Arithmetic Meyer sets and finite automata

Shigeki AKIYAMA Department of Mathematics, Niigata University, Japan, akiyama@math.sc.niigata-u.ac.jp

Frédérique BASSINO Institut Gaspard Monge, Université de Marne-la-Vallée, France, bassino@univ-mlv.fr

Christiane FROUGNY LIAFA, CNRS & Université Paris 7, and Université Paris 8, France Christiane.Frougny@liafa.jussieu.fr

May 25, 2005

Abstract

Non-standard number representation has proved to be useful in the speed-up of some algorithms, and in the modelization of solids called quasicrystals. Using tools from automata theory we study the set \mathbb{Z}_{β} of β -integers, that is, the set of real numbers which have a zero fractional part when expanded in a real base β , for a given $\beta > 1$. In particular, when β is a Pisot number — like the golden mean —, the set \mathbb{Z}_{β} is a Meyer set, which implies that there exists a finite set F (which depends only on β) such that $\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta} + F$. Such a finite set F, even of minimal size, is not uniquely determined.

In this paper we give a method to construct the sets F and an algorithm, whose complexity is exponential in time and space, to minimize their size. We also give a finite transducer that performs the decomposition of the elements of $\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta}$ as a sum belonging to $\mathbb{Z}_{\beta} + F$.

1 Introduction

It is well known that the choice of an adequate number representation can speed-up some algorithms. For instance, the signed-digit number representation consists of an integer base $\beta > 1$ and a set of signed digits $\{-a, -a+1, \ldots, a\}$ with $\beta/2 \leq a \leq \beta - 1$; in such a system a number may have several representations. This property of redundancy allows fast addition and multiplication, and also to design on-line algorithms, see [3, 8, 10]. A complex base like -1 + i allows to expand any complex number as a sequence of digits

0 and 1 with no splitting of the real and the imaginary part, and is convenient for some algorithms, see [26].

Special attention has been raised to the case where the base β is a non-integer real number. In this case the number system is naturally redundant, see [25]. The wellknown fact that addition is computable by a finite transducer when the base is an integer can be extended to some special type of non-integer base. A *Pisot number* (or a Pisot-Vijayaraghavan number) is an algebraic integer > 1 such that all its algebraic conjugates have modulus strictly less than one. The natural integers and the golden mean are Pisot numbers. It happens that, when the base is a Pisot number, addition is computable by a finite transducer as well [11]. So Pisot numbers can be considered as a nice generalization of the natural integers.

Another domain where these numbers play an important role is the modelization of the so-called "quasicrystals". The classical crystallography prescribes entirely the possible orders of symmetry of crystals: it can be 2, 3, 4 or 6. When physicists observed in the eighties new alloys presenting a symmetry of order 5, and a long-range aperiodic order, the mathematical notion of quasicrystals had already been introduced by Meyer [20, 21, 22, 23, 24] in order to define a generalization of ideal crystalline structures. So the name of Meyer set was given to a mathematical idealization of these solids.

A set X of \mathbb{R}^d is a *Meyer set* if it is a *Delaunay set* — that is, a set which is uniformly discrete and relatively dense — and if there exists a finite set F such that the set of differences X - X is a subset of X + F. Meyer [20] has shown that if X is a Meyer set and if $\beta > 1$ is a real number such that $\beta X \subset X$ then β must be a Pisot or a Salem number ¹. Conversely for each d and for each Pisot or Salem number β , there exists a Meyer set $X \subset \mathbb{R}^d$ such that $\beta X \subset X$. Note that all the quasicrystals observed in the real world are linked to quadratic Pisot numbers, namely $\frac{1+\sqrt{5}}{2}$, $1 + \sqrt{2}$ and $2 + \sqrt{3}$, see [4].

In classical crystallography, crystals are sitting in a lattice, whose vertices are indexed by integers. In quasicrystallography, the points of a quasicrystal are labelled by the socalled β -integers, which are real numbers such that their fractional part is equal to 0 when they are expanded in base β (see Section 2 for definitions). So numeration in real base β is an adequate tool for the description of these solids. As a consequence, β -integers are handled as words, and the set of the expansions of β -integers is known to be recognizable by a finite state automaton when β is a Pisot number (see [13]).

When β is a Pisot number, the set \mathbb{Z}_{β} of β -integers is a Meyer set, see [7]. In this paper, by means of automata theory tools, we give an algorithm that computes a minimal set F such that $\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta} + F$.

With a geometrical approach, Lagarias [18] has given a general construction of a set F satisfying $X - X \subset X + F$ for any Meyer set X. But the sets obtained are huge and no method of minimization of these sets is known. Minimal sets F are given in [7] for \mathbb{Z}_{β} when β is a quadratic Pisot unit. When β is a quadratic Pisot number, a possible set F for \mathbb{Z}_{β} is exhibited in [14]. The method consists in giving a bound on the length of the

 $^{^{1}}$ A *Salem number* is an algebraic integer such that every conjugate has modulus smaller than or equal to 1, and at least one of them has modulus 1.

fractional part of the β -expansion of the sum (resp. the difference) of two β -expansions.

In this work we use different methods, coming from automata theory. We first give the minimal finite automata describing the formal addition and subtraction, that is the digit-sum and digit-difference, of β -integers in the case where β is a Parry number (see definition in Section 2). Every Pisot number is a Parry number, but the converse does not hold.

We then give a construction of a finite set F of minimal size such that $\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta} + F$ making use of automata. This algorithm of minimization, which is the first known, is exponential in time an space. It also computes a finite transducer that performs the decomposition of the result of the formal subtraction $\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta}$ into a sum belonging to $\mathbb{Z}_{\beta} + F$.

A preliminary version of this work has been presented in [2].

2 Preliminaries

Let A be a finite alphabet. A concatenation of letters of A is called a *word*. The set A^* of all finite words equipped with the operation of concatenation and the empty word ε is a free monoid. We denote by a^k the word obtained by concatenating k letters a. The length of a word $w = w_0 w_1 \cdots w_{n-1}$ is denoted by |w| = n. One considers also infinite words $v = v_0 v_1 v_2 \cdots$. The set of infinite words on A is denoted by $A^{\mathbb{N}}$. An infinite word v is said to be *eventually periodic* if it is of the form $v = wz^{\omega}$, where w and z are in A^* and $z^{\omega} = zzz \cdots$. A factor of a finite or infinite word w is a finite word v such that w = uvz; if $u = \varepsilon$, the word v is a prefix of w.

The *lexicographic order* for infinite words over an ordered alphabet is defined by $v <_{\text{lex}} w$ if there exist factorizations v = uav' and y = ubw', for some word $u \in A^*$, $a, b \in A$ such that a < b, and $v', w' \in A^{\mathbb{N}}$.

Beta-expansions

Definitions and results can be found in [19, Chapter 7]. Let $\beta > 1$ be a real number. Any non-negative real number x can be represented in base β by the following greedy algorithm [27].

Denote by $\lfloor . \rfloor$ and by $\{.\}$ the integral part and the fractional part of a number. There exists $k \in \mathbb{Z}$ such that $\beta^k \leq x < \beta^{k+1}$. Let $x_k = \lfloor x/\beta^k \rfloor$ and $r_k = \{x/\beta^k\}$. For i < k, put $x_i = \lfloor \beta r_{i+1} \rfloor$, and $r_i = \{\beta r_{i+1}\}$. Then $x = x_k\beta^k + x_{k-1}\beta^{k-1} + \cdots$. If x < 1, we get k < 0 and we put $x_0 = x_{-1} = \cdots = x_{k+1} = 0$. The sequence $(x_i)_{k \geq i \geq -\infty}$ is called the (greedy) β -expansion of x, and is denoted by

$$\langle x \rangle_{\beta} = x_k x_{k-1} \cdots x_1 x_0 \cdot x_{-1} x_{-2} \cdots$$

most significant digit first. The part $x_{-1}x_{-2}\cdots$ after the "decimal" point is called the β -fractional part of x.

The digits x_i are elements of the *canonical* alphabet $A_{\beta} = \{0, \ldots, \lfloor \beta \rfloor\}$ if $\beta \notin \mathbb{N}$ and $A_{\beta} = \{0, \ldots, \beta - 1\}$ otherwise. When a β -expansion ends in infinitely many zeroes, it is said to be *finite*, and the 0's are omitted.

A finite or infinite word w on A_{β} which is the β -expansion of some non-negative number x is said to be *admissible*. Leading 0's are allowed. The *normalization* on an alphabet of digits $D \supseteq A_{\beta}$ is the function that maps a word $w = w_k \cdots w_0$ on D onto the β -expansion of its numerical value $\sum_{i=0}^{k} d_i \beta^i$ in base β . The same notion exists for infinite words. Addition is a particular case of normalization: first add digit-wise two β -expansions; this gives a word on the alphabet $\{0, \ldots, 2\lfloor\beta\rfloor\}$; then normalize to obtain the result. It is known that for every alphabet D normalization is computable by a finite transducer [11].

Denote by D_{β} the set of β -expansions of numbers of [0, 1) and by σ the shift defined by $\sigma(x_k x_{k-1} \cdots) = x_{k-1} x_{k-2} \cdots$. Then D_{β} is shift-invariant. Let S_{β} be its closure in $A_{\beta}^{\mathbb{N}}$. The set S_{β} is a symbolic dynamical system, called the β -shift. There is a peculiar representation of the number 1 which can be used to characterize the elements of the β -shift. It is denoted by $d_{\beta}(1)$, and computed by the following process [27]. Let the β -transform be defined on [0,1] by $T_{\beta}(x) = \beta x \mod 1$. Then $d_{\beta}(1) = (t_i)_{i \ge 1}$, where $t_i = \lfloor \beta T_{\beta}^{i-1}(1) \rfloor$. Note that $\lfloor \beta \rfloor = t_1$.

Set $d_{\beta}^{*}(1) = (t_1 \cdots t_{m-1}(t_m - 1))^{\omega}$ if $d_{\beta}(1) = t_1 \cdots t_m$ is finite, and $d_{\beta}^{*}(1) = d_{\beta}(1)$ if $d_{\beta}(1)$ is infinite. Then a sequence s of natural integers is an element of D_{β} if and only if for every $p \ge 1$, $\sigma^p(s)$ is strictly less in the lexicographic order than $d_{\beta}^{*}(1)$, see Parry [25].

The numbers β such that $d_{\beta}(1)$ is eventually periodic are called *Parry numbers*, and simple Parry numbers in the case where $d_{\beta}(1)$ is finite. When β is a Pisot number then $d_{\beta}(1)$ is finite or infinite eventually periodic [5, 29].

Example 1 If
$$\beta = \frac{1+\sqrt{5}}{2}$$
, then $d_{\beta}(1) = 11$ and $d_{\beta}^{*}(1) = (10)^{\omega}$.
If $\beta = \frac{3+\sqrt{5}}{2}$, then $d_{\beta}(1) = 21^{\omega} = d_{\beta}^{*}(1)$.

The set \mathbb{Z}_{β} of β -integers is the set of real numbers x such that the β -fractional part of |x| is equal to 0,

$$\mathbb{Z}_{\beta} = \{x \in \mathbb{R} \mid \langle |x| \rangle_{\beta} = x_k \cdots x_0\} = \mathbb{Z}_{\beta}^+ \cup \mathbb{Z}_{\beta}^-$$

where \mathbb{Z}_{β}^+ is the set of non-negative β -integers, and $\mathbb{Z}_{\beta}^- = -\mathbb{Z}_{\beta}^+$. Observe that

$$-\mathbb{Z}_{\beta} = \mathbb{Z}_{\beta} \text{ and } \beta(\mathbb{Z}_{\beta}) \subset \mathbb{Z}_{\beta}.$$

Notice that, if β is an integer, the set of β -integers is just \mathbb{Z} .

Denote L_{β}^{+} the set of β -expansions of the elements of \mathbb{Z}_{β}^{+} with possible leading 0's; then L_{β}^{+} is equal to the set of finite factors of S_{β} .

Meyer sets

We recall here several definitions and results from Meyer that can be found in [20, 21, 22, 23, 24]. A set $X \subset \mathbb{R}^d$ is uniformly discrete if there exists a positive real r such that for any $x \in \mathbb{R}^d$, the open ball of center x and radius r contains at most one point of X. If $Y \subset X$ and X is uniformly discrete, then Y is uniformly discrete. A set $X \subset \mathbb{R}^d$ is relatively dense if there exists a positive real R such that for any $x \in \mathbb{R}^d$, the open ball

of center x and radius R contains at least one point of X. If $X \subset Y$ and X is relatively dense, then Y is relatively dense. A set X is a *Delaunay set* if it is uniformly discrete and relatively dense.

The set X - X is the set $\{x - y \mid x \in X, y \in X\}$. A set X is a *Meyer set* if it is a Delaunay set and there exists a finite set F such that $X - X \subset X + F$. Lagarias has proved [18] that a set X is a Meyer set if and only if both X and X - X are Delaunay sets. Note that when X is a Delaunay set, then X - X is relatively dense, but not necessarily uniformly discrete. For example $X = \{n + \frac{1}{|n|+2} \mid n \in \mathbb{Z}\}$ is a Delaunay set and X - X has 1 as point of accumulation.

Lemma 1 For β a real number > 1, the set \mathbb{Z}_{β} of β -integers is relatively dense.

Proof. Indeed any non-negative real number x can be expanded as

$$\langle x \rangle_{\beta} = x_k x_{k-1} \cdots x_1 x_0 \cdot x_{-1} x_{-2} \cdots$$

thus x = z + r with $z = \sum_{i=0}^{k} x_i \beta^i \in \mathbb{Z}_{\beta}^+$, and $0 \leq r = \sum_{i < 0} x_i \beta^i < 1$ is the β -fractional part of x. Thus the maximal distance between two consecutive elements of \mathbb{Z}_{β} is equal to 1.

The following result is already proved in [7], but we give here a different proof.

Proposition 1 If β is a Pisot number, then the set \mathbb{Z}_{β} of β -integers is a Meyer set.

Proof. Let us prove that \mathbb{Z}_{β} is uniformly discrete when β is a Pisot number. Indeed the minimal distance between two consecutive points a and b of \mathbb{Z}_{β} with $\langle |a| \rangle_{\beta} = a_N \cdots a_0$ and $\langle |b| \rangle_{\beta} = b_N \cdots b_0$ is equal to the minimum of $\left| \sum_{i=0}^{N} (a_i - b_i) \beta^i \right|$.

Since an integral linear combination of algebraic integers is still an algebraic integer, $\sum_{i=0}^{N} (a_i - b_i)\beta^i$ is an algebraic integer. Let $\beta^{(2)}, \ldots, \beta^{(d)}$ be the conjugates of $\beta = \beta^{(1)}$. As the product of all the conjugates of an algebraic integer is a positive integer, we get

$$\left|\prod_{j=1}^{d} \left(\sum_{i=0}^{N} (a_i - b_i)(\beta^{(j)})^i\right)\right| \ge 1.$$

As all conjugates of β have a modulus strictly less than 1 and $|a_i - b_i| \leq 2\lfloor\beta\rfloor$,

$$\sum_{i=0}^{N} (a_i - b_i) \beta^i \Big| > \frac{1}{\prod_{j=2}^{d} \frac{2\lfloor \beta \rfloor}{1 - |\beta^{(j)}|}}.$$

Since this bound is independent of N, \mathbb{Z}_{β} is uniformly discrete. Using Lemma 1, \mathbb{Z}_{β} is a Delaunay set.

The uniform discretness of $\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta}$ can be proved as above with $|a_i - b_i| \leq 4\lfloor\beta\rfloor$. Moreover as \mathbb{Z}_{β} is a Delaunay set, $\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta}$ is relatively dense, thus it is a Meyer set. \Box

3 Automata for $\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta}$

In this section we construct automata that symbolically describe the elements of $\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta}$ when β is a Parry number. This simple symbolical description of the elements of $\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta}$ will be used, in the following sections, to determine minimal sets F associated with the Meyer set \mathbb{Z}_{β} when β is a Pisot number.

3.1 Minimal automaton for \mathbb{Z}_{β}

When β is a Parry number, the set L_{β}^+ is recognizable by a minimal finite automaton [13], of which we recall the construction. The reader is referred to [9] and [28] for definitions and results in automata theory. Let us recall the classical construction of the minimal automaton recognizing a language L. The right congruence modulo L is defined as follows: two words v and w are congruent modulo L if they have the same right contextes, more precisely $v \sim_L w$ if $vu \in L$ if and only if $wu \in L$. The minimal automaton of Lis then constructed as follows: the states are the right classes mod L, denoted by $[.]_L$. There is a transition from $[v]_L$ to $[v']_L$ labelled by a if $[v']_L = [va]_L$. The initial state is $[\varepsilon]_L$. A state $[v]_L$ is terminal if v belongs to L.

If $d_{\beta}(1) = t_1 \cdots t_m$ is finite, the automaton $\mathcal{A}_{\mathbb{Z}^+_{\beta}}$ recognizing L^+_{β} has m states, denoted 0, 1, ..., m-1. The name of state i stands for $[t_1 \cdots t_i]_{L^+_{\beta}}$, and $0 = [\varepsilon]_{L^+_{\beta}}$. Denote by suff k the suffix of $d^*_{\beta}(1)$ starting at index $k \ge 1$. Note that, because of the admissibility condition, the right context of state i is entirely determined by suff i+1, which is the greatest word in the lexicographic order that can be read from i. For each $0 \le i \le m-2$ there is an edge between states i and i+1 labelled by t_{i+1} . For each $0 \le i \le m-1$ there are t_{i+1} edges between states i and 0 labelled by $0, 1, \ldots, t_{i+1} - 1$. The initial state is 0; every state is terminal. The automaton is shown on Fig. 1.

Figure 1: Automaton $\mathcal{A}_{\mathbb{Z}^+_{\beta}}$ when $d_{\beta}(1) = t_1 \cdots t_m$.

The case where $d_{\beta}(1) = t_1 \cdots t_m (t_{m+1} \cdots t_{m+p})^{\omega}$ is infinite eventually periodic is similar. The automaton $\mathcal{A}_{\mathbb{Z}^+_{\beta}}$ recognizing L^+_{β} has m+p states $0, \ldots, m+p-1$. For

each $0 \leq i \leq m + p - 2$ there is an edge between i and i + 1 labelled by t_{i+1} . For each $0 \leq i \leq m + p - 1$ there are t_{i+1} edges between i and 0 labelled by $0, \ldots, t_{i+1} - 1$. There is an edge from m + p - 1 to m labelled by t_{m+p} . The initial state is 0; every state is terminal. The automaton is shown on Fig. 2.

Figure 2: Automaton $\mathcal{A}_{\mathbb{Z}^+_{\beta}}$ when $d_{\beta}(1) = t_1 \cdots t_m (t_{m+1} \cdots t_{m+p})^{\omega}$.

We introduce some notations. Set $\overline{k} = -k$, where k is an integer, and let $\overline{A_{\beta}} = \{\overline{\lfloor\beta}\}, \ldots, \overline{1}, 0\}$. We denote by $L_{\beta}^- \subset \overline{A_{\beta}}^*$ the set $\{\overline{w} = \overline{w_N} \cdots \overline{w_0} \mid w = w_N \cdots w_0 = \langle -x \rangle_{\beta}, x \in \mathbb{Z}_{\beta}^- \}$.

Clearly the set L_{β}^{-} is recognizable by the same automaton as L_{β}^{+} , but with negative labels on edges. Then the set $L_{\beta} = L_{\beta}^{+} \cup L_{\beta}^{-}$ of β -expansions of the elements of \mathbb{Z}_{β} is recognized by the finite automaton $\mathcal{A}_{\mathbb{Z}_{\beta}} = \mathcal{A}_{\mathbb{Z}_{\beta}^{+}} \cup \mathcal{A}_{\mathbb{Z}_{\beta}^{-}}$. By abuse we say that \mathbb{Z}_{β} is recognized by $\mathcal{A}_{\mathbb{Z}_{\beta}}$.

Example 2 Take $\beta = \frac{1+\sqrt{5}}{2}$. Minimal automata $\mathcal{A}_{\mathbb{Z}_{\beta}^{+}}$, $\mathcal{A}_{\mathbb{Z}_{\beta}^{-}}$ and $\mathcal{A}_{\mathbb{Z}_{\beta}}$ are given in Fig. 3. Initial states are indicated by an incoming arrow, and all states are terminal.

Since

$$\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta} = (\mathbb{Z}_{\beta}^{+} - \mathbb{Z}_{\beta}^{+}) \cup (\mathbb{Z}_{\beta}^{+} + \mathbb{Z}_{\beta}^{+}) \cup -(\mathbb{Z}_{\beta}^{+} + \mathbb{Z}_{\beta}^{+})$$
(1)

we introduce symbolic representations of $\mathbb{Z}_{\beta}^{+} + \mathbb{Z}_{\beta}^{+}$ and $\mathbb{Z}_{\beta}^{+} - \mathbb{Z}_{\beta}^{+}$. More precisely the *formal addition* of elements of \mathbb{Z}_{β}^{+} consists in adding elements without carry. More precisely,

$$L_{\beta}^{+} + L_{\beta}^{+} = \{(a_{N} + b_{N}) \cdots (a_{0} + b_{0}) \mid N \ge 0, \ a_{N} \cdots a_{0}, \ b_{N} \cdots b_{0} \in L_{\beta}^{+}\} \subset \{0, \dots, 2\lfloor\beta\rfloor\}^{*}.$$

Similarly the *formal subtraction* of elements of \mathbb{Z}_{β}^{+} is defined by

$$L_{\beta}^{+} - L_{\beta}^{+} = \{(a_N - b_N) \cdots (a_0 - b_0) \mid N \ge 0, \ a_N \cdots a_0, \ b_N \cdots b_0 \in L_{\beta}^{+}\} \subset \{-\lfloor \beta \rfloor, \dots, \lfloor \beta \rfloor\}^*$$

Figure 3: Automata $\mathcal{A}_{\mathbb{Z}_{\rho}^{+}}, \mathcal{A}_{\mathbb{Z}_{\rho}^{-}}$ and $\mathcal{A}_{\mathbb{Z}_{\rho}}$

3.2 Minimal automaton of $L_{\beta}^{+} + L_{\beta}^{+}$

We give a direct construction of the minimal automaton of $L_{\beta}^{+} + L_{\beta}^{+}$ when β is a Parry number. Let $Q = \{0, 1, \dots, h-1\}$ be the set of states of the minimal automaton of L_{β}^{+} $(h = m \text{ or } h = m + p \text{ according to the value of } d_{\beta}(1)$, see Section 3.1).

We construct an automaton \mathcal{S} as follows.

The set of states is the set $Q_{\mathcal{S}} = \{(i, j) \in Q^2 \mid i \leq j\}$. The cardinality of this set is equal to h(h+1)/2. The initial state is (0, 0) and every state is terminal.

Let c be in $\{0, \ldots, 2\lfloor\beta\rfloor\}^*$, and let (i, j) be in Q_S . Let $\mathcal{C}_c(i, j) = \{(i', j') \in Q^2 \mid \exists a, b \in A_\beta, c = a + b, i \xrightarrow{a} i' \text{ and } j \xrightarrow{b} j' \text{ in } \mathcal{A}_{\mathbb{Z}_\beta^+}\}$. If $\mathcal{C}_c(i, j)$ is empty there is no transition outgoing from state (i, j) with label c.

Suppose that $C_c(i, j)$ is not empty. Let $(i', j') \in C_c(i, j)$. We have seen in Section 3.1 that the right context modulo L_{β}^+ of state i' is entirely determined by $\operatorname{suff}_{i'+1}$, and similarly for j'. Take $(r, s) \in C_c(i, j)$ such that $\operatorname{suff}_{r+1} + \operatorname{suff}_{s+1} \ge |\operatorname{suff}_{i'+1} + \operatorname{suff}_{j'+1}|$ for all $(i', j') \in C_c(i, j)$. This choice ensures that the future readings will be the greatest possible in the lexicographic order. Then we define in S a transition $(i, j) \xrightarrow{c} (r, s)$ if $r \le s$, or a transition $(i, j) \xrightarrow{c} (s, r)$ otherwise.

Thus the following holds true.

Proposition 2 The automaton S is the minimal automaton of $L_{\beta}^{+} + L_{\beta}^{+}$.

3.3 Minimal automaton of $L_{\beta}^{+} - L_{\beta}^{+}$

We construct an automaton \mathcal{D} for $L_{\beta}^{+} - L_{\beta}^{+}$ as follows.

The set of states is the set $Q_{\mathcal{D}} = \{(i,0), (0,i) \in Q^2 \mid 0 \leq i \leq h-1\}$. The cardinality of this set is equal to 2h - 1. The initial state is (0,0) and every state is terminal.

Let c be in $\{0, \ldots, \lfloor\beta\rfloor\}^*$ and let (i, j) be in $Q_{\mathcal{D}}$. If $c = t_{i+1}$ and if $i \stackrel{c}{\longrightarrow} i + 1$ in $\mathcal{A}_{\mathbb{Z}_{\beta}^+}$ we define in \mathcal{D} a transition $(i, j) \stackrel{c}{\longrightarrow} (i + 1, 0)$. If $c < t_{i+1}$ we define a transition $(i, j) \stackrel{c}{\longrightarrow} (0, 0)$. Symmetrically if $\bar{c} = -t_{j+1}$ and if $j \stackrel{c}{\longrightarrow} j + 1$ in $\mathcal{A}_{\mathbb{Z}_{\beta}^+}$ we define a transition $(i, j) \xrightarrow{\bar{c}} (0, j+1)$. If $\bar{c} > -t_{j+1}$ there is a transition $(i, j) \xrightarrow{\bar{c}} (0, 0)$. In each case the future readings will be the greatest possible in the lexicographic order. Thus the following holds true.

Proposition 3 The automaton \mathcal{D} is the minimal automaton of $L_{\beta}^{+} - L_{\beta}^{+}$.

3.4 Fibonacci example

Example 3 In Fig. 4 are drawn the minimal automata $\mathcal{A}_{\mathbb{Z}_{\beta}^{+}+\mathbb{Z}_{\beta}^{+}}$, and $\mathcal{A}_{\mathbb{Z}_{\beta}^{+}-\mathbb{Z}_{\beta}^{+}}$ in the case where $\beta = \frac{1+\sqrt{5}}{2}$. Every state is terminal.

Figure 4: Automata $\mathcal{A}_{\mathbb{Z}^+_{\beta} + \mathbb{Z}^+_{\beta}}$ and $\mathcal{A}_{\mathbb{Z}^+_{\beta} - \mathbb{Z}^+_{\beta}}$.

4 A family of finite sets containing a minimal set F

When β is a Pisot number, the set of beta-integers \mathbb{Z}_{β} is a Meyer set so there exists a finite set F such that $\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta} + F$. Our goal is to construct sets F as small as possible for \mathbb{Z}_{β} .

Note the following property of minimal sets F.

Lemma 2 If F is a set of minimal size such that $\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta} + F$ then

$$F \subset (\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta}) - \mathbb{Z}_{\beta}.$$

Proof. Let F be a set of minimal size such that $\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta} + F$, that is

$$\forall x \in \mathbb{Z}_{\beta} - \mathbb{Z}_{\beta}, \ \exists (y, f) \in \mathbb{Z}_{\beta} \times F \text{ such that } x = y + f.$$

If there exists $f \in F$ such that for all $x \in \mathbb{Z}_{\beta} - \mathbb{Z}_{\beta}$ and for all $y \in \mathbb{Z}_{\beta}$, $f \neq x - y$ then $F' = F \setminus \{f\}$ satisfies $\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta} + F'$ and F' is strictly smaller than F, that is contradictory with F minimal.

Note that there may exist several sets F of minimal size.

Example 4 For $\beta = (1+\sqrt{5})/2$ the possible minimal sets F such that $\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta} + F$ are the following

1. $F = \{0, \beta - 1, -\beta + 1\} = \{0, \frac{1}{\beta}, -\frac{1}{\beta}\}, see [7]$

2.
$$F = \{0, \beta - 2, -\beta + 2\} = \{0, \frac{1}{\beta^2}, -\frac{1}{\beta^2}\} \subset [-\frac{1}{2}, \frac{1}{2}[, see [12]]$$

3. $F = \{0, \beta - 1, -\beta + 2\} = \{0, \frac{1}{\beta}, \frac{1}{\beta^2}\} \subset [0, 1[.$

Proof. To prove 3., suppose from 1. that for x and y in \mathbb{Z}_{β} there exists z in \mathbb{Z}_{β} such that $x - y = z - \frac{1}{\beta}$. Suppose first z in \mathbb{Z}_{β}^+ . Denote $\langle z \rangle_{\beta} = z_k \cdots z_0$ and let z_i be the rightmost non-zero digit. If i is even, then $x - y = z^{(1)} + \frac{1}{\beta^2}$ where $z^{(1)}$ has for β -expansion the word $z_k \cdots z_{i+1}(01)^{i/2}0$, and is thus in \mathbb{Z}_{β}^+ . If i is odd, then $x - y = z^{(2)}$ where $z^{(2)}$ has for β -expansion $z_k \cdots z_{i+1}(01)^{\lceil i/2 \rceil}$. Now suppose that z belongs to \mathbb{Z}_{β}^- . Let $\langle -z \rangle_{\beta} = u = u_k \cdots u_0$. First suppose that $u_0 = 0$, then write u in the form $u'0(01)^{\ell}0$ (if necessary u can be prefixed by two zeroes); then $-(x - y) = -z + \frac{1}{\beta}$ is equal to $v^{(1)} - \frac{1}{\beta^2}$ where $v^{(1)}$ has for β -expansion the word $u'010^{2\ell}$. If $u_0 = 1$, then u can be written as $u'0(01)^{\ell}$; then -(x - y) has for β -expansion the word $u'010^{2\ell-1}$.

Using properties of the algebraic conjugates of the elements of minimal sets F, we first define finite sets from which can be extracted the finite sets F.

Lemma 3 Let β be a Pisot number of degree d, let $I \subset \mathbb{R}$ be an interval of finite length greater than or equal to 1 and let W be the following set

$$W = \left\{ x \in \mathbb{Z}[\beta] \mid x \in I \text{ and for } 2 \leq j \leq d, \, |x^{(j)}| < \frac{3\lfloor\beta\rfloor}{1 - |\beta^{(j)}|} \right\},$$

where $x^{(2)}, \ldots, x^{(d)}$ are the algebraic conjugates of x. Then W is finite, and $\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta} + W$.

Proof. From Lemma 1 the maximal distance between two consecutive points of \mathbb{Z}_{β} is equal to 1, thus one can find a finite set F such that $\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta} + F$ in any interval I of length greater than or equal to 1. Fix an interval I of length ≥ 1 and let F be a finite subset of I of minimal size such that $\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta} + F$. Let $x \in F$, then from Lemma 2, $x \in (\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta}) - \mathbb{Z}_{\beta}$ and can be written as

$$x = \sum_{i=0}^{N} (a_i - b_i)\beta^i - \sum_{i=0}^{N} c_i\beta^i \quad \text{with } |a_i|, |b_i|, |c_i| \le \lfloor \beta \rfloor.$$

 So

for
$$2 \leq j \leq d$$
 $x^{(j)} = \sum_{i=0}^{N} (a_i - b_i - c_i) (\beta^{(j)})^i$ with $|a_i - b_i - c_i| \leq 3 \lfloor \beta \rfloor$.

As β is a Pisot number, for all $j \ge 2$, $|\beta^{(j)}| < 1$ and $|\sum_{i=0}^{N} (\beta^{(j)})^i| < (1 - |\beta^{(j)}|)^{-1}$. We obtain in this way the announced bound on the moduli of the conjugates of x and $x \in W$. So F is a subset of W.

Since β is a Pisot number the set W contains only points of $\mathbb{Z}[\beta]$ with bounded modulus and whose all conjugates have bounded modulus, thus W is finite. \Box

The choice of any interval $I \subset]-1,1[$ of length 1 allows us to reduce the size of the set containing a minimal set F.

Lemma 4 Let β be a Pisot number of degree d, let $I \subset]-1,1[$ be an interval of length 1 and let U be the following set

$$U = \left\{ x \in \mathbb{Z}[\beta] \mid x \in I \text{ and for } 2 \leq j \leq d, \, |x^{(j)}| < \frac{2\lfloor\beta\rfloor}{1 - |\beta^{(j)}|} \right\}$$

Then U is finite and $\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta} + U$.

Proof. We choose here $I \subset]-1, 1[$ of length 1 and improve the bound on the moduli of the conjugates of x given in Lemma 3 by considering the decomposition

$$\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta} = (\mathbb{Z}_{\beta}^{+} - \mathbb{Z}_{\beta}^{+}) \cup (\mathbb{Z}_{\beta}^{+} + \mathbb{Z}_{\beta}^{+}) \cup -(\mathbb{Z}_{\beta}^{+} + \mathbb{Z}_{\beta}^{+}).$$

More precisely let F be a finite subset of I of minimal size such that $\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta} + F$ and let $x \in F$, then $x \in (\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta}) - \mathbb{Z}_{\beta}$ and can be written as

$$x = \sum_{i=0}^{N} (a_i - b_i)\beta^i - \sum_{i=0}^{N} c_i\beta^i.$$

We study $|a_i - b_i - c_i|$ according to the signs of a_i, b_i and c_i . Recall that $|a_i|, |b_i|$ and $|c_i|$ are smaller than $\lfloor\beta\rfloor$. In $\mathbb{Z}_{\beta}^+ - \mathbb{Z}_{\beta}^+$ and $\mathbb{Z}_{\beta}^- - \mathbb{Z}_{\beta}^-$, the products $a_i b_i$ are non-negative and the coefficients satisfy $|a_i - b_i| \leq \lfloor\beta\rfloor$. When $F \subset]-1, 1[$, $\mathbb{Z}_{\beta}^+ + \mathbb{Z}_{\beta}^+ \subset \mathbb{Z}_{\beta}^+ + F$ and $-\left(\mathbb{Z}_{\beta}^+ + \mathbb{Z}_{\beta}^+\right) \subset \mathbb{Z}_{\beta}^- + F$, so when $a_i b_i \leq 0$, then $a_i c_i \geq 0$ and we have $|a_i - c_i| \leq \lfloor\beta\rfloor$. Thus when $F \subset]-1, 1[$, we get in all cases $|a_i - b_i - c_i| \leq 2\lfloor\beta\rfloor$. Thus

for
$$2 \leq j \leq d$$
 $x^{(j)} = \sum_{i=0}^{N} (a_i - b_i - c_i) (\beta^{(j)})^i$ with $|a_i - b_i - c_i| \leq 2 \lfloor \beta \rfloor$,

and the announced bound on the moduli of the conjugates of x holds true. The proof that U is finite is the same as for W.

Remark 1 In what follows we restrict our study to the sets U defined in Lemma 4 as finite subsets of intervals $I \subset]-1, 1[$ of length 1, but all constructions remain valid with small changes for the finite sets W introduced in Lemma 3 as finite subsets of arbitrary intervals of length greater or equal to 1.

Quadratic Pisot numbers

We now establish a bound on the size of the sets U of Lemma 4 for any quadratic Pisot number β . Recall [13] that a quadratic Pisot number β has a minimal polynomial of the form $M_{\beta} = X^2 - aX - b$, with either $a \ge b \ge 1$, or $a \ge 3$ and $0 > b \ge -a + 2$. In the first case $d_{\beta}(1) = ab$, and in the second one $d_{\beta}(1) = (a-1)(a+b-1)^{\omega}$. **Proposition 4** Let β be a quadratic Pisot number with minimal polynomial $M_{\beta} = X^2 - aX - b$. Then for any interval $I \subset]-1, 1[$ of length 1, Card $(U) \leq 2\lceil B-1\rceil + 1$, with

$$B = \begin{cases} \frac{a}{a-b+1} + \frac{a(a+2)}{(a+1)(a-b+1)} + \frac{1}{a+1} & \text{when} \quad a \ge b > \frac{a}{2}, \\ \frac{2(a+1)}{a-b+1} + \frac{1}{a} & \text{when} \quad 0 < b \le \frac{a}{2}, \\ \frac{2a-3}{a+b-1} + \frac{1}{a-1} & \text{when} \quad -\frac{a}{2} < b < 0, \\ \frac{2(a-1)}{a+b-1} + \frac{1}{a-2} & \text{when} \quad -a+2 \le b \le -\frac{a}{2} \end{cases}$$

Proof. Denote by β' the algebraic conjugate of β . Any point x of $\mathbb{Z}[\beta]$ and its algebraic conjugate x' can be written as $x = x_1 + x_2\beta$ and $x' = x_1 + x_2\beta'$ where $x_1, x_2 \in \mathbb{Z}$. Then

$$\left(\begin{array}{c} x_1\\ x_2 \end{array}\right) = \frac{1}{\beta - \beta'} \left(\begin{array}{c} -\beta' & \beta\\ 1 & -1 \end{array}\right) \left(\begin{array}{c} x\\ x' \end{array}\right).$$

Note that for each value of x_2 there is only one possible value for x_1 such that $x \in U$ since x_1 is an integer and the interval I is of length 1. So if, for all $x \in U$, $|x_2| < B$ then $|x_2| \leq \lceil B-1 \rceil$ and $\operatorname{Card}(U) \leq 2\lceil B-1 \rceil + 1$.

We establish the bound on the modulus of x_2 using the inequalities |x| < 1 and $|x'| \leq 2\lfloor\beta\rfloor/(1-|\beta'|)$ with $\lfloor\beta\rfloor = a$ when b > 0 and $\lfloor\beta\rfloor = a - 1$ when b < 0. Setting $\Delta = a^2 + 4b$, we get

when b > 0,

$$|x_2| < \frac{1}{\sqrt{\Delta}} \left(1 + \frac{4a(a+2+\sqrt{\Delta})}{(a+2)^2 + \Delta} \right) \le \frac{a}{a-b+1} + \frac{a(a+2)}{\sqrt{\Delta}(a-b+1)} + \frac{1}{\sqrt{\Delta}}$$

and when b < 0,

$$|x_2| < \frac{1}{\sqrt{\Delta}} \left(1 + \frac{4(a-1)(a+2+\sqrt{\Delta})}{\Delta - (a-2)^2} \right) \le \frac{a-1}{a+b-1} + \frac{(a-1)(a-2)}{\sqrt{\Delta}(a+b-1)} + \frac{1}{\sqrt{\Delta}}.$$

The announced bounds follow from the study of Δ according to the value of b.

Remark 2 Specifying the values for a and b given above for B, we obtain the following bounds.

- If $a \ge b > \frac{a}{2}$, then $B \le 2a + 1$ and $Card(U) \le 4a + 1$.
- If $0 < b \leq \frac{a}{2}$, then B < 4 and $Card(U) \leq 7$.
- If $-\frac{a}{2} < b < 0$, B < 7 and $Card(U) \leq 13$.
- If $-a + 2 \leq b \leq -\frac{a}{2}$ then $B \leq 2a 1$ and $\operatorname{Card}(U) \leq 4a 3$.

Corollary 1 Let β be a quadratic Pisot unit, i.e, |b| = 1, and $I \subset]-1,1[$ be an interval of length 1, then the set U contains at most 5 points.

Proof. From Proposition 4 when b = 1 or b = -1, $B \leq 3$, in all but two cases.

If $M_{\beta} = X^2 - 3X + 1$, then $B \leq 4$ and $|x_2| \leq 3$ but there is no corresponding value for x_1 when $|x_2| = 3$, thus $|x_2| \leq 2$ and $\operatorname{Card}(U) \leq 5$.

If $M_{\beta} = X^2 - 2X - 1$, we obtain $B \leq 3$ if we do not approximate Δ in the computation of the proof of Proposition 4.

Example 5 Let $\beta = (1 + \sqrt{5})/2$ then $\beta' = (1 - \sqrt{5})/2$. Then

$$U = \left\{ x \in \mathbb{Z}[\beta] \mid x \in I \text{ and } |x'| < 2\beta + 2 \right\}.$$

- For $I = [-1/2, 1/2], U = \{0, \beta 2, 2\beta 3, 2 \beta, 3 2\beta\}.$
- For I = [0, 1[, $U = \{0, -1+\beta, -3+2\beta, 2-\beta\}$, since the conjugate $4-2\beta'$ of $4-2\beta$ has a modulus greater than $2\beta + 2$.

Example 4 shows that the size of minimal sets F in this case is equal to 3.

5 A reduction of the sets containing minimal sets F

We present our constructions in the case where I is an interval of length 1 in]-1,1[and consider the finite subset U of I defined in Lemma 4. By construction a minimal set F is contained in U and from Lemma 2 F is a subset of $(\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta}) - \mathbb{Z}_{\beta}$. Thus a minimal set F is included in $U \cap ((\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta}) - \mathbb{Z}_{\beta}).$

In the following we give an algorithm that computes this intersection. Roughly speaking we construct an automaton that recognizes the Cartesian product $(L_{\beta}-L_{\beta}) \times L_{\beta}$ and whose each state q corresponds to the value of the subtraction of the elements of $\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta}$ and \mathbb{Z}_{β} whose representations label the paths from the initial state to q.

The first step of the construction consists in associating to each element of a minimal set F at least a path labelled on $\{-2\lfloor\beta\rfloor, \cdots, 2\lfloor\beta\rfloor\}^* \times \{0, \cdots, \lfloor\beta\rfloor\}^*$ in a directed graph G whose set of vertices contains U.

Following [15], we define the directed graph G as follows.

• The set of vertices is

$$V = \left\{ x \in \mathbb{Z}[\beta] \mid |x| < \frac{2\lfloor\beta\rfloor}{\beta - 1}, \text{ and for } 2 \leqslant j \leqslant d, \, |x^{(j)}| < \frac{2\lfloor\beta\rfloor}{1 - |\beta^{(j)}|} \right\}.$$

- The labels (b, a) of the transitions belong to $\{-2\lfloor\beta\rfloor, \cdots, 2\lfloor\beta\rfloor\} \times \{0, \cdots, \lfloor\beta\rfloor\}$.
- There is a transition from $x \in V$ to $y \in V$ labelled by (b, a), denoted $x \xrightarrow{(b,a)} y$, if and only if $y = \beta x + (b a)$.

Note that $0 \in V$ and $U \subset V$. The set V is finite.

Remark 3 Transitions in G are defined in such a way that words will be processed most significant digit first (i.e., from left to right) as in the automata for \mathbb{Z}_{β} and $\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta}$.

Proposition 5 Let $F \subset U$ be a minimal set satisfying $\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta} + F$. Then for any $f \in F$ there is a path from 0 to f whose label belongs to $(L_{\beta} - L_{\beta}) \times L_{\beta}$.

Proof. From Lemma 2, $F \subset (\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta}) - \mathbb{Z}_{\beta}$, so any element f of F can be written as $f = \sum_{i=0}^{N} (b_i - a_i)\beta^i$ where $x = \sum_{i=0}^{N} a_i\beta^i \in \mathbb{Z}_{\beta}$ with $a_N \cdots a_0 \in L_{\beta}$ and $y = \sum_{i=0}^{N} b_i\beta^i \in \mathbb{Z}_{\beta} - \mathbb{Z}_{\beta}$ with $b_N \cdots b_0 \in L_{\beta} - L_{\beta}$.

With such an f is associated a finite sequence

$$f_0 = 0$$
, for $0 \le i \le N$ $f_{i+1} = \beta f_i + (b_{N-i} - a_{N-i})$.

Note that $f_{N+1} = f$.

Let us show that for any $f \in F$, the elements f_1, \ldots, f_{N+1} of the sequence associated with f belong to V. Note that the smallest K such that |x| < K implies $|(x-(b-a))/\beta| < K$ is $K = 2\lfloor\beta\rfloor/(\beta-1)$. Since f is in U, |f| < K, and so for all $0 \leq i \leq N$, $|f_i| < K$. Moreover from Lemma 4, when $F \subset U$, for all i, $|b_i - a_i| \leq 2\lfloor\beta\rfloor$, thus for $1 \leq i \leq N+1$ and $2 \leq j \leq d$, the conjugates $f_i^{(j)}$ of f_i satisfy $|f_i^{(j)}| \leq 2\lfloor\beta\rfloor/(1-|\beta^{(j)}|)$ and for $1 \leq i \leq N+1$, f_i belongs to V.

Finally if $f \in F$ then there is in G a path

$$0 = f_0 \stackrel{(b_N, a_N)}{\longrightarrow} f_1 \stackrel{(b_{N-1}, a_{N-1})}{\longrightarrow} \cdots \stackrel{(b_0, a_0)}{\longrightarrow} f_{N+1} = f$$

where the words $a_N \cdots a_0$ and $b_N \cdots b_0$ respectively belong to L_β and $L_\beta - L_\beta$, concluding the proof.

From Proposition 5 we can take into account in G only the paths whose labels belong to $(L_{\beta} - L_{\beta}) \times L_{\beta}$. In order to compute such paths, we use the Cartesian product of the automata $\mathcal{A}_{\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}}$ and $\mathcal{A}_{\mathbb{Z}_{\beta}}$. Recall the definition of the Cartesian product $\mathcal{P} = \mathcal{A} \times \mathcal{B}$ of two automata \mathcal{A} and \mathcal{B} :

- the set of states of \mathcal{P} is $Q_{\mathcal{P}} = Q_{\mathcal{A}} \times Q_{\mathcal{B}}$,
- there is an edge in \mathcal{P} from (p,q) to (p',q') labelled by (a,b) if and only if there is an edge from p to p' labelled by a in \mathcal{A} and an edge from q to q' labelled by b in \mathcal{B} ,
- the set of initial (resp. terminal) states of \mathcal{P} is the Cartesian product of the sets of initial (resp. terminal) states of \mathcal{A} and \mathcal{B} .

Note that in $\mathcal{A}_{\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}} \times \mathcal{A}_{\mathbb{Z}_{\beta}}$ every state is terminal.

From all vertices f of G which are in U we look for a path from 0 to f in the directed graph G which is successful in $\mathcal{A}_{\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}} \times \mathcal{A}_{\mathbb{Z}_{\beta}}$. We find these paths making use of the intersection $\mathcal{I} = \mathcal{A} \cap \mathcal{B}$ of two finite automata \mathcal{A} and \mathcal{B} defined as follows:

- all sets of states of \mathcal{I} are defined as the ones of the Cartesian product,
- there is an edge in \mathcal{I} from (p,q) to (p',q') labelled by a if and only if there is an edge from p to p' in \mathcal{A} and an edge from q to q' in \mathcal{B} both labelled by a.

Algorithm of reduction of the size of the sets containing a minimal set FInput: The set U containing a minimal set F. Output: A subset U' of U containing a minimal set F.

- 1. Build the automaton \mathcal{G}_U having as underlying transition graph G with 0 as initial state and U as set of terminal states.
- 2. Compute the intersection $\mathcal{I}_U = (\mathcal{A}_{\mathbb{Z}_\beta \mathbb{Z}_\beta} \times \mathcal{A}_{\mathbb{Z}_\beta}) \cap \mathcal{G}_U$. Note that the set of terminal states of \mathcal{I}_U is $\mathcal{Q}_{\mathbb{Z}_\beta \mathbb{Z}_\beta} \times \mathcal{Q}_{\mathbb{Z}_\beta} \times U$.
- 3. Prune \mathcal{I}_U into $\mathcal{I}'_{U'}$ (that is, keep only the states which belong to a path from the initial state to a terminal state).
- 4. Return the set U' of the third components of terminal states of $\mathcal{I}'_{U'}$.

Corollary 2 A minimal set F is contained in $U' \subset U$.

Remark 4 The number of states of the automaton $\mathcal{I}_{U'}$ is $\mathcal{O}(Q^3 \times |V|)$, where Q is the number of states of $\mathcal{A}_{\mathbb{Z}^+_{\sigma}}$ and |V| is the number of vertices of G.

Because of the large number of states of the automaton obtained in this way, we shall not illustrate the construction with a figure. Nevertheless we give an example of reductions that can be obtained.

Example 6 When $\beta = (1 + \sqrt{5})/2$, we obtain

- For I = [-1/2, 1/2[and $U = \{0, \beta 2, 2\beta 3, 2 \beta, 3 2\beta\},$ $U \cap (\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta}) - \mathbb{Z}_{\beta} = \{0, \beta - 2, 2 - \beta\}.$
- For I = [0, 1[and $U = \{0, -1 + \beta, -3 + 2\beta, 2 \beta\},\$

$$U \cap (\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta}) - \mathbb{Z}_{\beta} = \{0, \beta - 1, 2 - \beta\}.$$

A geometrical argument could also be used to prove that $2\beta - 3 = \frac{1}{\beta^3}$ and $-2\beta + 3 = -\frac{1}{\beta^3}$ are not in $(\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta}) - \mathbb{Z}_{\beta}$. Indeed the distance between two consecutive points of \mathbb{Z}_{β} is equal to $\frac{1}{\beta}$ or $1 = \frac{1}{\beta} + \frac{1}{\beta^2}$, so $\mathbb{Z}_{\beta} + \{\frac{1}{\beta^3}, -\frac{1}{\beta^3}\} \cap \mathbb{Z}_{\beta} + \{0, \frac{1}{\beta}, -\frac{1}{\beta}\} = \emptyset$. Moreover $\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta} + \{0, \frac{1}{\beta}, -\frac{1}{\beta}\}$ (see Exemple 4), thus $\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta} \cap \mathbb{Z}_{\beta} + \{\frac{1}{\beta^3}, -\frac{1}{\beta^3}\} = \emptyset$ and $\pm \frac{1}{\beta^3} \notin (\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta}) - \mathbb{Z}_{\beta}$.

6 Algorithm computing a minimal set F

The finite sets U' obtained by the previous construction are not minimal. An element $y \in \mathbb{Z}_{\beta} - \mathbb{Z}_{\beta}$ can be close to two distinct points of x and x' of \mathbb{Z}_{β} , for example such that x < y < x', and y = x + f = x' + f' with $f, f' \in U'$.

Theorem 1 A minimal set $F \subset U'$ can be computed by an algorithm which is exponential in time and space. It consists in building a transducer which rewrites a representation of an element of $\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta}$ into its representation $\mathbb{Z}_{\beta} + F$.

Proof. To find a minimal set $F \subset U'$ we proceed in two steps.

First we define from the automaton $\mathcal{I}'_{U'}$ a deterministic automaton $\mathcal{R}_{U'}$ that recognizes the set $L_{\beta} - L_{\beta}$. Note that the words of $L_{\beta} - L_{\beta}$ appear as the first component of the labels of the successful paths in $\mathcal{I}'_{U'}$. The automaton $\mathcal{R}_{U'}$ is obtained by erasing the second component of the labels (that belongs to L_{β}) of the transitions of $\mathcal{I}'_{U'}$ and determinizing the automaton defined in this way. The determinization of automata is based on the so-called subset construction (see [9]), which is exponential in space, and the automaton $\mathcal{R}_{U'}$ has $\mathcal{O}(2^{\mathcal{Q}_{\mathcal{I}'_{U'}}})$ states.

Next we look amongst all subsets of U' for the smallest set F such that the automaton \mathcal{R}_F , obtained from $\mathcal{R}_{U'}$ by keeping only as terminal states the terminal states of $\mathcal{R}_{U'}$ in which occur an element of F, recognizes $L_{\beta} - L_{\beta}$. To test the inclusion, we compute the complement \mathcal{C}_F of \mathcal{R}_F by completing the automaton \mathcal{R}_F (when a transition is missing we add a transition ending in a new state called the sink) and replacing the set of terminal states F by its complement (including the sink). Then the automaton \mathcal{R}_F recognizes $L_{\beta} - L_{\beta}$ if and only if the intersection of \mathcal{C}_F and $\mathcal{A}_{\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}}$ is empty. Note that the complexity of the search amongst all subsets of U' is exponential in time.

¿From the set F obtained above, we define a transducer that provides, for any $b = b_N \dots b_0 \in L_\beta - L_\beta$ and $y = \sum_{i=0}^N b_i \beta^i \in \mathbb{Z}_\beta - \mathbb{Z}_\beta$, a decomposition $(a_N \dots a_0, f)$ where $a = a_N \dots a_0 \in L_\beta$, $f \in F$ and $y = \sum_{i=0}^N a_i \beta^i + f$.

Consider $\mathcal{I}_F = (\mathcal{A}_{\mathbb{Z}_\beta - \mathbb{Z}_\beta} \times \mathcal{A}_{\mathbb{Z}_\beta}) \cap \mathcal{G}_F$ (*F* is the set of terminal states of \mathcal{G}_F). For any element $b = b_N \dots b_0 \in L_\beta - L_\beta$ there exists $f \in F$ such that *b* is the first component of the label of a successful path *w* ending in (s, f) where *s* is any state of $(\mathcal{A}_{\mathbb{Z}_\beta - \mathbb{Z}_\beta}) \times \mathcal{A}_{\mathbb{Z}_\beta}$ (by construction all states are terminal). Consequently we get $\sum_{i=0}^N b_i \beta^i = \sum_{i=0}^N a_i + f$ where $a_N \dots a_0$ is the second component of the label of the same path *w* and so belongs to L_β .

More generally the first component of the labels of the edges in \mathcal{I}_F can be interpreted as the inputs in $\mathbb{Z}_{\beta} - \mathbb{Z}_{\beta}$ given by their representation in $L_{\beta} - L_{\beta}$ of the transducer, the second component as the corresponding outputs in \mathbb{Z}_{β} given by their representation in L_{β} . The associated element of F is given by the second component of the label of the state where the path ends.

To conclude, the method used here for determining minimal sets F probably could be generalized to the following sets. Let G be a strongly connected graph labelled by numbers taken from a finite alphabet, and let β be the spectral radius of its adjacency matrix. Let us consider the set $X_G = \{\sum_{i=0}^k x_i \beta^i \mid k \ge 0, x_k \cdots x_0 \text{ is the label of a path} \}$ in G. Under certain conditions on G and β , X_G is a Meyer set, and so the question of minimal F makes sense. The characterization of these Meyer sets and the construction of associated minimal sets F remain open problems.

Acknowledgements This work has been partially supported by the CNRS/JSPS contract number 13569.

We thank the referee who pointed out that the result stated as Proposition 4 in [2] is wrong.

References

- S. Akiyama, Self affine tiling and Pisot numeration system, in Number theory and its applications, Eds K. Györy and S. Kanemitsu, Kluwer (1999) 7–17.
- [2] S. Akiyama, F. Bassino, Ch. Frougny, Automata for arithmetic Meyer sets, in Proceedings of LATIN 04, L.N.C.S. 2976 (2004) 252–261.
- [3] A. Avizienis, Signed-digit number representations for fast parallel arithmetic, *IRE Transac*tions on electronic computers 10 (1961) 389–400.
- [4] D. Barache, B. Champagne, J.-P. Gazeau, Pisot-cyclotomic quasilattices and their symmetry semigroups, in: *Quasicrystals and discrete geometry* (Toronto ON, 1995), Ed. J. Patera, Fields Institute Monogr., Vol. 10, ed. J. Patera, Amer. Math. Soc. (1998) 15–66.
- [5] A. Bertrand, Développements en base de Pisot et répartition modulo 1, C. R. Acad. Sc. Paris, Série A, 285 (1977) 419–421.
- [6] A. Bertrand-Mathis, Développements en base θ , répartition modulo un de la suite $(x\theta^n)_{n\geq 0}$, langages codés et θ -shift, Bull. Soc. Math. France, **114** (1986) 271–323.
- [7] Č. Burdík, Ch. Frougny, J.-P. Gazeau, R. Krejcar, Beta-integers as natural counting systems for quasicrystals, J. Phys. A, Math. Gen., 31 (1998) 6449–6472.
- [8] C.Y. Chow and J.E. Robertson, Logical design of a redundant binary adder, Proc. 4th Symposium on Computer Arithmetic, I.E.E.E. Computer Society Press (1978) 109–115.
- [9] S. Eilenberg, Automata, Languages and Machines, Vol. A, Academic Press (1974).
- [10] M.D. Ercegovac, On-line arithmetic: An overview. Real time Signal Processing VII SPIE 495 (1984) 86–93.
- [11] Ch. Frougny, Representation of numbers and finite automata. Math. Systems Theory 25 (1992) 37–60.
- [12] Ch. Frougny, J.-P. Gazeau, R. Krejcar, Additive and multiplicative properties of point sets based on beta-integers, *Theoret. Comput. Sci.* **303** (2003) 491–516.
- [13] Ch. Frougny and B. Solomyak, On representation of integers in linear numeration systems, in *Ergodic theory of* Z^d actions (Warwick, 1993–1994), Eds M. Pollicott et al., London Math. Soc. Lecture Note Ser. 228, Cambridge University Press (1996) 345–368.
- [14] L. S. Guimond, Z. Masáková, E. Pelantová, Arithmetics on beta-expansions, Acta Arithmetica 112 (2004) 23–40.
- [15] K. H. Indlekofer, I. Kátai, P. Racsk'o, Number systems and fractal geometry, in *Probability theory and applications*, Math. Appl. **60**, Kluwer Acad. Publ. (1992) 319–334.

- [16] S. Ito and Y. Takashi, Markov subshifts and realization of β-expansions, J. Math. Soc. Japan 26 (1974) 33–55.
- [17] J. C. Lagarias, Geometric models for quasicrystals : I. Delone sets of finite type, Discrete Comput. Geom. 21 (1999) 161–191.
- [18] J. C. Lagarias, Meyer's concept of quasicrystal and quasiregular sets, Commun. Math. Phys. 179 (1996) 365–376.
- [19] M. Lothaire, Algebraic combinatorics on words, Cambridge University Press (2002).
- [20] Y. Meyer, Nombres de Pisot, nombres de Salem et analyse harmonique, Lecture Notes in Math. 117, Springer-Verlag (1970).
- [21] Y. Meyer, Algebraic Numbers and Harmonic Analysis, North-Holland (1972).
- [22] Y. Meyer, Quasicrystals, Diophantine approximation and algebraic numbers, in Beyond Quasicrystals, Eds F. Axel and D. Gratias, Les Éditions de Physique, Springer-Verlag, (1995) 1–16.
- [23] R. V. Moody, Meyer sets and their duals, in *The Mathematics of Long-Range Aperiodic Order*, Ed. R. V. Moody, NATO ASI Series C 489, Kluwer (1997) 403–441.
- [24] R. V. Moody, Model Sets: A Survey, in From Quasicrystals to More Complex Systems, Eds F. Axel, F. Denoyer and J.-P. Gazeau, EDP Sciences and Springer Verlag, (2000) 145–166.
- [25] W. Parry, On the β -expansions of real numbers, Acta Math. Acad. Sci. Hungar. **11** (1960) 401–416.
- [26] W. Penney, A "binary" system for complex numbers, Journal of the A.C.M. 12 (1965) 247–248.
- [27] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung. 8 (1957) 477–493.
- [28] J. Sakarovitch, *Eléments de théorie des automates*, Vuibert (2003). English translation: *Elements of Automata Theory*, Cambridge University Press, to appear.
- [29] K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc. 12 (1980) 269–278.
- [30] W.P. Thurston, *Groups, tilings, and finite state automata*, Geometry supercomputer project research report GCG1, University of Minnesota (1989).