Arithmetic Meyer sets and finite automata

Shigeki Akiyama
Department of Mathematics, Niigata University, Japan, akiyama@math.sc.niigata-u.ac.jp
Frédérique Bassino
Institut Gaspard Monge, Université de Marne-la-Vallée, France,
bassino@univ-mlv.fr
Christiane Frougny
LIAFA, CNRS \& Université Paris 7, and
Université Paris 8, France
Christiane.Frougny@liafa.jussieu.fr

May 25, 2005

Abstract

Non-standard number representation has proved to be useful in the speed-up of some algorithms, and in the modelization of solids called quasicrystals. Using tools from automata theory we study the set \mathbb{Z}_{β} of β-integers, that is, the set of real numbers which have a zero fractional part when expanded in a real base β, for a given $\beta>1$. In particular, when β is a Pisot number - like the golden mean -, the set \mathbb{Z}_{β} is a Meyer set, which implies that there exists a finite set F (which depends only on β) such that $\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta}+F$. Such a finite set F, even of minimal size, is not uniquely determined.

In this paper we give a method to construct the sets F and an algorithm, whose complexity is exponential in time and space, to minimize their size. We also give a finite transducer that performs the decomposition of the elements of $\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}$ as a sum belonging to $\mathbb{Z}_{\beta}+F$.

1 Introduction

It is well known that the choice of an adequate number representation can speed-up some algorithms. For instance, the signed-digit number representation consists of an integer base $\beta>1$ and a set of signed digits $\{-a,-a+1, \ldots, a\}$ with $\beta / 2 \leqslant a \leqslant \beta-1$; in such a system a number may have several representations. This property of redundancy allows fast addition and multiplication, and also to design on-line algorithms, see [3, 8, 10]. A complex base like $-1+i$ allows to expand any complex number as a sequence of digits

0 and 1 with no splitting of the real and the imaginary part, and is convenient for some algorithms, see [26].

Special attention has been raised to the case where the base β is a non-integer real number. In this case the number system is naturally redundant, see [25]. The wellknown fact that addition is computable by a finite transducer when the base is an integer can be extended to some special type of non-integer base. A Pisot number (or a Pisot-Vijayaraghavan number) is an algebraic integer >1 such that all its algebraic conjugates have modulus strictly less than one. The natural integers and the golden mean are Pisot numbers. It happens that, when the base is a Pisot number, addition is computable by a finite transducer as well [11]. So Pisot numbers can be considered as a nice generalization of the natural integers.

Another domain where these numbers play an important role is the modelization of the so-called "quasicrystals". The classical crystallography prescribes entirely the possible orders of symmetry of crystals: it can be $2,3,4$ or 6 . When physicists observed in the eighties new alloys presenting a symmetry of order 5, and a long-range aperiodic order, the mathematical notion of quasicrystals had already been introduced by Meyer [20, 21, 22, 23, 24] in order to define a generalization of ideal crystalline structures. So the name of Meyer set was given to a mathematical idealization of these solids.

A set X of \mathbb{R}^{d} is a Meyer set if it is a Delaunay set - that is, a set which is uniformly discrete and relatively dense - and if there exists a finite set F such that the set of differences $X-X$ is a subset of $X+F$. Meyer [20] has shown that if X is a Meyer set and if $\beta>1$ is a real number such that $\beta X \subset X$ then β must be a Pisot or a Salem number ${ }^{1}$. Conversely for each d and for each Pisot or Salem number β, there exists a Meyer set $X \subset \mathbb{R}^{d}$ such that $\beta X \subset X$. Note that all the quasicrystals observed in the real world are linked to quadratic Pisot numbers, namely $\frac{1+\sqrt{5}}{2}, 1+\sqrt{2}$ and $2+\sqrt{3}$, see [4].

In classical crystallography, crystals are sitting in a lattice, whose vertices are indexed by integers. In quasicrystallography, the points of a quasicrystal are labelled by the socalled β-integers, which are real numbers such that their fractional part is equal to 0 when they are expanded in base β (see Section 2 for definitions). So numeration in real base β is an adequate tool for the description of these solids. As a consequence, β-integers are handled as words, and the set of the expansions of β-integers is known to be recognizable by a finite state automaton when β is a Pisot number (see [13]).

When β is a Pisot number, the set \mathbb{Z}_{β} of β-integers is a Meyer set, see [7]. In this paper, by means of automata theory tools, we give an algorithm that computes a minimal set F such that $\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta}+F$.

With a geometrical approach, Lagarias [18] has given a general construction of a set F satisfying $X-X \subset X+F$ for any Meyer set X. But the sets obtained are huge and no method of minimization of these sets is known. Minimal sets F are given in [7] for \mathbb{Z}_{β} when β is a quadratic Pisot unit. When β is a quadratic Pisot number, a possible set F for \mathbb{Z}_{β} is exhibited in [14]. The method consists in giving a bound on the length of the

[^0]fractional part of the β-expansion of the sum (resp. the difference) of two β-expansions.
In this work we use different methods, coming from automata theory. We first give the minimal finite automata describing the formal addition and subtraction, that is the digit-sum and digit-difference, of β-integers in the case where β is a Parry number (see definition in Section 2). Every Pisot number is a Parry number, but the converse does not hold.

We then give a construction of a finite set F of minimal size such that $\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta} \subset$ $\mathbb{Z}_{\beta}+F$ making use of automata. This algorithm of minimization, which is the first known, is exponential in time an space. It also computes a finite transducer that performs the decomposition of the result of the formal subtraction $\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}$ into a sum belonging to $\mathbb{Z}_{\beta}+F$.

A preliminary version of this work has been presented in [2].

2 Preliminaries

Let A be a finite alphabet. A concatenation of letters of A is called a word. The set A^{*} of all finite words equipped with the operation of concatenation and the empty word ε is a free monoid. We denote by a^{k} the word obtained by concatenating k letters a. The length of a word $w=w_{0} w_{1} \cdots w_{n-1}$ is denoted by $|w|=n$. One considers also infinite words $v=v_{0} v_{1} v_{2} \cdots$. The set of infinite words on A is denoted by $A^{\mathbb{N}}$. An infinite word v is said to be eventually periodic if it is of the form $v=w z^{\omega}$, where w and z are in A^{*} and $z^{\omega}=z z z \cdots$. A factor of a finite or infinite word w is a finite word v such that $w=u v z$; if $u=\varepsilon$, the word v is a prefix of w.

The lexicographic order for infinite words over an ordered alphabet is defined by $v<_{\text {lex }} w$ if there exist factorizations $v=u a v^{\prime}$ and $y=u b w^{\prime}$, for some word $u \in A^{*}$, $a, b \in A$ such that $a<b$, and $v^{\prime}, w^{\prime} \in A^{\mathbb{N}}$.

Beta-expansions

Definitions and results can be found in [19, Chapter 7]. Let $\beta>1$ be a real number. Any non-negative real number x can be represented in base β by the following greedy algorithm [27].

Denote by \lfloor.$\rfloor and by \{$.$\} the integral part and the fractional part of a number. There$ exists $k \in \mathbb{Z}$ such that $\beta^{k} \leqslant x<\beta^{k+1}$. Let $x_{k}=\left\lfloor x / \beta^{k}\right\rfloor$ and $r_{k}=\left\{x / \beta^{k}\right\}$. For $i<k$, put $x_{i}=\left\lfloor\beta r_{i+1}\right\rfloor$, and $r_{i}=\left\{\beta r_{i+1}\right\}$. Then $x=x_{k} \beta^{k}+x_{k-1} \beta^{k-1}+\cdots$. If $x<1$, we get $k<0$ and we put $x_{0}=x_{-1}=\cdots=x_{k+1}=0$. The sequence $\left(x_{i}\right)_{k \geqslant i \geqslant-\infty}$ is called the (greedy) β-expansion of x, and is denoted by

$$
\langle x\rangle_{\beta}=x_{k} x_{k-1} \cdots x_{1} x_{0} \cdot x_{-1} x_{-2} \cdots
$$

most significant digit first. The part $x_{-1} x_{-2} \cdots$ after the "decimal" point is called the β-fractional part of x.

The digits x_{i} are elements of the canonical alphabet $A_{\beta}=\{0, \ldots,\lfloor\beta\rfloor\}$ if $\beta \notin \mathbb{N}$ and $A_{\beta}=\{0, \ldots, \beta-1\}$ otherwise. When a β-expansion ends in infinitely many zeroes, it is said to be finite, and the 0 's are omitted.

A finite or infinite word w on A_{β} which is the β-expansion of some non-negative number x is said to be admissible. Leading 0's are allowed. The normalization on an alphabet of digits $D \supseteq A_{\beta}$ is the function that maps a word $w=w_{k} \cdots w_{0}$ on D onto the β-expansion of its numerical value $\sum_{i=0}^{k} d_{i} \beta^{i}$ in base β. The same notion exists for infinite words. Addition is a particular case of normalization: first add digit-wise two β-expansions; this gives a word on the alphabet $\{0, \ldots, 2\lfloor\beta\rfloor\}$; then normalize to obtain the result. It is known that for every alphabet D normalization is computable by a finite transducer [11].

Denote by D_{β} the set of β-expansions of numbers of $[0,1)$ and by σ the shift defined by $\sigma\left(x_{k} x_{k-1} \cdots\right)=x_{k-1} x_{k-2} \cdots$. Then D_{β} is shift-invariant. Let S_{β} be its closure in $A_{\beta}^{\mathbb{N}}$. The set S_{β} is a symbolic dynamical system, called the β-shift. There is a peculiar representation of the number 1 which can be used to characterize the elements of the β-shift. It is denoted by $d_{\beta}(1)$, and computed by the following process [27]. Let the β-transform be defined on $[0,1]$ by $T_{\beta}(x)=\beta x \bmod 1$. Then $d_{\beta}(1)=\left(t_{i}\right)_{i \geqslant 1}$, where $t_{i}=\left\lfloor\beta T_{\beta}^{i-1}(1)\right\rfloor$. Note that $\lfloor\beta\rfloor=t_{1}$.

Set $d_{\beta}^{*}(1)=\left(t_{1} \cdots t_{m-1}\left(t_{m}-1\right)\right)^{\omega}$ if $d_{\beta}(1)=t_{1} \cdots t_{m}$ is finite, and $d_{\beta}^{*}(1)=d_{\beta}(1)$ if $d_{\beta}(1)$ is infinite. Then a sequence s of natural integers is an element of D_{β} if and only if for every $p \geqslant 1, \sigma^{p}(s)$ is strictly less in the lexicographic order than $d_{\beta}^{*}(1)$, see Parry [25].

The numbers β such that $d_{\beta}(1)$ is eventually periodic are called Parry numbers, and simple Parry numbers in the case where $d_{\beta}(1)$ is finite. When β is a Pisot number then $d_{\beta}(1)$ is finite or infinite eventually periodic [5,29$]$.

Example 1 If $\beta=\frac{1+\sqrt{5}}{2}$, then $d_{\beta}(1)=11$ and $d_{\beta}^{*}(1)=(10)^{\omega}$.

$$
\text { If } \beta=\frac{3+\sqrt{5}}{2} \text {, then } d_{\beta}(1)=21^{\omega}=d_{\beta}^{*}(1) \text {. }
$$

The set \mathbb{Z}_{β} of β-integers is the set of real numbers x such that the β-fractional part of $|x|$ is equal to 0 ,

$$
\mathbb{Z}_{\beta}=\left\{x \in \mathbb{R} \mid\langle | x| \rangle_{\beta}=x_{k} \cdots x_{0}\right\}=\mathbb{Z}_{\beta}^{+} \cup \mathbb{Z}_{\beta}^{-}
$$

where \mathbb{Z}_{β}^{+}is the set of non-negative β-integers, and $\mathbb{Z}_{\beta}^{-}=-\mathbb{Z}_{\beta}^{+}$. Observe that

$$
-\mathbb{Z}_{\beta}=\mathbb{Z}_{\beta} \text { and } \beta\left(\mathbb{Z}_{\beta}\right) \subset \mathbb{Z}_{\beta}
$$

Notice that, if β is an integer, the set of β-integers is just \mathbb{Z}.
Denote L_{β}^{+}the set of β-expansions of the elements of \mathbb{Z}_{β}^{+}with possible leading 0 's; then L_{β}^{+}is equal to the set of finite factors of S_{β}.

Meyer sets

We recall here several definitions and results from Meyer that can be found in [20, 21, $22,23,24]$. A set $X \subset \mathbb{R}^{d}$ is uniformly discrete if there exists a positive real r such that for any $x \in \mathbb{R}^{d}$, the open ball of center x and radius r contains at most one point of X. If $Y \subset X$ and X is uniformly discrete, then Y is uniformly discrete. A set $X \subset \mathbb{R}^{d}$ is relatively dense if there exists a positive real R such that for any $x \in \mathbb{R}^{d}$, the open ball
of center x and radius R contains at least one point of X. If $X \subset Y$ and X is relatively dense, then Y is relatively dense. A set X is a Delaunay set if it is uniformly discrete and relatively dense.

The set $X-X$ is the set $\{x-y \mid x \in X, y \in X\}$. A set X is a Meyer set if it is a Delaunay set and there exists a finite set F such that $X-X \subset X+F$. Lagarias has proved [18] that a set X is a Meyer set if and only if both X and $X-X$ are Delaunay sets. Note that when X is a Delaunay set, then $X-X$ is relatively dense, but not necessarily uniformly discrete. For example $X=\left\{\left.n+\frac{1}{|n|+2} \right\rvert\, n \in \mathbb{Z}\right\}$ is a Delaunay set and $X-X$ has 1 as point of accumulation.

Lemma 1 For β a real number >1, the set \mathbb{Z}_{β} of β-integers is relatively dense.

Proof. Indeed any non-negative real number x can be expanded as

$$
\langle x\rangle_{\beta}=x_{k} x_{k-1} \cdots x_{1} x_{0} \cdot x_{-1} x_{-2} \cdots
$$

thus $x=z+r$ with $z=\sum_{i=0}^{k} x_{i} \beta^{i} \in \mathbb{Z}_{\beta}^{+}$, and $0 \leqslant r=\sum_{i<0} x_{i} \beta^{i}<1$ is the β-fractional part of x. Thus the maximal distance between two consecutive elements of \mathbb{Z}_{β} is equal to 1 .

The following result is already proved in [7], but we give here a different proof.
Proposition 1 If β is a Pisot number, then the set \mathbb{Z}_{β} of β-integers is a Meyer set.
Proof. Let us prove that \mathbb{Z}_{β} is uniformly discrete when β is a Pisot number. Indeed the minimal distance between two consecutive points a and b of \mathbb{Z}_{β} with $\langle | a\left\rangle_{\beta}=a_{N} \cdots a_{0}\right.$ and $\langle | b\left\rangle_{\beta}=b_{N} \cdots b_{0}\right.$ is equal to the minimum of $| \sum_{i=0}^{N}\left(a_{i}-b_{i}\right) \beta^{i} \mid$.

Since an integral linear combination of algebraic integers is still an algebraic integer, $\sum_{i=0}^{N}\left(a_{i}-b_{i}\right) \beta^{i}$ is an algebraic integer. Let $\beta^{(2)}, \ldots, \beta^{(d)}$ be the conjugates of $\beta=\beta^{(1)}$. As the product of all the conjugates of an algebraic integer is a positive integer, we get

$$
\left|\prod_{j=1}^{d}\left(\sum_{i=0}^{N}\left(a_{i}-b_{i}\right)\left(\beta^{(j)}\right)^{i}\right)\right| \geqslant 1 .
$$

As all conjugates of β have a modulus strictly less than 1 and $\left|a_{i}-b_{i}\right| \leqslant 2\lfloor\beta\rfloor$,

$$
\left|\sum_{i=0}^{N}\left(a_{i}-b_{i}\right) \beta^{i}\right|>\frac{1}{\prod_{j=2}^{d} \frac{2\lfloor\beta\rfloor}{1-\left|\beta^{(j)}\right|}}
$$

Since this bound is independent of N, \mathbb{Z}_{β} is uniformly discrete. Using Lemma $1, \mathbb{Z}_{\beta}$ is a Delaunay set.

The uniform discretness of $\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}$ can be proved as above with $\left|a_{i}-b_{i}\right| \leqslant 4\lfloor\beta\rfloor$. Moreover as \mathbb{Z}_{β} is a Delaunay set, $\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}$ is relatively dense, thus it is a Meyer set.

3 Automata for $\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}$

In this section we construct automata that symbolically describe the elements of $\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}$ when β is a Parry number. This simple symbolical description of the elements of $\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}$ will be used, in the following sections, to determine minimal sets F associated with the Meyer set \mathbb{Z}_{β} when β is a Pisot number.

3.1 Minimal automaton for \mathbb{Z}_{β}

When β is a Parry number, the set L_{β}^{+}is recognizable by a minimal finite automaton [13], of which we recall the construction. The reader is referred to [9] and [28] for definitions and results in automata theory. Let us recall the classical construction of the minimal automaton recognizing a language L. The right congruence modulo L is defined as follows: two words v and w are congruent modulo L if they have the same right contextes, more precisely $v \sim_{L} w$ if $v u \in L$ if and only if $w u \in L$. The minimal automaton of L is then constructed as follows: the states are the right classes $\bmod L$, denoted by $[.]_{L}$. There is a transition from $[v]_{L}$ to $\left[v^{\prime}\right]_{L}$ labelled by a if $\left[v^{\prime}\right]_{L}=[v a]_{L}$. The initial state is $[\varepsilon]_{L}$. A state $[v]_{L}$ is terminal if v belongs to L.

If $d_{\beta}(1)=t_{1} \cdots t_{m}$ is finite, the automaton $\mathcal{A}_{\mathbb{Z}_{\beta}^{+}}$recognizing L_{β}^{+}has m states, denoted $0,1, \ldots, m-1$. The name of state i stands for $\left[t_{1} \cdots t_{i}\right]_{L_{\beta}^{+}}$, and $0=[\varepsilon]_{L_{\beta}^{+}}$. Denote by suff k the suffix of $d_{\beta}^{*}(1)$ starting at index $k \geqslant 1$. Note that, because of the admissibility condition, the right context of state i is entirely determined by suff $i+1$, which is the greatest word in the lexicographic order that can be read from i. For each $0 \leqslant i \leqslant m-2$ there is an edge between states i and $i+1$ labelled by t_{i+1}. For each $0 \leqslant i \leqslant m-1$ there are t_{i+1} edges between states i and 0 labelled by $0,1, \ldots, t_{i+1}-1$. The initial state is 0 ; every state is terminal. The automaton is shown on Fig. 1.

Figure 1: Automaton $\mathcal{A}_{\mathbb{Z}_{\beta}^{+}}$when $d_{\beta}(1)=t_{1} \cdots t_{m}$.

The case where $d_{\beta}(1)=t_{1} \cdots t_{m}\left(t_{m+1} \cdots t_{m+p}\right)^{\omega}$ is infinite eventually periodic is similar. The automaton $\mathcal{A}_{\mathbb{Z}_{\beta}^{+}}$recognizing L_{β}^{+}has $m+p$ states $0, \ldots, m+p-1$. For
each $0 \leqslant i \leqslant m+p-2$ there is an edge between i and $i+1$ labelled by t_{i+1}. For each $0 \leqslant i \leqslant m+p-1$ there are t_{i+1} edges between i and 0 labelled by $0, \ldots, t_{i+1}-1$. There is an edge from $m+p-1$ to m labelled by t_{m+p}. The initial state is 0 ; every state is terminal. The automaton is shown on Fig. 2.

Figure 2: Automaton $\mathcal{A}_{\mathbb{Z}_{\beta}^{+}}$when $d_{\beta}(1)=t_{1} \cdots t_{m}\left(t_{m+1} \cdots t_{m+p}\right)^{\omega}$.

We introduce some notations. Set $\bar{k}=-k$, where k is an integer, and let $\overline{A_{\beta}}=$ $\{\overline{\lfloor\beta\rfloor}, \ldots, \overline{1}, 0\}$. We denote by $L_{\beta}^{-} \subset{\overline{A_{\beta}}}^{*}$ the set $\left\{\bar{w}=\overline{w_{N}} \cdots \overline{w_{0}} \mid w=w_{N} \cdots w_{0}=\right.$ $\left.\langle-x\rangle_{\beta}, x \in \mathbb{Z}_{\beta}^{-}\right\}$.

Clearly the set L_{β}^{-}is recognizable by the same automaton as L_{β}^{+}, but with negative labels on edges. Then the set $L_{\beta}=L_{\beta}^{+} \cup L_{\beta}^{-}$of β-expansions of the elements of \mathbb{Z}_{β} is recognized by the finite automaton $\mathcal{A}_{\mathbb{Z}_{\beta}}=\mathcal{A}_{\mathbb{Z}_{\beta}^{+}} \cup \mathcal{A}_{\mathbb{Z}_{\beta}^{-}}$. By abuse we say that \mathbb{Z}_{β} is recognized by $\mathcal{A}_{\mathbb{Z}_{\beta}}$.

Example 2 Take $\beta=\frac{1+\sqrt{5}}{2}$. Minimal automata $\mathcal{A}_{\mathbb{Z}_{\beta}^{+}}, \mathcal{A}_{\mathbb{Z}_{\beta}^{-}}$and $\mathcal{A}_{\mathbb{Z}_{\beta}}$ are given in Fig. 3. Initial states are indicated by an incoming arrow, and all states are terminal.

Since

$$
\begin{equation*}
\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}=\left(\mathbb{Z}_{\beta}^{+}-\mathbb{Z}_{\beta}^{+}\right) \cup\left(\mathbb{Z}_{\beta}^{+}+\mathbb{Z}_{\beta}^{+}\right) \cup-\left(\mathbb{Z}_{\beta}^{+}+\mathbb{Z}_{\beta}^{+}\right) \tag{1}
\end{equation*}
$$

we introduce symbolic representations of $\mathbb{Z}_{\beta}^{+}+\mathbb{Z}_{\beta}^{+}$and $\mathbb{Z}_{\beta}^{+}-\mathbb{Z}_{\beta}^{+}$. More precisely the formal addition of elements of \mathbb{Z}_{β}^{+}consists in adding elements without carry. More precisely,
$L_{\beta}^{+}+L_{\beta}^{+}=\left\{\left(a_{N}+b_{N}\right) \cdots\left(a_{0}+b_{0}\right) \mid N \geqslant 0, a_{N} \cdots a_{0}, b_{N} \cdots b_{0} \in L_{\beta}^{+}\right\} \subset\{0, \ldots, 2\lfloor\beta\rfloor\}^{*}$.
Similarly the formal subtraction of elements of \mathbb{Z}_{β}^{+}is defined by
$L_{\beta}^{+}-L_{\beta}^{+}=\left\{\left(a_{N}-b_{N}\right) \cdots\left(a_{0}-b_{0}\right) \mid N \geqslant 0, a_{N} \cdots a_{0}, b_{N} \cdots b_{0} \in L_{\beta}^{+}\right\} \subset\{-\lfloor\beta\rfloor, \ldots,\lfloor\beta\rfloor\}^{*}$.

Figure 3: Automata $\mathcal{A}_{\mathbb{Z}_{\beta}^{+}}, \mathcal{A}_{\mathbb{Z}_{\beta}^{-}}$and $\mathcal{A}_{\mathbb{Z}_{\beta}}$

3.2 Minimal automaton of $L_{\beta}^{+}+L_{\beta}^{+}$

We give a direct construction of the minimal automaton of $L_{\beta}^{+}+L_{\beta}^{+}$when β is a Parry number. Let $Q=\{0,1, \ldots, h-1\}$ be the set of states of the minimal automaton of L_{β}^{+} ($h=m$ or $h=m+p$ according to the value of $d_{\beta}(1)$, see Section 3.1).

We construct an automaton \mathcal{S} as follows. The set of states is the set $Q_{\mathcal{S}}=\left\{(i, j) \in Q^{2} \mid i \leqslant j\right\}$. The cardinality of this set is equal to $h(h+1) / 2$. The initial state is $(0,0)$ and every state is terminal.
Let c be in $\{0, \ldots, 2\lfloor\beta\rfloor\}^{*}$, and let (i, j) be in $Q_{\mathcal{S}}$. Let $\mathcal{C}_{c}(i, j)=\left\{\left(i^{\prime}, j^{\prime}\right) \in Q^{2} \mid \exists a, b \in\right.$ $A_{\beta}, c=a+b, i \xrightarrow{a} i^{\prime}$ and $j \xrightarrow{b} j^{\prime}$ in $\left.\mathcal{A}_{\mathbb{Z}_{\beta}^{+}}\right\}$. If $\mathcal{C}_{c}(i, j)$ is empty there is no transition outgoing from state (i, j) with label c.
Suppose that $\mathcal{C}_{c}(i, j)$ is not empty. Let $\left(i^{\prime}, j^{\prime}\right) \in \mathcal{C}_{c}(i, j)$. We have seen in Section 3.1 that the right context modulo L_{β}^{+}of state i^{\prime} is entirely determined by suff $i^{\prime}+1$, and similarly for j^{\prime}. Take $(r, s) \in \mathcal{C}_{c}(i, j)$ such that suff $r+1+\operatorname{suff}_{s+1} \geqslant_{\text {lex }} \operatorname{suff}_{i^{\prime}+1}+\operatorname{suff}_{j^{\prime}+1}$ for all $\left(i^{\prime}, j^{\prime}\right) \in \mathcal{C}_{c}(i, j)$. This choice ensures that the future readings will be the greatest possible in the lexicographic order. Then we define in \mathcal{S} a transition $(i, j) \xrightarrow{c}(r, s)$ if $r \leqslant s$, or a transition $(i, j) \xrightarrow{c}(s, r)$ otherwise.

Thus the following holds true.
Proposition 2 The automaton \mathcal{S} is the minimal automaton of $L_{\beta}^{+}+L_{\beta}^{+}$.

3.3 Minimal automaton of $L_{\beta}^{+}-L_{\beta}^{+}$

We construct an automaton \mathcal{D} for $L_{\beta}^{+}-L_{\beta}^{+}$as follows.
The set of states is the set $Q_{\mathcal{D}}=\left\{(i, 0),(0, i) \in Q^{2} \mid 0 \leqslant i \leqslant h-1\right\}$. The cardinality of this set is equal to $2 h-1$. The initial state is $(0,0)$ and every state is terminal. Let c be in $\{0, \ldots,\lfloor\beta\rfloor\}^{*}$ and let (i, j) be in $Q_{\mathcal{D}}$. If $c=t_{i+1}$ and if $i \xrightarrow{c} i+1$ in $\mathcal{A}_{\mathbb{Z}_{\beta}^{+}}$ we define in \mathcal{D} a transition $(i, j) \xrightarrow{c}(i+1,0)$. If $c<t_{i+1}$ we define a transition $(i, j) \xrightarrow{c}(0,0)$. Symmetrically if $\bar{c}=-t_{j+1}$ and if $j \xrightarrow{c} j+1$ in $\mathcal{A}_{\mathbb{Z}_{\beta}^{+}}$we define a
transition $(i, j) \xrightarrow{\bar{c}}(0, j+1)$. If $\bar{c}>-t_{j+1}$ there is a transition $(i, j) \xrightarrow{\bar{c}}(0,0)$. In each case the future readings will be the greatest possible in the lexicographic order. Thus the following holds true.

Proposition 3 The automaton \mathcal{D} is the minimal automaton of $L_{\beta}^{+}-L_{\beta}^{+}$.

3.4 Fibonacci example

Example 3 In Fig. 4 are drawn the minimal automata $\mathcal{A}_{\mathbb{Z}_{\beta}^{+}+\mathbb{Z}_{\beta}^{+}}$, and $\mathcal{A}_{\mathbb{Z}_{\beta}^{+}-\mathbb{Z}_{\beta}^{+}}$in the case where $\beta=\frac{1+\sqrt{5}}{2}$. Every state is terminal.

Figure 4: Automata $\mathcal{A}_{\mathbb{Z}_{\beta}^{+}+\mathbb{Z}_{\beta}^{+}}$and $\mathcal{A}_{\mathbb{Z}_{\beta}^{+}-\mathbb{Z}_{\beta}^{+}}$.

4 A family of finite sets containing a minimal set F

When β is a Pisot number, the set of beta-integers \mathbb{Z}_{β} is a Meyer set so there exists a finite set F such that $\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta}+F$. Our goal is to construct sets F as small as possible for \mathbb{Z}_{β}.

Note the following property of minimal sets F.
Lemma 2 If F is a set of minimal size such that $\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta}+F$ then

$$
F \subset\left(\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}\right)-\mathbb{Z}_{\beta}
$$

Proof. Let F be a set of minimal size such that $\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta}+F$, that is

$$
\forall x \in \mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}, \exists(y, f) \in \mathbb{Z}_{\beta} \times F \text { such that } x=y+f
$$

If there exists $f \in F$ such that for all $x \in \mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}$ and for all $y \in \mathbb{Z}_{\beta}, f \neq x-y$ then $F^{\prime}=F \backslash\{f\}$ satisfies $\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta}+F^{\prime}$ and F^{\prime} is strictly smaller than F, that is contradictory with F minimal.

Note that there may exist several sets F of minimal size.
Example 4 For $\beta=(1+\sqrt{5}) / 2$ the possible minimal sets F such that $\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta}+F$ are the following

1. $F=\{0, \beta-1,-\beta+1\}=\left\{0, \frac{1}{\beta},-\frac{1}{\beta}\right\}$, see [7]
2. $F=\{0, \beta-2,-\beta+2\}=\left\{0, \frac{1}{\beta^{2}},-\frac{1}{\beta^{2}}\right\} \subset\left[-\frac{1}{2}, \frac{1}{2}[\right.$, see $[12]$
3. $F=\{0, \beta-1,-\beta+2\}=\left\{0, \frac{1}{\beta}, \frac{1}{\beta^{2}}\right\} \subset[0,1[$.

Proof. To prove 3., suppose from 1. that for x and y in \mathbb{Z}_{β} there exists z in \mathbb{Z}_{β} such that $x-y=z-\frac{1}{\beta}$. Suppose first z in \mathbb{Z}_{β}^{+}. Denote $\langle z\rangle_{\beta}=z_{k} \cdots z_{0}$ and let z_{i} be the rightmost non-zero digit. If i is even, then $x-y=z^{(1)}+\frac{1}{\beta^{2}}$ where $z^{(1)}$ has for β-expansion the word $z_{k} \cdots z_{i+1}(01)^{i / 2} 0$, and is thus in \mathbb{Z}_{β}^{+}. If i is odd, then $x-y=z^{(2)}$ where $z^{(2)}$ has for β-expansion $z_{k} \cdots z_{i+1}(01)^{\lceil i / 2\rceil}$. Now suppose that z belongs to \mathbb{Z}_{β}^{-}. Let $\langle-z\rangle_{\beta}=u=u_{k} \cdots u_{0}$. First suppose that $u_{0}=0$, then write u in the form $u^{\prime} 0(01)^{\ell} 0$ (if necessary u can be prefixed by two zeroes); then $-(x-y)=-z+\frac{1}{\beta}$ is equal to $v^{(1)}-\frac{1}{\beta^{2}}$ where $v^{(1)}$ has for β-expansion the word $u^{\prime} 010^{2 \ell}$. If $u_{0}=1$, then u can be written as $u^{\prime} 0(01)^{\ell}$; then $-(x-y)$ has for β-expansion the word $u^{\prime} 010^{2 \ell-1}$.

Using properties of the algebraic conjugates of the elements of minimal sets F, we first define finite sets from which can be extracted the finite sets F.

Lemma 3 Let β be a Pisot number of degree d, let $I \subset \mathbb{R}$ be an interval of finite length greater than or equal to 1 and let W be the following set

$$
W=\left\{x \in \mathbb{Z}[\beta] \mid x \in I \text { and for } 2 \leqslant j \leqslant d,\left|x^{(j)}\right|<\frac{3\lfloor\beta\rfloor}{1-\left|\beta^{(j)}\right|}\right\},
$$

where $x^{(2)}, \ldots, x^{(d)}$ are the algebraic conjugates of x. Then W is finite, and $\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta} \subset$ $\mathbb{Z}_{\beta}+W$.

Proof. From Lemma 1 the maximal distance between two consecutive points of \mathbb{Z}_{β} is equal to 1 , thus one can find a finite set F such that $\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta}+F$ in any interval I of length greater than or equal to 1 . Fix an interval I of length $\geqslant 1$ and let F be a finite subset of I of minimal size such that $\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta}+F$. Let $x \in F$, then from Lemma $2, x \in\left(\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}\right)-\mathbb{Z}_{\beta}$ and can be written as

$$
x=\sum_{i=0}^{N}\left(a_{i}-b_{i}\right) \beta^{i}-\sum_{i=0}^{N} c_{i} \beta^{i} \quad \text { with }\left|a_{i}\right|,\left|b_{i}\right|,\left|c_{i}\right| \leqslant\lfloor\beta\rfloor .
$$

So

$$
\text { for } 2 \leqslant j \leqslant d \quad x^{(j)}=\sum_{i=0}^{N}\left(a_{i}-b_{i}-c_{i}\right)\left(\beta^{(j)}\right)^{i} \quad \text { with }\left|a_{i}-b_{i}-c_{i}\right| \leqslant 3\lfloor\beta\rfloor .
$$

As β is a Pisot number, for all $j \geqslant 2,\left|\beta^{(j)}\right|<1$ and $\left|\sum_{i=0}^{N}\left(\beta^{(j)}\right)^{i}\right|<\left(1-\left|\beta^{(j)}\right|\right)^{-1}$. We obtain in this way the announced bound on the moduli of the conjugates of x and $x \in W$. So F is a subset of W.

Since β is a Pisot number the set W contains only points of $\mathbb{Z}[\beta]$ with bounded modulus and whose all conjugates have bounded modulus, thus W is finite.

The choice of any interval $I \subset]-1,1[$ of length 1 allows us to reduce the size of the set containing a minimal set F.

Lemma 4 Let β be a Pisot number of degree d, let $I \subset]-1,1[$ be an interval of length 1 and let U be the following set

$$
U=\left\{x \in \mathbb{Z}[\beta] \mid x \in I \text { and for } 2 \leqslant j \leqslant d,\left|x^{(j)}\right|<\frac{2\lfloor\beta\rfloor}{1-\left|\beta^{(j)}\right|}\right\} .
$$

Then U is finite and $\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta}+U$.
Proof. We choose here $I \subset]-1,1[$ of length 1 and improve the bound on the moduli of the conjugates of x given in Lemma 3 by considering the decomposition

$$
\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}=\left(\mathbb{Z}_{\beta}^{+}-\mathbb{Z}_{\beta}^{+}\right) \cup\left(\mathbb{Z}_{\beta}^{+}+\mathbb{Z}_{\beta}^{+}\right) \cup-\left(\mathbb{Z}_{\beta}^{+}+\mathbb{Z}_{\beta}^{+}\right) .
$$

More precisely let F be a finite subset of I of minimal size such that $\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta}+F$ and let $x \in F$, then $x \in\left(\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}\right)-\mathbb{Z}_{\beta}$ and can be written as

$$
x=\sum_{i=0}^{N}\left(a_{i}-b_{i}\right) \beta^{i}-\sum_{i=0}^{N} c_{i} \beta^{i} .
$$

We study $\left|a_{i}-b_{i}-c_{i}\right|$ according to the signs of a_{i}, b_{i} and c_{i}. Recall that $\left|a_{i}\right|,\left|b_{i}\right|$ and $\left|c_{i}\right|$ are smaller than $\lfloor\beta\rfloor$. In $\mathbb{Z}_{\beta}^{+}-\mathbb{Z}_{\beta}^{+}$and $\mathbb{Z}_{\beta}^{-}-\mathbb{Z}_{\beta}^{-}$, the products $a_{i} b_{i}$ are non-negative and the coefficients satisfy $\left|a_{i}-b_{i}\right| \leqslant\lfloor\beta\rfloor$. When $\left.F \subset\right]-1,1\left[, \mathbb{Z}_{\beta}^{+}+\mathbb{Z}_{\beta}^{+} \subset \mathbb{Z}_{\beta}^{+}+F\right.$ and $-\left(\mathbb{Z}_{\beta}^{+}+\mathbb{Z}_{\beta}^{+}\right) \subset \mathbb{Z}_{\beta}^{-}+F$, so when $a_{i} b_{i} \leqslant 0$, then $a_{i} c_{i} \geqslant 0$ and we have $\left|a_{i}-c_{i}\right| \leqslant\lfloor\beta\rfloor$. Thus when $F \subset]-1,1\left[\right.$, we get in all cases $\left|a_{i}-b_{i}-c_{i}\right| \leqslant 2\lfloor\beta\rfloor$. Thus

$$
\text { for } 2 \leqslant j \leqslant d \quad x^{(j)}=\sum_{i=0}^{N}\left(a_{i}-b_{i}-c_{i}\right)\left(\beta^{(j)}\right)^{i} \quad \text { with }\left|a_{i}-b_{i}-c_{i}\right| \leqslant 2\lfloor\beta\rfloor,
$$

and the announced bound on the moduli of the conjugates of x holds true. The proof that U is finite is the same as for W.

Remark 1 In what follows we restrict our study to the sets U defined in Lemma 4 as finite subsets of intervals $I \subset]-1,1[$ of length 1 , but all constructions remain valid with small changes for the finite sets W introduced in Lemma 3 as finite subsets of arbitrary intervals of length greater or equal to 1 .

Quadratic Pisot numbers

We now establish a bound on the size of the sets U of Lemma 4 for any quadratic Pisot number β. Recall [13] that a quadratic Pisot number β has a minimal polynomial of the form $M_{\beta}=X^{2}-a X-b$, with either $a \geqslant b \geqslant 1$, or $a \geqslant 3$ and $0>b \geqslant-a+2$. In the first case $d_{\beta}(1)=a b$, and in the second one $d_{\beta}(1)=(a-1)(a+b-1)^{\omega}$.

Proposition 4 Let β be a quadratic Pisot number with minimal polynomial $M_{\beta}=X^{2}-$ $a X-b$. Then for any interval $I \subset]-1,1[$ of length $1, \operatorname{Card}(U) \leqslant 2\lceil B-1\rceil+1$, with

$$
B= \begin{cases}\frac{a}{a-b+1}+\frac{a(a+2)}{(a+1)(a-b+1)}+\frac{1}{a+1} & \text { when } a \geqslant b>\frac{a}{2} \\ \frac{2(a+1)}{a-b+1}+\frac{1}{a} & \text { when } 0<b \leqslant \frac{a}{2} \\ \frac{2 a-3}{a+b-1}+\frac{1}{a-1} & \text { when }-\frac{a}{2}<b<0 \\ \frac{2(a-1)}{a+b-1}+\frac{1}{a-2} & \text { when }-a+2 \leqslant b \leqslant-\frac{a}{2}\end{cases}
$$

Proof. Denote by β^{\prime} the algebraic conjugate of β. Any point x of $\mathbb{Z}[\beta]$ and its algebraic conjugate x^{\prime} can be written as $x=x_{1}+x_{2} \beta$ and $x^{\prime}=x_{1}+x_{2} \beta^{\prime}$ where $x_{1}, x_{2} \in \mathbb{Z}$. Then

$$
\binom{x_{1}}{x_{2}}=\frac{1}{\beta-\beta^{\prime}}\left(\begin{array}{cc}
-\beta^{\prime} & \beta \\
1 & -1
\end{array}\right)\binom{x}{x^{\prime}}
$$

Note that for each value of x_{2} there is only one possible value for x_{1} such that $x \in U$ since x_{1} is an integer and the interval I is of length 1 . So if, for all $x \in U,\left|x_{2}\right|<B$ then $\left|x_{2}\right| \leqslant\lceil B-1\rceil$ and $\operatorname{Card}(U) \leqslant 2\lceil B-1\rceil+1$.

We establish the bound on the modulus of x_{2} using the inequalities $|x|<1$ and $\left|x^{\prime}\right| \leqslant 2\lfloor\beta\rfloor /\left(1-\left|\beta^{\prime}\right|\right)$ with $\lfloor\beta\rfloor=a$ when $b>0$ and $\lfloor\beta\rfloor=a-1$ when $b<0$. Setting $\Delta=a^{2}+4 b$, we get
when $b>0$,

$$
\left|x_{2}\right|<\frac{1}{\sqrt{\Delta}}\left(1+\frac{4 a(a+2+\sqrt{\Delta})}{(a+2)^{2}+\Delta}\right) \leqslant \frac{a}{a-b+1}+\frac{a(a+2)}{\sqrt{\Delta}(a-b+1)}+\frac{1}{\sqrt{\Delta}}
$$

and when $b<0$,

$$
\left|x_{2}\right|<\frac{1}{\sqrt{\Delta}}\left(1+\frac{4(a-1)(a+2+\sqrt{\Delta})}{\Delta-(a-2)^{2}}\right) \leqslant \frac{a-1}{a+b-1}+\frac{(a-1)(a-2)}{\sqrt{\Delta}(a+b-1)}+\frac{1}{\sqrt{\Delta}}
$$

The announced bounds follow from the study of Δ according to the value of b.

Remark 2 Specifying the values for a and b given above for B, we obtain the following bounds.

- If $a \geqslant b>\frac{a}{2}$, then $B \leqslant 2 a+1$ and $\operatorname{Card}(U) \leqslant 4 a+1$.
- If $0<b \leqslant \frac{a}{2}$, then $B<4$ and $\operatorname{Card}(U) \leqslant 7$.
- If $-\frac{a}{2}<b<0, B<7$ and $\operatorname{Card}(U) \leqslant 13$.
- If $-a+2 \leqslant b \leqslant-\frac{a}{2}$ then $B \leqslant 2 a-1$ and $\operatorname{Card}(U) \leqslant 4 a-3$.

Corollary 1 Let β be a quadratic Pisot unit, i.e, $|b|=1$, and $I \subset]-1,1[$ be an interval of length 1, then the set U contains at most 5 points.

Proof. From Proposition 4 when $b=1$ or $b=-1, B \leqslant 3$, in all but two cases.
If $M_{\beta}=X^{2}-3 X+1$, then $B \leqslant 4$ and $\left|x_{2}\right| \leqslant 3$ but there is no corresponding value for x_{1} when $\left|x_{2}\right|=3$, thus $\left|x_{2}\right| \leqslant 2$ and $\operatorname{Card}(U) \leqslant 5$.

If $M_{\beta}=X^{2}-2 X-1$, we obtain $B \leqslant 3$ if we do not approximate Δ in the computation of the proof of Proposition 4.

Example 5 Let $\beta=(1+\sqrt{5}) / 2$ then $\beta^{\prime}=(1-\sqrt{5}) / 2$. Then

$$
U=\left\{x \in \mathbb{Z}[\beta] \mid x \in I \text { and }\left|x^{\prime}\right|<2 \beta+2\right\} .
$$

- For $I=[-1 / 2,1 / 2[, U=\{0, \beta-2,2 \beta-3,2-\beta, 3-2 \beta\}$.
- For $I=\left[0,1\left[, U=\{0,-1+\beta,-3+2 \beta, 2-\beta\}\right.\right.$, since the conjugate $4-2 \beta^{\prime}$ of $4-2 \beta$ has a modulus greater than $2 \beta+2$.

Example 4 shows that the size of minimal sets F in this case is equal to 3 .

5 A reduction of the sets containing minimal sets F

We present our constructions in the case where I is an interval of length 1 in] $-1,1[$ and consider the finite subset U of I defined in Lemma 4. By construction a minimal set F is contained in U and from Lemma $2 F$ is a subset of $\left(\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}\right)-\mathbb{Z}_{\beta}$. Thus a minimal set F is included in $U \cap\left(\left(\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}\right)-\mathbb{Z}_{\beta}\right)$.

In the following we give an algorithm that computes this intersection. Roughly speaking we construct an automaton that recognizes the Cartesian product $\left(L_{\beta}-L_{\beta}\right) \times L_{\beta}$ and whose each state q corresponds to the value of the subtraction of the elements of $\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}$ and \mathbb{Z}_{β} whose representations label the paths from the initial state to q.

The first step of the construction consists in associating to each element of a minimal set F at least a path labelled on $\{-2\lfloor\beta\rfloor, \cdots, 2\lfloor\beta\rfloor\}^{*} \times\{0, \cdots,\lfloor\beta\rfloor\}^{*}$ in a directed graph G whose set of vertices contains U.

Following [15], we define the directed graph G as follows.

- The set of vertices is

$$
V=\left\{x \in \mathbb{Z}[\beta]| | x \left\lvert\,<\frac{2\lfloor\beta\rfloor}{\beta-1}\right., \text { and for } 2 \leqslant j \leqslant d,\left|x^{(j)}\right|<\frac{2\lfloor\beta\rfloor}{1-\left|\beta^{(j)}\right|}\right\}
$$

- The labels (b, a) of the transitions belong to $\{-2\lfloor\beta\rfloor, \cdots, 2\lfloor\beta\rfloor\} \times\{0, \cdots,\lfloor\beta\rfloor\}$.
- There is a transition from $x \in V$ to $y \in V$ labelled by (b, a), denoted $x \xrightarrow{(b, a)} y$, if and only if $y=\beta x+(b-a)$.

Note that $0 \in V$ and $U \subset V$. The set V is finite.
Remark 3 Transitions in G are defined in such a way that words will be processed most significant digit first (i.e., from left to right) as in the automata for \mathbb{Z}_{β} and $\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}$.

Proposition 5 Let $F \subset U$ be a minimal set satisfying $\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta}+F$. Then for any $f \in F$ there is a path from 0 to f whose label belongs to $\left(L_{\beta}-L_{\beta}\right) \times L_{\beta}$.

Proof. From Lemma $2, F \subset\left(\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}\right)-\mathbb{Z}_{\beta}$, so any element f of F can be written as $f=\sum_{i=0}^{N}\left(b_{i}-a_{i}\right) \beta^{i}$ where $x=\sum_{i=0}^{N} a_{i} \beta^{i} \in \mathbb{Z}_{\beta}$ with $a_{N} \cdots a_{0} \in L_{\beta}$ and $y=\sum_{i=0}^{N} b_{i} \beta^{i} \in$ $\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}$ with $b_{N} \cdots b_{0} \in L_{\beta}-L_{\beta}$.

With such an f is associated a finite sequence

$$
f_{0}=0, \quad \text { for } 0 \leqslant i \leqslant N \quad f_{i+1}=\beta f_{i}+\left(b_{N-i}-a_{N-i}\right)
$$

Note that $f_{N+1}=f$.
Let us show that for any $f \in F$, the elements f_{1}, \ldots, f_{N+1} of the sequence associated with f belong to V. Note that the smallest K such that $|x|<K$ implies $|(x-(b-a)) / \beta|<$ K is $K=2\lfloor\beta\rfloor /(\beta-1)$. Since f is in $U,|f|<K$, and so for all $0 \leqslant i \leqslant N,\left|f_{i}\right|<K$. Moreover from Lemma 4 , when $F \subset U$, for all $i,\left|b_{i}-a_{i}\right| \leqslant 2\lfloor\beta\rfloor$, thus for $1 \leqslant i \leqslant N+1$ and $2 \leqslant j \leqslant d$, the conjugates $f_{i}^{(j)}$ of f_{i} satisfy $\left|f_{i}^{(j)}\right| \leqslant 2\lfloor\beta\rfloor /\left(1-\left|\beta^{(j)}\right|\right)$ and for $1 \leqslant i \leqslant N+1, f_{i}$ belongs to V.

Finally if $f \in F$ then there is in G a path

$$
0=f_{0} \xrightarrow{\left(b_{N}, a_{N}\right)} f_{1} \xrightarrow{\left(b_{N-1}, a_{N-1}\right)} \ldots \xrightarrow{\left(b_{0}, a_{0}\right)} f_{N+1}=f
$$

where the words $a_{N} \cdots a_{0}$ and $b_{N} \cdots b_{0}$ respectively belong to L_{β} and $L_{\beta}-L_{\beta}$, concluding the proof.

From Proposition 5 we can take into account in G only the paths whose labels belong to $\left(L_{\beta}-L_{\beta}\right) \times L_{\beta}$. In order to compute such paths, we use the Cartesian product of the automata $\mathcal{A}_{\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}}$ and $\mathcal{A}_{\mathbb{Z}_{\beta}}$. Recall the definition of the Cartesian product $\mathcal{P}=\mathcal{A} \times \mathcal{B}$ of two automata \mathcal{A} and \mathcal{B} :

- the set of states of \mathcal{P} is $Q_{\mathcal{P}}=Q_{\mathcal{A}} \times Q_{\mathcal{B}}$,
- there is an edge in \mathcal{P} from (p, q) to $\left(p^{\prime}, q^{\prime}\right)$ labelled by (a, b) if and only if there is an edge from p to p^{\prime} labelled by a in \mathcal{A} and an edge from q to q^{\prime} labelled by b in \mathcal{B},
- the set of initial (resp. terminal) states of \mathcal{P} is the Cartesian product of the sets of initial (resp. terminal) states of \mathcal{A} and \mathcal{B}.

Note that in $\mathcal{A}_{\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}} \times \mathcal{A}_{\mathbb{Z}_{\beta}}$ every state is terminal.
From all vertices f of G which are in U we look for a path from 0 to f in the directed graph G which is successful in $\mathcal{A}_{\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}} \times \mathcal{A}_{\mathbb{Z}_{\beta}}$. We find these paths making use of the intersection $\mathcal{I}=\mathcal{A} \cap \mathcal{B}$ of two finite automata \mathcal{A} and \mathcal{B} defined as follows:

- all sets of states of \mathcal{I} are defined as the ones of the Cartesian product,
- there is an edge in \mathcal{I} from (p, q) to $\left(p^{\prime}, q^{\prime}\right)$ labelled by a if and only if there is an edge from p to p^{\prime} in \mathcal{A} and an edge from q to q^{\prime} in \mathcal{B} both labelled by a.

Algorithm of reduction of the size of the sets containing a minimal set F

 Input: The set U containing a minimal set F.Output: A subset U^{\prime} of U containing a minimal set F.

1. Build the automaton \mathcal{G}_{U} having as underlying transition graph G with 0 as initial state and U as set of terminal states.
2. Compute the intersection $\mathcal{I}_{U}=\left(\mathcal{A}_{\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}} \times \mathcal{A}_{\mathbb{Z}_{\beta}}\right) \cap \mathcal{G}_{U}$. Note that the set of terminal states of \mathcal{I}_{U} is $\mathcal{Q}_{\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}} \times \mathcal{Q}_{\mathbb{Z}_{\beta}} \times U$.
3. Prune \mathcal{I}_{U} into $\mathcal{I}_{U^{\prime}}^{\prime}$ (that is, keep only the states which belong to a path from the initial state to a terminal state).
4. Return the set U^{\prime} of the third components of terminal states of $\mathcal{I}_{U^{\prime}}^{\prime}$.

Corollary $2 A$ minimal set F is contained in $U^{\prime} \subset U$.
Remark 4 The number of states of the automaton $\mathcal{I}_{U^{\prime}}$ is $\mathcal{O}\left(Q^{3} \times|V|\right)$, where Q is the number of states of $\mathcal{A}_{\mathbb{Z}_{\beta}^{+}}$and $|V|$ is the number of vertices of G.

Because of the large number of states of the automaton obtained in this way, we shall not illustrate the construction with a figure. Nevertheless we give an example of reductions that can be obtained.

Example 6 When $\beta=(1+\sqrt{5}) / 2$, we obtain

- For $I=[-1 / 2,1 / 2[$ and $U=\{0, \beta-2,2 \beta-3,2-\beta, 3-2 \beta\}$,

$$
U \cap\left(\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}\right)-\mathbb{Z}_{\beta}=\{0, \beta-2,2-\beta\}
$$

- For $I=[0,1[$ and $U=\{0,-1+\beta,-3+2 \beta, 2-\beta\}$,

$$
U \cap\left(\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}\right)-\mathbb{Z}_{\beta}=\{0, \beta-1,2-\beta\} .
$$

A geometrical argument could also be used to prove that $2 \beta-3=\frac{1}{\beta^{3}}$ and $-2 \beta+3=-\frac{1}{\beta^{3}}$ are not in $\left(\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}\right)-\mathbb{Z}_{\beta}$. Indeed the distance between two consecutive points of \mathbb{Z}_{β} is equal to $\frac{1}{\beta}$ or $1=\frac{1}{\beta}+\frac{1}{\beta^{2}}$, so $\mathbb{Z}_{\beta}+\left\{\frac{1}{\beta^{3}},-\frac{1}{\beta^{3}}\right\} \cap \mathbb{Z}_{\beta}+\left\{0, \frac{1}{\beta},-\frac{1}{\beta}\right\}=\emptyset$. Moreover $\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta}+\left\{0, \frac{1}{\beta},-\frac{1}{\beta}\right\}$ (see Exemple 4), thus $\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta} \cap \mathbb{Z}_{\beta}+\left\{\frac{1}{\beta^{3}},-\frac{1}{\beta^{3}}\right\}=\emptyset$ and $\pm \frac{1}{\beta^{3}} \notin\left(\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}\right)-\mathbb{Z}_{\beta}$.

6 Algorithm computing a minimal set F

The finite sets U^{\prime} obtained by the previous construction are not minimal. An element $y \in \mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}$ can be close to two distinct points of x and x^{\prime} of \mathbb{Z}_{β}, for example such that $x<y<x^{\prime}$, and $y=x+f=x^{\prime}+f^{\prime}$ with $f, f^{\prime} \in U^{\prime}$.

Theorem 1 A minimal set $F \subset U^{\prime}$ can be computed by an algorithm which is exponential in time and space. It consists in building a transducer which rewrites a representation of an element of $\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}$ into its representation $\mathbb{Z}_{\beta}+F$.

Proof. To find a minimal set $F \subset U^{\prime}$ we proceed in two steps.
First we define from the automaton $\mathcal{I}_{U^{\prime}}^{\prime}$ a deterministic automaton $\mathcal{R}_{U^{\prime}}$ that recognizes the set $L_{\beta}-L_{\beta}$. Note that the words of $L_{\beta}-L_{\beta}$ appear as the first component of the labels of the successful paths in $\mathcal{I}_{U^{\prime}}^{\prime}$. The automaton $\mathcal{R}_{U^{\prime}}$ is obtained by erasing the second component of the labels (that belongs to L_{β}) of the transitions of $\mathcal{I}_{U^{\prime}}^{\prime}$ and determinizing the automaton defined in this way. The determinization of automata is based on the so-called subset construction (see [9]), which is exponential in space, and the automaton $\mathcal{R}_{U^{\prime}}$ has $\mathcal{O}\left(2^{Q_{U^{\prime}}^{\prime}}\right)$ states.

Next we look amongst all subsets of U^{\prime} for the smallest set F such that the automaton \mathcal{R}_{F}, obtained from $\mathcal{R}_{U^{\prime}}$ by keeping only as terminal states the terminal states of $\mathcal{R}_{U^{\prime}}$ in which occur an element of F, recognizes $L_{\beta}-L_{\beta}$. To test the inclusion, we compute the complement \mathcal{C}_{F} of \mathcal{R}_{F} by completing the automaton \mathcal{R}_{F} (when a transition is missing we add a transition ending in a new state called the sink) and replacing the set of terminal states F by its complement (including the sink). Then the automaton \mathcal{R}_{F} recognizes $L_{\beta}-L_{\beta}$ if and only if the intersection of \mathcal{C}_{F} and $\mathcal{A}_{\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}}$ is empty. Note that the complexity of the search amongst all subsets of U^{\prime} is exponential in time.
¿From the set F obtained above, we define a transducer that provides, for any $b=$ $b_{N} \ldots b_{0} \in L_{\beta}-L_{\beta}$ and $y=\sum_{i=0}^{N} b_{i} \beta^{i} \in \mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}$, a decomposition $\left(a_{N} \ldots a_{0}, f\right)$ where $a=a_{N} \ldots a_{0} \in L_{\beta}, f \in F$ and $y=\sum_{i=0}^{N} a_{i} \beta^{i}+f$.

Consider $\mathcal{I}_{F}=\left(\mathcal{A}_{\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}} \times \mathcal{A}_{\mathbb{Z}_{\beta}}\right) \cap \mathcal{G}_{F}$ (F is the set of terminal states of \mathcal{G}_{F}). For any element $b=b_{N} \ldots b_{0} \in L_{\beta}-L_{\beta}$ there exists $f \in F$ such that b is the first component of the label of a successful path w ending in (s, f) where s is any state of $\left(\mathcal{A}_{\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}}\right) \times \mathcal{A}_{\mathbb{Z}_{\beta}}$ (by construction all states are terminal). Consequently we get $\sum_{i=0}^{N} b_{i} \beta^{i}=\sum_{i=0}^{N} a_{i}+f$ where $a_{N} \ldots a_{0}$ is the second component of the label of the same path w and so belongs to L_{β}.

More generally the first component of the labels of the edges in \mathcal{I}_{F} can be interpreted as the inputs in $\mathbb{Z}_{\beta}-\mathbb{Z}_{\beta}$ given by their representation in $L_{\beta}-L_{\beta}$ of the transducer, the second component as the corresponding outputs in \mathbb{Z}_{β} given by their representation in L_{β}. The associated element of F is given by the second component of the label of the state where the path ends.

To conclude, the method used here for determining minimal sets F probably could be generalized to the following sets. Let G be a strongly connected graph labelled by numbers taken from a finite alphabet, and let β be the spectral radius of its adjacency matrix. Let us consider the set $X_{G}=\left\{\sum_{i=0}^{k} x_{i} \beta^{i} \mid k \geqslant 0, x_{k} \cdots x_{0}\right.$ is the label of a path
in $G\}$. Under certain conditions on G and β, X_{G} is a Meyer set, and so the question of minimal F makes sense. The characterization of these Meyer sets and the construction of associated minimal sets F remain open problems.

Acknowledgements This work has been partially supported by the CNRS/JSPS contract number 13569.

We thank the referee who pointed out that the result stated as Proposition 4 in [2] is wrong.

References

[1] S. Akiyama, Self affine tiling and Pisot numeration system, in Number theory and its applications, Eds K. Györy and S. Kanemitsu, Kluwer (1999) 7-17.
[2] S. Akiyama, F. Bassino, Ch. Frougny, Automata for arithmetic Meyer sets, in Proceedings of LATIN 04, L.N.C.S. 2976 (2004) 252-261.
[3] A. Avizienis, Signed-digit number representations for fast parallel arithmetic, IRE Transactions on electronic computers 10 (1961) 389-400.
[4] D. Barache, B. Champagne, J.-P. Gazeau, Pisot-cyclotomic quasilattices and their symmetry semigroups, in: Quasicrystals and discrete geometry (Toronto ON, 1995), Ed. J. Patera, Fields Institute Monogr., Vol. 10, ed. J. Patera, Amer. Math. Soc. (1998) 15-66.
[5] A. Bertrand, Développements en base de Pisot et répartition modulo 1, C. R. Acad. Sc. Paris, Série A, 285 (1977) 419-421.
[6] A. Bertrand-Mathis, Développements en base θ, répartition modulo un de la suite $\left(x \theta^{n}\right)_{n \geqslant 0}$, langages codés et θ-shift, Bull. Soc. Math. France, 114 (1986) 271-323.
[7] Č. Burdík, Ch. Frougny, J.-P. Gazeau, R. Krejcar, Beta-integers as natural counting systems for quasicrystals, J. Phys. A, Math. Gen., 31 (1998) 6449-6472.
[8] C.Y. Chow and J.E. Robertson, Logical design of a redundant binary adder, Proc. 4th Symposium on Computer Arithmetic, I.E.E.E. Computer Society Press (1978) 109-115.
[9] S. Eilenberg, Automata, Languages and Machines, Vol. A, Academic Press (1974).
[10] M.D. Ercegovac, On-line arithmetic: An overview. Real time Signal Processing VII SPIE 495 (1984) 86-93.
[11] Ch. Frougny, Representation of numbers and finite automata. Math. Systems Theory 25 (1992) 37-60.
[12] Ch. Frougny, J.-P. Gazeau, R. Krejcar, Additive and multiplicative properties of point sets based on beta-integers, Theoret. Comput. Sci. 303 (2003) 491-516.
[13] Ch. Frougny and B. Solomyak, On representation of integers in linear numeration systems, in Ergodic theory of \mathbb{Z}^{d} actions (Warwick, 1993-1994), Eds M. Pollicott et al., London Math. Soc. Lecture Note Ser. 228, Cambridge University Press (1996) 345-368.
[14] L. S. Guimond, Z. Masáková, E. Pelantová, Arithmetics on beta-expansions, Acta Arithmetica 112 (2004) 23-40.
[15] K. H. Indlekofer, I. Kátai, P. Racsk'o, Number systems and fractal geometry, in Probability theory and applications, Math. Appl. 60, Kluwer Acad. Publ. (1992) 319-334.
[16] S. Ito and Y. Takashi, Markov subshifts and realization of β-expansions, J. Math. Soc. Japan 26 (1974) 33-55.
[17] J. C. Lagarias, Geometric models for quasicrystals : I. Delone sets of finite type, Discrete Comput. Geom. 21 (1999) 161-191.
[18] J. C. Lagarias, Meyer's concept of quasicrystal and quasiregular sets, Commun. Math. Phys. 179 (1996) 365-376.
[19] M. Lothaire, Algebraic combinatorics on words, Cambridge University Press (2002).
[20] Y. Meyer, Nombres de Pisot, nombres de Salem et analyse harmonique, Lecture Notes in Math. 117, Springer-Verlag (1970).
[21] Y. Meyer, Algebraic Numbers and Harmonic Analysis, North-Holland (1972).
[22] Y. Meyer, Quasicrystals, Diophantine approximation and algebraic numbers, in Beyond Quasicrystals, Eds F. Axel and D. Gratias, Les Éditions de Physique, Springer-Verlag, (1995) 1-16.
[23] R. V. Moody, Meyer sets and their duals, in The Mathematics of Long-Range Aperiodic Order, Ed. R. V. Moody, NATO ASI Series C 489, Kluwer (1997) 403-441.
[24] R. V. Moody, Model Sets: A Survey, in From Quasicrystals to More Complex Systems, Eds F. Axel, F. Denoyer and J.-P. Gazeau, EDP Sciences and Springer Verlag, (2000) 145-166.
[25] W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960) 401-416.
[26] W.Penney, A "binary" system for complex numbers, Journal of the A.C.M. 12 (1965) 247-248.
[27] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung. 8 (1957) 477-493.
[28] J. Sakarovitch, Eléments de théorie des automates, Vuibert (2003). English translation: Elements of Automata Theory, Cambridge University Press, to appear.
[29] K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc. 12 (1980) 269-278.
[30] W.P. Thurston, Groups, tilings, and finite state automata, Geometry supercomputer project research report GCG1, University of Minnesota (1989).

[^0]: ${ }^{1}$ A Salem number is an algebraic integer such that every conjugate has modulus smaller than or equal to 1 , and at least one of them has modulus 1 .

