is an edge rd; - - -d,,, 0771 Oﬁl dy---d,,0%

and there is a loop dy - - - d,,,0¢ 0—/0> dy---d,0% If @« =0 (Case 2), we put rdy - - -dy—1 d”ﬁ—l

12



dy---d,,, and there is a loop dy - - -d,, 0—/0> dy---d,,.

Now, we give a general rule for defining new edges of the form ¢ a/A—(qﬁa)

d(q, a) as follows :
let 0 <n<m+a,and ¢ =rg---r, be a state of R different from iy and from the states of
the form rdy - - -d,,0% or rdy - --d,,0°71 (Case 1), and rdy - - -d,,_1 (Case 2) just mentioned
above. Let [ > 0 be the minimum index such that riyq---r,a is in X, then let the next
state be §(¢,a) = ryrip1 - - -rpa and the output be A(¢q,a) =rg---r—;. When ry---r,a € X
({ =0), we get 6(q,a) = rg---rya and A(g,a) = ¢, and when there is no suffix of ro---rya
belonging to X (I =n+ 1), we get 6(¢,a) = a and A(q,a) =rg---r,.

All we have to do now is to determine for which letters a« € A these edges are valid.
Let us consider a state of form ¢ =rdy---d,, n <m—-1ifa>1,orn <m—2 when a = 0.
Then for any letter a < d,41 such that there is no edge labelled by a leaving ¢ in M, we
define an edge ¢ a/A—(qﬁa) d(q,a).
For any state of the form ¢ = rory - - - r,, such that ry ---r, is in PF(My), and for any letter
a < rp41 such that ry---r,r,41 belongs to PF(Mg), there is an edge ¢ a/A—(qﬁa) d(q,a).
e The terminal function w is defined by : w(dy---d,0%) = 0™+, If ry---r, € My, then
w(rery---ry) = (ro+ 1)0". If a state g =rg---r, isin Lo\ M, then
wlq)=ro---ri—1(ri+ 1)rig1 - - -1, where ri4q - - -7, is the longest suffix of ¢ in M. [

Example 1 Let 3 =2, and u, = 2u,_1 + 1 for n > 1, and ug = 1. Then u, = 2"t — 1,
M = 20*Ue, Lo = {0,1}* U {0,1}*20*. The sequence U is linearly recurrent, given by
Up = 3Up_1 — 2Uny_o for m > 2 and uy = 3, ug = 1. Here is the left subsequential 2-tape

automaton § realizing Succ.

0/0 0/0

/1
@ 0/e ; 2/1

0

o 2/2

1/1

Figure 1. Left-subsequential 2-tape automaton &
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It can be shown that, in this system U, normalization on any alphabet (in particular

addition) is never computable by a finite automaton. a

Proposition 5 Let U be the set N\ 0. Then L = M = 10* Ue, and the successor function

is left subsequential.

Proof. Since u, =n+1forn >0, L = M = 10* Ue. The characteristic polynomial of U
is P(X) = (X —1)% Below is the left subsequential 2-tape automaton realizing Succ.

0/0 0/0

1/1 /0

Figure 2. Left-subsequential 2-tape automaton for N \ 0
|

Proposition 6 If U is a sequence such that M is not of the form s0* U My, where s is
a non-empty word not in 0%, and My is a finite set, then Succ cannot be realized by a left

subsequential 2-tape automaton.

Proof. Let us show that, if M # s0* U My, then there exist words z, y, z and ¢ such that,
for every n > 1, xy"z is in M and zy" lgisin L\ M.
1) Let us suppose that there exists an ¢, 1 < 7 < p, such that z;yfz; C M with z; # ¢,
z; € 0F. Then there exists h <je; 2;, |h] = |2;|. Thus for every n > 1, z;y"z; € M and
z;ylh € L\ M, by Proposition 2.
2) Otherwise, for every ¢, 1 < ¢ < p, z; € 0*. First, let us suppose that there exists an ¢ such
that y; & 0. Then let h <je; ys, || = |y;|. Thus for every n > 1, z;y”z; € M and xiyf_lhzi
isin L\ M.
Otherwise, suppose that for every ¢, 1 < ¢ < p, y; = 0P. Then by hypothesis, p must be
> 2. For simplicity, suppose p = 2. Then M = 2,(00)* U 22(00)* U My. Suppose that
210¥ <jep £20“. Then there exists & > 0 such that z1(00)*~'0% <., 22(00)", thus for n > 1,
21(00)*~10% € L\ M and z,(00)" € M.

Now let v = 0zy”z and w = 0zy""'g be determined as above. We have d;(v,w) =
Iyl + 2] + lg] — 2 | (y2) Ar g |= K, a constant, and Succ (v) = 10™¥H=1H=l - Without loss
of generality, we can assume that the longest suffix of w belonging to My is a suffix of

g. Let ¢ = gm---9i---90, t > 0, where ¢g;_1---go is the longest suffix of ¢ belonging to
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My. Then Suce (w) = 02y " Lgm, -+ - gir1(gi+1)giz1 - - - go. We have dj(Succ (v), Suce (w)) =
(2n — 1)|y| + 2]z| + |z| + |g| + 2. Thus, as in Lemma 3, Succ cannot be realized by a left

subsequential 2-tape automaton. [

Proposition 7 The only sequences U such that M = s0* U My, where s is a non-empty
word, are given by :
Case 1. Let 5 > 1 be a number such that d(1,5) =dy---d,,, and let U be defined by

un:dlun—1+"'+dmun—m+17 fOrnZROZm

withl:uo<u1<uz<---<un0_1.

Case 2. U is the set of positive integers N \ 0.

Proof. We consider s # 1, s = dy ---d,,0%, with a > 0 and d,,, # 0. Since dj - - d, 07 € L
for j > a4+ m — 1, by Proposition 2 we get

d2dm0 <lex dldm

demOO <lex dldm

dmom_l <lex dl t dm

and by a result of Parry [P60], there exists a unique real number § > 1 such that d(1,3) =
dy---dy. Now, since dy---d,,0" € M for n > o, we have dy---d,,0" = (wpq4n — 1), S0
Um4n = dlum—l—n—l + -+ dmun—l + 17 for n Z . u

As a corollary of Theorem 1 we get the following.

Corollary 1 When U is a sequence satisfying the hypothesis of Theorem 1, the successor

function is computable by an on-line finite automaton.
Proof. It is a consequence of Lemma 1 and of [FF'Sa97]. ]

3.3 Right sequentiality

Lemma 4 There exist sequences U such that the function Succ cannot be realized by a right

subsequential 2-tape automaton.
Proof. Consider the sequence U defined by the following linear recurrent sequence

Up = 3Up_1 — Up—2 ; Ug = 1, ug = 3.
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U = {1,3,8,21,---} is the sequence of Fibonacci numbers of even index. The canonical

alphabet is A = {0,1,2}, Lo = {0,1}* U {0,1}*21* U ({0,1}*21*0)* and M = 21* Ue. Since

Ly is recognizable by a finite automaton, Succ is computable by a finite 2-tape automaton.
The right-distance on A* is defined by

d, (v, w) = o] + Jo| =2 [0 A, w|

where v A, w denotes the longest common suffix to v and w.

Let v = 021" and w = 01""!. Then Succ (v) = 10"*! and Suce (w) = 01"2. We have
d.(v,w) =2(n+2) — 2n =4, as d,(Succ (v), Succ (w)) = 2(n + 2). From [Ch77] it follows
that Succ cannot be realized by a right subsequential 2-tape automaton in the numeration

system defined by U. ]

Theorem 2 The successor function associated to a sequence U is a right subsequential func-
tion (on 0*L(U)) if and only if L(U) is recognizable by a finite automaton and if the set M
of lexicographically mazimum words of L(U) is of the form :
i=p
M = U Yz UMy
=1

where My is finite, |y;| = p and the union is disjoint.
The proof follows from the following results.

Proposition 8 If M contains a set of the form xy*z, with x and y non empty, then Suce

cannot be realized by a right subsequential 2-tape automaton.

Proof. From Proposition 3, we know that

i=
M = Lj)xiyi*zi U My
=1
where My is finite, |y;| = p, and the union is disjoint. Suppose that there is a set 2y*z C M,
with @ # ¢. Let v = zy"z € M; by assumption on the form of M, there exists h <., z,
|h| = ||, and w = hy"z € Lo\ M. Without loss of generality, one can suppose that the
longest suffix of w belonging to Mj is a suffix of yz, that is to say, yz = a; ---a; - - -ag, with
0 <7< j—1 being maximal such that a;_; ---ag € My. We have : Succ (v) = Lonlyl+lel+l=l
Succ (w) = hy"ta; - ai41(a; + V)aj—1 -+ ag, d.(v,w) = 2|z| — 2|z A, h| = H, a constant,
d,(Succ (v),Suce (w)) > 14 2(n|y| + |z| 4 |2]) — 2¢, hence Succ is not right subsequential by
[Ch77]. ]
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Proposition 9 If M is of the form

i=p
M = U Yz U My
=1
where My is finite, |y;| = p and the union is disjoint, then Succ is a right subsequential

Sfunction.

Proof. The construction can be followed on Example 2 below. Since L(U) is supposed to
be recognizable by a finite automaton, so is Lg. Let £ = (Q, A, E/,ro, T) be the minimal
deterministic right automaton recognizing Lg as in Section 2.3. But, notice that L¢ is suffiz-
closed, that is to say, if fg is in Lo, then g is in Ly as well (because L is obtained from the
greedy algorithm). In particular, for every letter @ of A, @ is in Lg. Suppose that f is in
Lo; then by construction, [f]r, is a terminal state of £. If af, for a € A, is not in Lg, then
for every b € A, baf won’t be in Lg either; thus we can suppress the state [af]z, which is a
sink, and the edge [f]r, — [af]L,, and we can suppose that every state is terminal. Thus
the set of states Q) is equal to T' = {[f]r, | f € Lo}, ro = [¢], is the initial state, every state
is terminal, and there is an edge [f]r, — [af]L, for every a such that af € Lo.

Let M = (Q', A, E',ip, T') be a right deterministic automaton recognizing M, with no
sink. Since the empty word is in M, ip is also terminal. We say that a set of the form y*z,
where y # ¢, is a frying pan. Let (b, ---b1)*c,, - - - ¢1 be a frying pan in M. It is recognized in
M as follows : there is a simple path ig = ¢ — -+ 5 ¢, LN g1 i> Gn+p, Where
Gn+p = ¢n € T', and there is no other terminal state on the loop between ¢, and ¢,4,.

We construct a right subsequential 2-tape automaton S= (Q UQ’, A x A*, F,ip,w) con-
taining M and L as subautomata of the underlying input automaton of §.

e The set of states of §is Q U Q.

e For every simple path ¢g — ¢; —2 - - - i Qo1 —E5 g1, in M, where ¢, is a terminal state,
and either go = ig or go = qi, we define in § a path ¢ % Il % aﬂs Q—1 ak—/o>k q -
For each ¢; = [a;---a1]ar, 1 < j < k — 1, the terminal function w is defined by w(g;) =
a;---az(ay + 1), and w(go) = w(gx) = 1. Now, for each ¢;, 1 < j < k — 1, and for every
letter d of A such that there is no edge labelled by d leaving ¢; in M, we create an edge
q; d/daj.ﬁéal—l—l) [daj - --aq1]r, if that state exists in £, otherwise the edge is not created.
From ig and for every letter d of A such that there is no edge labelled by d outgoing from
70 in M, we create an edge g dﬂgl [d]r, if that state exists. Similarly, from ¢ = ¢, € 1", for
every letter d of A such that there is no edge labelled by d outgoing from ¢ in M, we create
an edge gy d/d—+>1 [day - - -a1]r, if that state exists.

e For every edge ¢ %+ sin L, ¢, s € , an edge ¢ a—/a> s is created in S.

For g € @, the terminal function is given by w(q) = ¢. ]
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There is a funny case where Succ is right subsequential on L but not on 0*L.
Proposition 10 The sequence U is an arithmetic progression, defined by
Uptp = c+ dp, forp > 0

with 1 = ug < uy < --- < up =cand 0 < d < ¢, if and only if the set of lexicographically
mazimum words is of the form M = 10*z U My. In that case, the function Succ is right

subsequential on L but is not right subsequential on 0*L.

Proof. 1) Let upy, = ¢+ dp, with up = cand 0 < d <c. Let My ={(u; — 1) |1 <<k}
Since d < ¢ = uy, we set z to be the word of length &k equal to (d — 1) prefixed by the
adequate number of 0’s. We have (uj11 — 1) = 1z and for n > k+ 1, u, = u,—1 + d, thus
(w, — 1) = 10""F=1z,

2) Let M = 102U Mg and z = zp_1---29. Let d = zp_qup_1 + -+ zoup + 1 and let
¢ = ug. Since z is greedy, 0 < d < ¢, and for p > 0, upyp = Upyp—1 +d = up + pd. The
characteristic polynomial of U is P(X) = (X — 1)%

3) By Proposition 8 we know that Succ is not right subsequential on 0*L. We now
construct a right subsequential 2-tape automaton realizing Succ on L. First, L = {10™v |
n>0,v]=|z| =k, v <pex 2 U{f||f] <k, such that f does not begin with 0’s and every
suffix of length i of fis < my}. Let L = (Q, A, F,ip,T) be the minimal deterministic
right automaton recognizing Lo, with Q@ = {[f]r #sink }, T ={[f]L | f € L}, ioc = [¢]1, and
there is an edge [f] —— [af]L for every a such that af # sink. We write [f] instead of [f]L
for short.

Let § = (Q,A x A*, F,ig,w) be a right subsequential 2-tape automaton having £ as
underlying input automaton. F contains a path of the form :

REV VS

1/10%+1
0 — [ZO

--Zliés [z], there is a loop [2] or [z], and an arrow [z] '— [lz].
The other paths are of the following form, for v = vg_1 -+ -vg a word <jep 2 :

io ”0_/5> [vo] “1_/5> ces Uﬂs [Vk_2 - - v0] Uk_l/vk_lﬁ?l(vﬁl)oj [v] where 0 < j < k—1 is maximal
such that v;_y ---vg € My. There is a loop [v] or8 [v] and an arrow [v] BT [1v].
For words f; - - fo, with ¢ < k — 2, the edges are of the form 4 fo—>/5 [f1] % e fl—/6> [fi- fol-
The terminal function is defined by w([1z]) = ¢, w([1v]) = ¢, for v as above, w(iy) = 1, and
if f€ Mo, w(f) =101 and otherwise, for 0 <1<k =1, w(fi---fo) = fi--- fix1(f; + DO
where 0 < j <[ —1is maximal such that f;_; --- fo € Mp. [ ]
Remark that if we take & = 0, then ¢ = d = 1, u, = p+ 1, and we find again the
pathological case, which has thus the property that Succ is both left and right subsequential

on L.
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We now make an additional hypothesis on the sequence U, which is fulfilled in many
cases. Assume that U is an integral linear recurrent sequence with characteristic polynomial
P such that P has a dominant root 3 > 1, that is to say, every other root v of P is such that

|v] < 8. Such a number 3 is called a Perron number.

Theorem 3 Let U be an integral linear recurrent sequence with characteristic polynomial
P having a dominant root 3 > 1. Then the successor function associated to U is right
subsequential if and only if the following conditions are satisfied :

1) the -expansion of 1 is finite : d(1,5)=d;i---dpn,

2) U is defined by

un:dlun—1+""|’dmun—m fOrnZnOZm

and 1 =ug < up < -+ < Upy—1.

Proof. The following has to be proved : Conditions 1 and 2 of Theorem 3 are satisfied if
and only if the set of lexicographically maximum words is of the form M = Uy z; U My
and L = L(U) is recognizable by a finite automaton. This will be a consequence of the two

following lemmas.

Lemma 5 Let § > 1 with d(1,5) =d;y---d,,, and let U be defined by
un:dlun—1+""|’dmun—m fOT‘nZ ng > m

and 1 =ug < uy < -+ < Upy—1. Then
M= U(dl . 'dm—l(dm - 1))*2’2 UMO
i=1

where Mgy is finite, and L is recognizable by a finite automaton.

Proof. We have to prove that, for n large enough, the greedy representation of w, — 1 is
of the form (dy ---d,_1(d,, — 1))*2, whith n = mk + ||, and k maximum. If not, suppose
that the greedy representation is (u, — 1) = (dy -+ -d—1(dy, — 1))jd1 odi_1(d; + c)w, with
0<j<k-1,c>1,1<i<m,and |w|=n—mj—1i. Then cup,|+m(w) = diy1uy|—1+- -+
A W)=t — 1y and thus wp) = divpy -1+ dntpy—p < digrtpy—1 + -+ din U= i
which is impossible because dy - - -d,, is the G-expansion of 1.

Now, for any ¢ > 0, (uptgm — 1) = (d1---dp_1(d;, — 1))’“""1,27 with the same word z
because z is greedy, and thus there exist m different words zy, ..., 2, such that M =
U (dy - dp—1(dy — 1)) 2 U M.

In [Ho95], it is proved that if d(1,5) =d;---d,, and u, = dyu,—1 + -+ -+ dptly—mm, then

L is recognizable by a finite automaton. ]
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Lemma 6 Suppose that P has a dominant root > 1, M = |J~, yfz; U My and L is
recognizable by a finite automaton. Then d(1,5) = dy---d,, and u, = diu,—1 + --- +

dpthn_m forn > ng > m.

Proof. From [Ho95], we know that if L is recognizable by a finite automaton then d(1, 3)
must be finite or eventually periodic. First remark that the case where d(1, 3) could be purely
periodic, i.e. d(1,8) = (dy---d,)%, is impossible, for we would get 1 = dy - - - dyp—1(dp, + 1),
which would be the correct g-expansion of 1.
If d(1, 8) is eventually periodic, d(1,3) =dy---di(di41---digm)”, then in
M = U 2y 2 U My, words z; are of the form x; = dy ---d; and words y; are of the form
Yi = (diy1 -+~ diyn)® (Lemma 7.4 of [Ho95]), a contradiction with the hypothesis.
Ifd(1,8)=dy---dm, M = UL, 2,y 2 U Mg can have two forms (Lemma 7.5 of [Ho95]) :
Case 1. For each ¢, 2, = (dy -+ - dp—1(dy, — 1))ki(d1 -+-dy,) and y; = 0™. This is in contra-
diction with our hypothesis.
Case 2. For each i, v; = y; = (dy-+-dp_1(d,, — 1))*. Then we get, for n large enough,
(uy —1) = (dy -+~ dp_1(dy, —1))* 2, for some k, (upim —1) = (dy -+ dp_1(d,, — 1)) 12, thus

Un4m = dlun—l—m—l + -+ dmun u

Example 2 Fibonacci recurrence with non canonical initial conditions.

Let U = (un)nZO be the linear recurrent sequence defined by
Up = Up_1 + Up_g forn >3, ug=1, uy =4, up = 7.

The characteristic polynomial of U is P(X) = X2 — X — 1 with (1 ++/5)/2 for dominant
root. The canonical alphabet is A = {0,1,2,3}. We have M = (10)*3 U (10)*12 and
Lo =[{0,1}*\{0,1}*11{0,1}*]{,1,2,03}. On Figure 3, Lg is recognized by £, M by M,
and on Figure 4, Succ is computed by S.

Figure 3. Right automata £ and M.
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0/0

Figure 4. Right subsequential 2-tape automaton S.
O

Recall that an algebraic integer is a root of a polynomial X4 4 ale_l + -+ aq with
integral coefficients a;. A Pisot number is an algebraic integer > 1 such that the other roots

of its minimal polynomial have modulus < 1.

Example 3 Linear recurrence with a dominant root which is a Perron number but not a
Pisot number.

Let u, = 3un—1 + 2up—2 + 3u,—4, for n > 4, with (for instance) ugp = 1, w3 = 4,
uy = 15, ug = 54. In that case, the canonical alphabet is A = {0,---,3}, and M =
(3202)*(¢, 3,32,320). The characteristic polynomial has a dominant root 5 which is a Per-
ron number, but is not a Pisot number. We have d(1,3) = 3203, and Lo = F(Dg). By
Theorem 3, Succ is a right subsequential function, although for any alphabet D D {0,---,4}
normalization is not computable by a finite 2-tape automaton because ( is not a Pisot

number [FS096]. In particular, addition is not computable by a finite 2-tape automaton. O
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4 Sequentiality and continuity

4.1 Odometer and automata

In this section we make a connection between right sequentiality of the successor function
and continuity of the odometer as defined in [GLT95]. Note that in [GLT95] numbers are
written the other way round, that is to say with the least significant digit at the left-end of
the representation. We keep on writing numbers with the most significant digit at the left.
Let A be an alphabet and denote by N A the set of left infinite sequences over A, endowed
with the discrete topology. The sequence - --aaa is denoted by “a.

As above, U is a strictly increasing sequence of integers with ug = 1, and A is the canonical
alphabet associated to U, L = L(U) is the set of greedy U-representations of the nonnegative
integers, and M is the set of lexicographically maximum words of L. Following [GLT95], the
U-compactification of N is the set C'= C(U) = {s = (---525150) | Vj >0, s;---59 € 0*L}.
Let C°={s e C |3IN;Vj> Ns, s;---so ¢ M}. The odometer is the function 7 defined on

N4 by :
if s € C%and j > N, then 7(s) = (-+-sj428;415ucc (s;---sg)) (this definition does not
depend on the choice of j), and if s € C'\ C°, then 7(s) = “0.

Remark that, if we take for U the classical K-ary system, where K is an integer > 2,

u, = K", and C'(U) is the set of K-adic integers.

In the sequel we suppose that L is recognizable by a finite automaton. Let £ =
(Q, A, E,ro,T) be the minimal deterministic right automaton recognizing Lo = 0*L and
let M = (Q1, A, E1,10,T1) be the minimal deterministic right automaton recognizing M :
the set of states is Q1 = {[f]la | f € A*} (there might exists a sink o), i = {[¢]ar}, the
set of terminal states is Ty = {[f]ar | f € M}, and for every a in A, there is an edge
(£l == [af]ar.

Let us denote by ||L|| the set of left infinite sequences recognized by £ (Biichi condition,

see Section 2.3).

Lemma 7 C' = ||£]| and C° = ||L|]\ || M]].

Proof. Since £ is right deterministic and every state is terminal, |[£|| = {5 = (s;);>0 |
Vjsj---so € 0°L} = C. As M is right deterministic, ||[M|| = {s]|s;---so € M for infinitely
many j’s } = C'\ C°. ]

For the sake of completeness, we recall the construction presented in [F96].
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Theorem 4 The successor function in the numeration system associated to U is computable
by a letter-to-letter finite 2-tape automaton (which is not right subsequential in general) if

and only if the set L(U) is recognizable by a finite automaton.

Proof. We construct a right (non deterministic) automaton A" as follows. First, A’ contains
both £ and M as subautomata.

Now, according to Lemma 2 we distinguish two cases, according to whether the addition
of 1 will produce a carry or not.
Case 1. Addition of 1 doesn’t produce a carry : it means that we are considering words
w having no nonempty suffix in M. The set of such words is K = Lo\ A*(M \ €), which
is recognizable by a finite automaton. Let K = (Q2, A, Ey, jo, T2) be the deterministic right
automaton of classes mod ~g recognizing K. Since every non empty suffix of K is again in
K (the empty word is not in K), we can take Ty = Q2 \ jo. We join K and M be taking
Jo =10 = {[¢]as} for initial state of K.
Case 2. Addition of 1 produces a carry. We consider any terminal state t = [f]as of M,
feM,t#[elm.
1) There is no edge outgoing from ¢. So for any letter a € A, is created a new edge in X’
t = [fla —= [af]L,, if af is in Lo, otherwise the edge is not created.
2) There is an edge outgoing from ¢ in M. If that edge is the first one on a path going from
t to the sink o, there is nothing to do. Otherwise, there is a path going from ¢ to an other
terminal state ¢’ (possibly equal tot) in M. From Proposition 3, we know that the label of any
path between ¢ and ¢’ is of the form zy*z, for k > 0, that is to say, t = [flar, t' = [vy*2f]ar,
for every k > 0. Let us rename z = a,—1 - G0, Y = Apip—1"""Gn, T = Gpgptm—1 """ Ontp,
where the a;’s are in A, and r; = [a;—1 - -aof]lm. Then t = ro, t/ = roqpgm, 7 2 pigg in
M, fori <0<n+p+m—1,and rpyp, =r,.
We do the following construction : we duplicate the path from ¢ to r,4,4m—1, by creating
new states ¢; and new edges ¢; — Giv1, for 0 <7 < n+p+m— 2, with g = ¢t. Then,
for any 0 < ¢ < n+p+ m — 1, for any letter b; < a;, if [bja;—1---aof]pr = o (that is to
say if b;a;—1---agf is not left prolongeable in a word of M), and if b;a;—1 ---aof € Lo, we
define a new edge ¢; L> [bia;—1 - -aof]r, which goes into the automaton £, otherwise, we
do nothing. Let ()3 be the set of new states, and F5 the set of new edges just defined.
Now let ¥ = (QU Q1 UQ2UQs3, A EU Fy U FE>U Es,q0 = [g]ar, S), with the set S of
terminal states being defined as follows : every state excepted the states of M is terminal,
S=QUQUQs\ [e]m.

The right 2-tape automaton S realizing the function Succ is defined with A" as underlying
input automaton :

e any edge p - ¢ of M becomespa—m> gin S
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e any edge [¢]yr —— ¢ in K becomes [g]y et gin S

e any new edge in I3 outgoing from a terminal state t of M, t - ¢, becomes ¢ aﬂ;l gin S
e all the other edges p —— ¢ become p a—/a> q.

We claim that S realizes the function Succ : let w/v = (wg/vg) - - - (wo/vo), be the label
of a path in § going from the initial state [¢]ps to a terminal state s.
1) sis in Q2 and w is in K, and thus in Lg; by construction of &, vg = wg + 1, and for
1<¢<k,v; =w;. Hence v = Succ (w).
2) sis in QU Q3. Let ¢ > 1 be the greatest index such that w;_q---wp is in M. Let us
denote m; = [w; - - -wol|p and s; = [w; - - - wo)r, -

a) s is in @ and thus w is in Lg. Then
wo /0 wq /0 wi_2/0 wi_1/0 wifwi+1l  wigr [ witr wy [wg
[€]M — Mg — *{ m;_o *{ m;—1 — 8 +—> S — S =S8

Thus, by Lemma 2, v = wy, - - - w41 (w; + 1)0" = Succ (w).
b) s is in @3; by construction, wy, - - -w; is a suffix of a word of M, so w is a suffix of a word
of M, every suffix of w is lexicographically smaller than the word of M of same length, and

so w is in Lo by Proposition 1. As above, v = wy - - - w; 1 (w; + 1)0° = Succ (w). [

With the slight modification that every state of & excepted the non-terminal states of

M has to be chosen as terminal, it is easy to show the following.
Proposition 11 The odometer 7 is computed by S, that is, ||S||=T.

Proof. Let § as above, but with set of terminal states taken as S = QUQoUQ3UT;. Let us
consider an infinite path in & going infinitely often through a terminal state of M. Then the
label of this path is of the form ---(0,s;)---(0,sg) where s = ---s;---59 and s;---50 € M
for infinitely many j’s. Thus 7(s) = “0. Any other infinite path in S goes only finitely
many times through a terminal state of M, and is of the form ---(s;12,5;12) (541,541 +
1)(s4,0) - --(s0,0), where j is the greatest index such that s; - - - s9 € M since Suce (s;---59) =
107+ we get -+ -s;19(sj01 + 1)07F = 7(s). |

4.2 Continuity

In [GLT95] is proved the following result (without the hypothesis of L being recognizable
by a finite automaton). Let s € C', and let D(s) = {d | sq---so € M}. Let A be the set of
finite or empty sequences § such that there exists s € C° with D(s) = 4.

Theorem 5 [GLT95] The odometer T is continuous if and only if for all finite or empty
sequences (do, - --,dr) € A the set {d > dy | (do,---,di,d) € A} is finite.

24



Here we prove the following.

Theorem 6 Let U such that L is recognizable by a finite automaton. Then the odometer T
associated to U is continuous if and only if the successor function Succ is right subsequential
on 0*L.

Proof. By Theorem 2 and Theorem 5, we have to prove that M = Uzjf Y z; U My (where
My is finite, |y;| = p and the union is disjoint) if and only if the following condition (D)
holds : for all (dg,---,dy) € A the set {d > dy | (do,---,dg,d) € A} is finite.

First let us suppose that M contains a subset zy*z with @ # ¢, and let s = “0. Then

D(s) = (. For every n > 0, let t0) = ...002y"z. Then for each n, 2y"z € M and
A DA{|z|+ np+]z| | n > 0}, thus condition (D) is not satisfied.
Conversely, let M = J:Z] y7z; U My. Let us take t € CO ¢ =+« -tjqpqtj---ta, -+ tgy - - - Lo,

where D(t) = (do, - --,di). We have that, for each 0 <1 <k, t4,---tg € M. Because of the
form of M and the fact that the union is disjoint, there exists an ¢, 1 < ¢ < p such that
tdo *+to = 2y tay -+ to = YiZiy ..., ta, -+ +to = yfzi, with for 0 < [ < k, di+ 1 = pl + |z].
Thus for all (do,---,dr) € A the set {d > di | (do,---,di,d) € A} = {p(k+ 1)+ |z:] — 1},
and thus condition (D) is satisfied. One can remark that, when M = U;j{ yrz; U My,
C\C =20 “yiz. n

This result is not surprising since sequential functions of infinite words are continuous in

some sense (see [E74]).
Example 4 Let U = (u,),>0 be the linear recurrent sequence defined by
Uy = Up—1 + 2Up_2, up =1, ug = 3.

The characteristic polynomial of U is P(X) = (X + 1)(X — 2). The canonical alphabet
is A = {0,1,2}. The language L is recognizable by a finite automaton, 0*L = {0,1}* U
{0,1}*02(00)*, M = (11)*U2(00)*, C\C° = “1 = r71(0). Since 771(0) # 0, the odometer
7 is surjective. The successor function is not right subsequential from Theorem 2, and thus 7
is not continuous (this fact is also easy to prove directly). The successor function is not left
subsequential by Theorem 1. It is computable by a finite 2-tape automaton [F96], although

on any alphabet normalization is never computable by a finite 2-tape automaton. O

A similar result to Theorem 3, but slightly weaker, is proved in [GLT95], which says :
Let 3 > 1 and put (e;);>1 = d(1, 3) if d(1, §) is infinite, (e;);>1 = d*(1, 8) if d(1, 3) is finite
(see Section 2.2). Let U such that for all n > 0, u, = eyu,—1 + -+ -+ e ug + 1. Then the

odometer associated to U is continuous if and only if d(1, 5) is finite.
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5 Conclusion

Let us recall a result from [FS096] which says that, if U is a linear recurrent sequence of
integers such that its characteristic polynomial is the minimal polynomial of a Pisot number,
then normalization is computable by a finite 2-tape automaton on any alphabet of integers,
and in particular addition also. This is the case for the sequences given in Lemma 4 and in
Example 2.

It should be clear that there is a great difference between addition and the successor
function. Of course, if addition is computable by a finite 2-tape automaton (c.f.a. for
short), so is Succ. Note that addition in the standard K-ary numeration system is right
subsequential (see [E74]), but addition in the Fibonacci numeration system is neither left
nor right subsequential, but can be obtained as the composition of a left and of a right
subsequential function, explicity given in [Sa81].

Below we summarize the examples considered in this paper. Unless explicitely stated,
the results hold for any initial conditions such that up = 1 and U is strictly increasing.

o u, = 2"t — 1 (Example 1). Succ is left subsequential. Addition is not c.f.a.

® u, = 3u,_1 — Uy—2 (Lemma 4). Succ is c.f.a. but neither left nor right subsequential.
Addition is c.f.a.

® Uy = Up_1 + uy—2 (Example 2). Succ is right subsequential. Addition is c.f.a.

® U, = 3up_1 + 2up—2 + 3u,—4 (Example 3). Succ is right subsequential. Addition is not
c.f.a.

® Uy, = Uy_1 + 2upy_g, forn > 2, ug =1, u3 =3 (Example 4). Succ is c.f.a. but neither left

nor right subsequential. Addition is not c.f.a.

I thank Paul Gastin for his set of macros “Autograph” for drawing automata.
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