# On multiplicatively dependent linear numeration systems, and periodic points 

Christiane Frougny<br>${ }^{1}$ L.I.A.F.A.<br>Case 7014, 2 place Jussieu, 75251 Paris Cedex 05, France Christiane.Frougny@liafa.jussieu.fr<br>${ }^{2}$ Université Paris 8


#### Abstract

Two linear numeration systems, with characteristic polynomial equal to the minimal polynomial of two Pisot numbers $\beta$ and $\gamma$ respectively, such that $\beta$ and $\gamma$ are multiplicatively dependent, are considered. It is shown that the conversion between one system and the other one is computable by a finite automaton. We also define a sequence of integers which is equal to the number of periodic points of a sofic dynamical system associated with some Parry number.


## 1 Introduction

This work is about the conversion of integers represented in two different numeration systems, linked in a certain sense. Recall that the conversion between base 4 and base 2 is computable by a finite automaton, but that conversion between base 3 and base 2 is not. More generally, two numbers $p>1$ and $q>1$ are said to be multiplicatively dependent if there exist positive integers $k$ and $\ell$ such that $p^{k}=q^{\ell}$. A set of natural numbers is said to be $p$-recognizable if the set of representations in base $p$ of its elements is recognizable by a finite automaton. Bűchi has shown that the set $\left\{q^{n} \mid n \geq 0\right\}$ is $p$-recognizable only if $p$ and $q$ are multiplicatively dependent integers [5]. In contrast, the famous theorem of Cobham [7] states that the only sets of natural numbers that are both $p$ - and $q$ recognizable, when $p$ and $q$ are two multiplicatively independent integers $>1$, are unions of arithmetic progressions, and thus are $k$-recognizable for any integer $k>1$. Several generalizations of Cobham's Theorem have been given, see for instance $[25,10,6,17,8]$. In particular this result has been extended by Bès [4] to non-standard numeration systems.

The most popular non-standard numeration system is probably the Fibonacci numeration system. Recall that every non-negative integer can
be represented as a sum of Fibonacci numbers, which can be chosen nonconsecutive. It is also possible to represent an integer as a sum of Lucas numbers. Since Fibonacci and Lucas numbers satisfy the same recurrence relation, the question of the conversion between Lucas representations and Fibonacci representations is very natural. In [22] and [23], the relation between the Fibonacci sequence and the Lucas sequence is examined from another point of view. A sequence of non-negative integers $\left(v_{n}\right)_{n \geq 0}$ is said to be exactly realizable if there exists a dynamical system $(S, \sigma)$, where $S$ is a compact metric space and $\sigma: S \rightarrow S$ is an homeomorphism, for which for all $n \geq 1, v_{n}$ is the number of periodic points of period $n$, that is,

$$
v_{n}=\#\left\{s \in S \mid \sigma^{n}(s)=s\right\} .
$$

The authors give a necessary and sufficient condition for a sequence to be exactly realizable in certain cases. In particular, they prove that amongst the sequences satisfying the Fibonacci recurrence $u_{n}=u_{n-1}+u_{n-2}$, the unique (up to scalar multiples) exactly realizable sequence is the one of Lucas numbers, and the dynamical system is the golden mean shift, that is to say, the set of bi-infinite sequences on the alphabet $\{0,1\}$ such that a 1 is always followed by a 0 .

A linear numeration system is defined by an increasing sequence of integers satisfying a linear recurrence relation. The generalization of the Cobham's Theorem by Bès [4] is the following one : let two linear numeration systems such that their characteristic polynomials are the minimal polynomials of two multiplicatively independent Pisot numbers ${ }^{1}$; the only sets of natural numbers such that their representations in these two systems are recognizable by a finite automaton are unions of arithmetic progressions.

From the result of Bès follows that the conversion between two linear numeration systems $U$ and $Y$ linked to two multiplicatively independent Pisot numbers cannot be realized by a finite automaton. In this paper, we prove that the conversion between two linear numeration systems $U$ and $Y$ such that their characteristic polynomials are the minimal polynomials of two multiplicatively dependent Pisot numbers is computable by a finite automaton. This implies that a set of integers which is $U$-recognizable is then also $Y$-recognizable. Note that in [6] it is proved that if $U$ and $V$ are two linear numeration systems with the same characteristic polynomial which is the minimal polynomial of a Pisot number, then a $U$-recognizable set is also $V$-recognizable.

[^0]The paper is organized as follows. First we recall several results which will be of use in this paper. In particular, the normalization in a linear numeration system consists in converting a representation on a "big" alphabet onto the so-called normal representation, obtained by a greedy algorithm. Here the system $U$ is fixed. It is shown in [15] that, basically, when the sequence $U$ is linked to a Pisot number, like the Fibonacci numbers are linked to the golden mean, then normalization is computable by a finite automaton on any alphabet of digits. In the present work we first construct a finite automaton realizing the conversion from Lucas representations to Fibonacci representations. Then we consider two sequences of integers $U$ and $V$. If the elements of $V$ can be linearly expressed (with rational coefficients) in those of $U$, and if the normalization in the system $U$ is computable by a finite automaton, then so it is for the conversion from $V$-representations to $U$-representations. From this result we deduce that if $U$ and $V$ have for characteristic polynomial the same minimal polynomial of a Pisot number, with different initial conditions, then the conversion from $V$-representations to $U$-representations is computable by a finite automaton.

Next we introduce two different linear numeration systems associated with a Pisot number $\beta$ of degree $m$. The first one, $U_{\beta}$, is defined from the point of view of the symbolic dynamical system defined by $\beta$. We call it Fibonacci-like, because when $\beta$ is equal to the golden mean, it is the Fibonacci numeration system. The second one, $V_{\beta}$, is defined from the algebraic properties of $\beta$. More precisely, for $n \geq 1$, the $n$-th term of $V_{\beta}$ is $v_{n}=\beta^{n}+\beta_{2}^{n}+\cdots+\beta_{m}^{n}$, where $\beta_{2}, \ldots, \beta_{m}$ are the algebraic conjugates of $\beta$. We call it Lucas-like, because when $\beta$ is equal to the golden mean, it is the Lucas numeration system. The conversion from $V_{\beta}$ to $U_{\beta}$ (or any sequence with characteristic polynomial equal to the minimal polynomial of $\beta$ ) is shown to be computable by a finite automaton.

Then we consider two linear numeration systems, $U$ and $Y$, such that their characteristic polynomial is equal to the minimal polynomial of a Pisot number $\beta$, or $\gamma$ respectively, where $\beta$ and $\gamma$ are multiplicatively dependent. Then the conversion from $Y$ to $U$ is shown to be computable by a finite automaton (Theorem 2).

The Lucas-like sequence $V_{\beta}$ plays a central role in the proof of Theorem 2. In fact, it is also closely related to the number of periodic points of the symbolic dynamical system $S_{\beta}$ associated with $\beta$. Here we do not need the assumption that $\beta$ is a Pisot number. A Parry number is a real number $\beta$ such that the beta-expansion of 1 (see Section 2.4) is eventually periodic or finite. Such numbers are usually called beta-numbers
after Parry [21]. Note that a Pisot number is a Parry number [2]. From now on $\beta$ is a Parry number, and the Fibonacci-like sequence and the Lucas-like sequence are defined as in the Pisot case. If the symbolic dynamical system $S_{\beta}$ associated with $\beta$ is of finite type, that is to say if the beta-expansion of 1 is finite, then the sequence $V_{\beta}$ is exactly realized by $S_{\beta}$. This is no more the case when the symbolic dynamical system associated with $\beta$ is not of finite type, but is sofic, i.e. the beta-expansion of 1 is infinite eventually periodic. We define a sequence $R_{\beta}$ which is exactly realized by $S_{\beta}$ in the sofic case. It is shown that the set of greedy representations of the natural numbers in the linear numeration system defined by $R_{\beta}$ is not recognizable by a finite automaton, and consequently the conversion between $R_{\beta}$ and $V_{\beta}$ cannot be realized by a finite automaton, even if $\beta$ is a Pisot number.

Section 9 is devoted to the quadratic case study as an example for the general case. We end this paper by exploring the connection between the Lucas-like sequence $V_{\beta}$ and the base $\beta$-representations for the case where $\beta$ is a Pisot quadratic unit. Note that in [14] we have proved that the conversion from $U_{\beta}$-representations to folded $\beta$-representations is computable by a finite automaton, and in [16], that this is possible only if $\beta$ is a quadratic Pisot unit.

Part of this work has been presented in [13].

## 2 Preliminaries

### 2.1 Words

An alphabet $A$ is a finite set. A finite sequence of elements of $A$ is called a word, and the set of words on $A$ is the free monoid $A^{*}$. The empty word is denoted by $\varepsilon$. The set of infinite sequences or infinite words on $A$ is denoted by $A^{\mathbb{N}}$. Let $v$ be a non-empty word of $A^{*}$, denote by $v^{n}$ the concatenation of $v$ to itself $n$ times, and by $v^{\omega}$ the infinite concatenation $v v v \cdots$. An infinite word of the form $u v^{\omega}$ is said to be eventually periodic. A factor of a (finite or infinite) word $w$ is a finite word $f$ such that $w=u f v$.

### 2.2 U-representations

The definitions recalled below and related results can be found in the survey [20, Chap. 7]. We consider a generalization of the usual notion of numeration system, which yields a representation of the natural numbers.

The base is replaced by an infinite increasing sequence of integers. The basic example is the well-known Fibonacci numeration system.

Let $U=\left(u_{n}\right)_{n \geq 0}$ be a strictly increasing sequence of integers with $u_{0}=1$. A $U$-representation of a non-negative integer $N$ is a finite sequence of integers $\left(d_{i}\right)_{k \geq i \geq 0}$ such that $N=\sum_{i=0}^{k} d_{i} u_{i}$. Such a representation will be written $(N)_{U}=d_{k} \cdots d_{0}$, most significant digit first.

Among all possible $U$-representations of a given non-negative integer $N$ one is distinguished and called the normal $U$-representation of $N$; it is also called the greedy representation, since it can be obtained by the following greedy algorithm [11]: given integers $m$ and $p$ let us denote by $q(m, p)$ and $r(m, p)$ the quotient and the remainder of the Euclidean division of $m$ by $p$. Let $k \geq 0$ such that $u_{k} \leq N<u_{k+1}$ and let $d_{k}=$ $q\left(N, u_{k}\right)$ and $r_{k}=r\left(N, u_{k}\right)$, and, for $i=k-1, \ldots, 0, d_{i}=q\left(r_{i+1}, u_{i}\right)$ and $r_{i}=r\left(r_{i+1}, u_{i}\right)$. Then $N=d_{k} u_{k}+\cdots+d_{0} u_{0}$. The normal $U$-representation of $N$ is denoted by $\langle N\rangle_{U}$. The normal $U$-representation of 0 is the empty word $\varepsilon$. The set of greedy or normal $U$-representations of all the nonnegative integers is denoted by $G(U)$. In this work, we consider only the case where the sequence $U$ is linearly recurrent. Then the numeration system associated with $U$ is said to be a linear numeration system. The digits of a normal $U$-representation are contained in a canonical finite alphabet $A_{U}$ associated with $U$.

Let $D$ be a finite alphabet of integers and let $w=d_{k} \cdots d_{0}$ be a word of $D^{*}$. Denote by $\pi_{U}(w)$ the numerical value of $w$ in the system $U$, that is, $\pi_{U}(w)=\sum_{i=0}^{k} d_{i} u_{i}$. The normalization in the system $U$ on $D^{*}$ is the partial function $\nu_{U, D^{*}}: D^{*} \rightarrow A_{U}^{*}$ that maps a word $w$ of $D^{*}$ such that $N=\pi_{U}(w)$ is non-negative onto the normal $U$-representation of $N$.

Let $U$ and $V$ be two sequences of integers, and let $D$ be a finite alphabet of integers. The conversion from the numeration system $V$ to the numeration system $U$ on $D^{*}$ is the partial function $\chi: D^{*} \rightarrow A_{U}^{*}$ that maps a $V$-representation $d_{k} \cdots d_{0}$ in $D^{*}$ of a non-negative integer $N=$ $\sum_{i=0}^{k} d_{i} v_{i}$ onto the normal $U$-representation of $N$. In fact the alphabet $D$ plays no peculiar role, and we will simply speak of the conversion from $V$ to $U$.

### 2.3 Beta-expansions

We now consider numeration systems where the base is a real number $\beta>1$. Representations of real numbers in such systems were introduced by Rényi [24] under the name of beta-expansions. Let the base $\beta>1$ be a real number. First let $x$ be a real number in the interval $[0,1]$. A representation in base $\beta$ of $x$ is an infinite sequence of integers $\left(x_{i}\right)_{i \geq 1}$ such
that $x=\sum_{i \geq 1} x_{i} \beta^{-i}$. A particular beta-representation, called the betaexpansion, can be computed by the "greedy algorithm" : denote by $\lfloor y\rfloor$ and $\{y\}$ the integer part and the fractional part of a number $y$. Set $r_{0}=x$ and let for $i \geq 1, x_{i}=\left\lfloor\beta r_{i-1}\right\rfloor, r_{i}=\left\{\beta r_{i-1}\right\}$. Then $x=\sum_{i>1} x_{i} \beta^{-i}$, where the $x_{i}$ 's are elements of the canonical alphabet $A_{\beta}=\{0, \ldots,\lfloor\beta\rfloor\}$ if $\beta$ is not an integer, or $A_{\beta}=\{0, \ldots, \beta-1\}$ if $\beta$ is an integer. The beta-expansion of $x$ is denoted by $d_{\beta}(x)$.

Let $D$ be a finite alphabet of integers. The normalization in base $\beta$ on $D^{\mathbb{N}}$ is the partial function $\nu_{\beta, D^{\mathbb{N}}}: D^{\mathbb{N}} \rightarrow A_{\beta}^{\mathbb{N}}$ that maps a word $\left(x_{i}\right)_{i \geq 1}$ of $D^{\mathbb{N}}$ such that $x=\sum_{i \geq 1} x_{i} \beta^{-i} \in[0,1[$ onto the $\beta$-expansion of $x$.

Secondly, we consider a real number $x$ greater than 1 . There exists $k \in \mathbb{N}$ such that $\beta^{k} \leq x<\beta^{k+1}$. Hence $0 \leq x / \beta^{k+1}<1$, thus it is enough to represent numbers from the interval $[0,1]$, since by shifting we will get the representation of any positive real number. A $\beta$-representation of an $x=\sum_{k \leq i \leq-\infty} x_{i} \beta^{i}$ will be denoted by $(x)_{\beta}=x_{k} \cdots x_{0} \cdot x_{-1} x_{-2} \cdots$.

If a representation ends in infinitely many zeros, like $v 0^{\omega}$, the ending zeros are omitted and the representation is said to be finite.

A Pisot number is an algebraic integer such that its algebraic conjugates are strictly less than 1 in modulus. It is known that if $\beta$ is a Pisot number then $d_{\beta}(1)$ is finite or infinite eventually periodic [2].

### 2.4 Symbolic dynamical systems

The reader may consult [19] for more details on these topics. Let $A$ be a finite alphabet, recall that $A^{\mathbb{N}}$ is endowed with the product topology and the shift $\sigma$ defined by $\sigma\left(\left(x_{i}\right)_{i \geq 1}\right)=\left(x_{i+1}\right)_{i \geq 1}$. It is a compact metric space and $\sigma$ is a homeomorphism. A symbolic dynamical system is a closed shift-invariant subset of $A^{\mathbb{N}}$. It is said to be a system of finite type if it is defined by the interdiction of a finite set of factors. It is said to be sofic if the set of its finite factors is recognizable by a finite automaton. Note that a system of finite type is sofic. The same notions can be defined for bi-infinite sequences and subsets of $A^{\mathbb{Z}}$.

Denote by $D_{\beta}$ the set of $\beta$-expansions of numbers of $[0,1[$. The closure of $D_{\beta}$ in $A_{\beta}^{\mathbb{N}}$ is a symbolic dynamical system, called the beta-shift $S_{\beta}$. The following results are known: the beta-shift is of finite type if and only if if the $\beta$-expansion of $1, d_{\beta}(1)$, is finite, and the beta-shift is sofic if and only if $d_{\beta}(1)$ is eventually periodic [2].

By abuse, we will keep the same name of beta-shift for the set of biinfinite sequences such that each right tail is in the one-sided beta-shift. We denote by $\operatorname{Per}_{n}\left(S_{\beta}\right)$ the number of periodic elements of period $n$ under the shift of $S_{\beta}$.

Following [22,23] we say that a sequence of non-negative integers $V=$ $\left(v_{n}\right)_{n \geq 0}$ is exactly realizable if there exists a beta-shift $S_{\beta}$ such that for every $n \geq 1, v_{n}=\operatorname{Per}_{n}\left(S_{\beta}\right)$.

### 2.5 Automata

We refer the reader to [9]. An automaton over $A, \mathcal{A}=(Q, A, E, I, T)$, is a directed graph labelled by elements of $A$. The set of vertices, traditionally called states, is denoted by $Q, I \subset Q$ is the set of initial states, $T \subset Q$ is the set of terminal states and $E \subset Q \times A \times Q$ is the set of labelled edges. If $(p, a, q) \in E$, we denote $p \xrightarrow{a} q$. The automaton is finite if $Q$ is finite. A subset $H$ of $A^{*}$ is said to be recognizable by a finite automaton if there exists a finite automaton $\mathcal{A}$ such that $H$ is equal to the set of labels of paths starting in an initial state and ending in a terminal state. A 2-tape automaton with input alphabet $A$ and output alphabet $B$ is an automaton over the non-free monoid $A^{*} \times B^{*}: \mathcal{A}=\left(Q, A^{*} \times B^{*}, E, I, T\right)$ is a directed graph the edges of which are labelled by elements of $A^{*} \times B^{*}$. The automaton is finite if $Q$ and $E$ are finite. The finite 2-tape automata are also known as transducers. A relation $R$ of $A^{*} \times B^{*}$ is said to be computable by a finite automaton if there exists a finite 2 -tape automaton $\mathcal{A}$ such that $R$ is equal to the set of labels of paths starting in an initial state and ending in a terminal state. A function is computable by a finite automaton if its graph is computable by a finite 2 -tape automaton. These definitions extend to relations (and functions) of infinite words as follows: a relation $R$ of infinite words is computable by a finite automaton if there exists a finite 2 -tape automaton such that $R$ is equal to the set of labels of infinite paths starting in an initial state and going infinitely often through a terminal state. Recall that the set of relations computable by a finite automaton is closed under composition and inverse.

### 2.6 Previous results

In this work we will make use of the following results. Let $U$ be a linearly recurrent sequence of integers such that its characteristic polynomial is exactly the minimal polynomial of a Pisot number. Then the set $G(U)$ of normal $U$-representations of non-negative integers is recognizable by a finite automaton, and, for every alphabet of positive or negative integers $D$, normalization $\nu_{U, D^{*}}$ is computable by a finite automaton [15]. Normalization in base $\beta$, when $\beta$ is a Pisot number, is computable by a finite automaton on any alphabet $D$ [12]. Addition and multiplication by a fixed positive integer constant are particular cases of normalization,
and thus are computable by a finite automaton, in the system $U$ and in base $\beta$. These results on normalization do not extend to the case that $\beta$ is a Parry number which is not a Pisot number.

## 3 Fibonacci and Lucas

Let us recall that the Fibonacci numeration system is defined by the sequence $F$ of Fibonacci numbers

$$
F=\{1,2,3,5,8,13, \ldots\} .
$$

The canonical alphabet is $A_{F}=\{0,1\}$ and the set of normal representations is equal to $G(F)=1\{0,1\}^{*} \backslash\{0,1\}^{*} 11\{0,1\}^{*} \cup \varepsilon$. Words containing a factor 11 are forbidden.

The Lucas numeration system is defined by the sequence $L$ of Lucas numbers

$$
L=\{1,3,4,7,11,18, \ldots\} .
$$

The canonical alphabet is $A_{L}=\{0,1,2\}$ and the set of normal representations is equal to $G(L)=G(F) \cup(G(F) \backslash \varepsilon)\{02\} \cup\{2\}$. We give in Table 1 below the normal Fibonacci and Lucas representations of the first natural numbers.

| $N$ | Fibonacci | Lucas |
| ---: | ---: | ---: |
| 1 | 1 | 1 |
| 2 | 10 | 2 |
| 3 | 100 | 10 |
| 4 | 101 | 100 |
| 5 | 1000 | 101 |
| 6 | 1001 | 102 |
| 7 | 1010 | 1000 |
| 8 | 10000 | 1001 |
| 9 | 10001 | 1002 |
| 10 | 10010 | 1010 |
| 11 | 10100 | 10000 |

Table 1. Normal Fibonacci and Lucas representations of the 11 first integers

The Fibonacci and the Lucas sequences both have for characteristic polynomial

$$
P(X)=X^{2}-X-1 .
$$

The root $>1$ of $P$ is denoted by $\varphi$, the golden mean, and its algebraic conjugate by $\varphi^{\prime}$. Since $\varphi+\varphi^{\prime}=1$, for coherence of notations with the general case, we denote $F=\left(F_{n}\right)_{n \geq 0}$ and $L=\left(L_{n}\right)_{n \geq 1}$. Recall that for every $n \geq 1, L_{n}=\varphi^{n}+\varphi^{\prime n}$. The associated dynamical system is the golden mean shift, which is the set of bi-infinite sequences on $\{0,1\}$ having no factor 11 .

Although the following result is a consequence of the more general one below (Theorem 1), we give here a direct construction.

Proposition 1. The conversion from a Lucas representation of an integer to the normal Fibonacci representation of that integer is computable by a finite automaton.

Proof. First, for every $n \geq 3$, we get $L_{n}=F_{n-1}+F_{n-3}$. Take $N$ a positive integer and a $L$-representation $(N)_{L}=d_{k} \cdots d_{1}$, where the $d_{i}$ 's are in an alphabet $B \supseteq\{0,1,2\}$, and $k \geq 4$. Then $N=d_{k} L_{k}+\cdots+d_{1} L_{1}$, thus $N=d_{k} F_{k-1}+d_{k-1} F_{k-2}+\left(d_{k-2}+d_{k}\right) F_{k-3}+\cdots+\left(d_{3}+d_{5}\right) F_{2}+\left(d_{2}+\right.$ $\left.d_{4}\right) F_{1}+\left(d_{1}+d_{2}+d_{3}\right) F_{0}$, hence the word $d_{k} d_{k-1}\left(d_{k-2}+d_{k}\right) \cdots\left(d_{3}+d_{5}\right)\left(d_{2}+\right.$ $\left.d_{4}\right)\left(d_{1}+d_{2}+d_{3}\right)$ is a Fibonacci representation of $N$ on a certain finite alphabet of digits $D$.

The conversion from a word of the form $d_{k} \cdots d_{1}$ in $B^{*}$, where $k \geq 4$, onto a word of the form $d_{k} d_{k-1}\left(d_{k-2}+d_{k}\right) \cdots\left(d_{3}+d_{5}\right)\left(d_{2}+d_{4}\right)\left(d_{1}+d_{2}+d_{3}\right)$ on $D^{*}$ is computable by a finite automaton $\mathcal{A}=(Q, B \times C, E,\{\varepsilon\},\{t\})$ : the set of states is $Q=\{\varepsilon\} \cup B \cup(B \times B) \cup\{t\}$ where $\{t\}$ is the unique terminal state. The initial state is $\varepsilon$. For each $d$ in $B$, there is an edge $\varepsilon \xrightarrow{d / d} d$. For each $d$ and $c$ in $B$, there is an edge $d \xrightarrow{c / c}(d, c)$. For each $(d, c) \in B \times B$ and $a$ in $B$, there is an edge $(d, c) \xrightarrow{a / a+d}(c, a)$. For each $(d, c) \in B \times B$ and $a$ in $B$, there is a terminal edge $(d, c) \xrightarrow{a / a+c+d} t$. Words of length less than 4 are handled directly.

Then it is enough to normalize in the Fibonacci system on $D^{*}$, and it is known that this is realizable by a finite automaton, see Section 2.6.

On Figure 1 we give an automaton realizing the conversion from normal Lucas representations to Fibonacci representations on $\{0,1,2\}^{*}(\{\varepsilon\} \cup$ $\{3\})$. States of the form $(d, c)$ are denoted by $d c$. Note that this automaton is not deterministic on inputs. Since we are dealing with normal Lucas representations, the automaton has less states than the one constructed in the proof of Proposition 1 above. To decrease the complexity of the drawing, we introduce more than one terminal state. Terminal states are indicated by an outgoing arrow. The result must be normalized afterwards.


Fig. 1. Conversion from normal Lucas representations to Fibonacci representations

## 4 A technical result

We now consider two linearly recurrent sequences $U=\left(u_{n}\right)_{n \geq 0}$ and $V=$ $\left(v_{n}\right)_{n \geq 0}$ of positive integers. The result below is the generalization of Proposition 1.

Proposition 2. If there exist rational constants $\lambda_{i}$ 's for $1 \leq i \leq r$ and $K \geq 0$ such that for every $n \geq K, v_{n}=\lambda_{1} u_{n+r-1}+\cdots+\lambda_{r} u_{n}$, and if the normalization in the system $U$ is computable by a finite automaton on any alphabet, then the conversion from a $V$-representation of an integer to the normal $U$-representation of that integer is computable by a finite automaton.

Proof. One can assume that the $\lambda_{i}$ 's are all of the form $p_{i} / q$ where the $p_{i}$ 's belong to $\mathbb{Z}$ and $q$ belongs to $\mathbb{N}, q \neq 0$. Let $N$ be a positive integer and consider a $V$-representation $(N)_{V}=b_{j} \cdots b_{0}$, where the $b_{i}$ 's are in an alphabet of digits $B \supseteq A_{V}$. Then $q N=b_{j} q v_{j}+\cdots+b_{0} q v_{0}$. Since for $n \geq K, q v_{n}=p_{1} u_{n+r-1}+\cdots+p_{r} u_{n}$, and $v_{0}, v_{1}, \ldots, v_{K-1}$ can be expressed in the system $U$, we get that $q N$ is of the form $q N=$ $d_{j+r-1} u_{j+r-1}+\cdots+d_{0} u_{0}$. Since each digit $d_{i}$, for $0 \leq i \leq j+r-1$, is a linear combination of $q, p_{1}, \ldots, p_{r}$, the $b_{i}$ 's and the coefficients of the $U$-representation of the first terms $v_{0}, v_{1}, \ldots, v_{K-1}$, we get that $d_{i}$ is an element of a finite alphabet of digits $D \supset A_{U}$. By assumption, $\nu_{U, D^{*}}$ is computable by a finite automaton. It remains to show that the function which maps $\nu_{U, D^{*}}\left(d_{j+r-1} \cdots d_{0}\right)=<q N>_{U}$ onto $<N>_{U}$ is computable by a finite automaton, and this is due to the fact that it is the inverse
of the multiplication by the natural $q$, which is computable by a finite automaton in the system $U$, see Section 2.6.

## 5 Common characteristic polynomial

The Fibonacci and the Lucas numeration systems are examples of different numeration systems having the same characteristic polynomial, but different initial conditions.

Theorem 1. Let $P$ be the minimal polynomial of a Pisot number of degree $m$. Let $U$ and $V$ be two sequences with common characteristic polynomial $P$ and different initial conditions. The conversion from a $V$ representation of a positive integer to the normal $U$-representation of that integer is computable by a finite automaton.

Proof. Since the polynomial $P$ is the minimal polynomial of a Pisot number, normalization in the system $U$ is computable by a finite automaton on any alphabet (see Section 2.6). On the other hand, the family $\left\{u_{n}, u_{n+1}, \ldots, u_{n+m-1} \mid n \geq 0\right\}$ is free, because the annihilator polynomial is the minimal polynomial. Since $U$ and $V$ have the same characteristic polynomial, it is known from standard results of linear algebra that there exist rational constants $\lambda_{i}$ such that, for each $n \geq 0$, $v_{n}=\lambda_{1} u_{n+m-1}+\cdots+\lambda_{m} u_{n}$. The result follows then from Proposition 2.

## 6 Two numeration systems associated with a Parry number

Let $\beta$ be a Parry number, i.e. the $\beta$-expansion of 1 is finite or eventually periodic. We define two numeration systems associated with $\beta$.

### 6.1 Fibonacci-like numeration system

First suppose that the $\beta$-expansion of 1 is finite, $d_{\beta}(1)=t_{1} \cdots t_{N}$. A linear recurrent sequence $U_{\beta}=\left(u_{n}\right)_{n \geq 0}$ is canonically associated with $\beta$ as follows

$$
\begin{gathered}
u_{n}=t_{1} u_{n-1}+\cdots+t_{N} u_{n-N} \text { for } n \geq N \\
u_{0}=1, \quad \text { and for } 1 \leq i \leq N-1, \quad u_{i}=t_{1} u_{i-1}+\cdots+t_{i} u_{0}+1 .
\end{gathered}
$$

The characteristic polynomial of $U_{\beta}$ is thus

$$
K(X)=X^{N}-t_{1} X^{N-1}-\cdots-t_{N} .
$$

Suppose now that the $\beta$-expansion of 1 is infinite eventually periodic,

$$
d_{\beta}(1)=t_{1} \cdots t_{N}\left(t_{N+1} \cdots t_{N+p}\right)^{\omega}
$$

with $N$ and $p$ minimal. The sequence $U_{\beta}=\left(u_{n}\right)_{n \geq 0}$ is the following one

$$
u_{n}=t_{1} u_{n-1}+\cdots+t_{N+p} u_{n-N-p}+u_{n-p}-t_{1} u_{n-p-1}-\cdots-t_{N} u_{n-N-p}
$$

for $n \geq N+p$,

$$
u_{0}=1, \text { and for } 1 \leq i \leq N+p-1, u_{i}=t_{1} u_{i-1}+\cdots+t_{i} u_{0}+1 .
$$

The characteristic polynomial of $U_{\beta}$ is now

$$
K(X)=X^{N+p}-\sum_{i=1}^{N+p} t_{i} X^{N+p-i}-X^{N}+\sum_{i=1}^{N} t_{i} X^{N-i} .
$$

Note that in general $K(X)$ may be reducible. Since $K(X)$ is defined from the beta-expansion of 1 , we will say that it is the beta-polynomial of $\beta$.

The system $U_{\beta}$ is said to be the canonical numeration system associated with $\beta$. In [3] it is shown that the set of normal representations of the integers $G\left(U_{\beta}\right)$ is exactly the set of finite factors of the beta-shift $S_{\beta}$. The numeration system $U_{\beta}$ is the natural one from the point of view of symbolic dynamical systems. The set $G\left(U_{\beta}\right)$ is recognized by a finite automaton, see Section 8.

### 6.2 Lucas-like numeration system

Now we introduce another linear recurrent sequence $V_{\beta}=\left(v_{n}\right)_{n \geq 0}$ associated with $\beta$ a Parry number of degree $m$ as follows. Denote by $\beta_{1}=\beta$, $\beta_{2}, \ldots, \beta_{m}$ the roots of the minimal polynomial $P(X)=X^{m}-a_{1} X^{m-1}-$ $\cdots a_{m}$ of $\beta$. Set

$$
v_{0}=1, \text { and for } n \geq 1, \quad v_{n}=\beta_{1}^{n}+\cdots+\beta_{m}^{n} .
$$

Then the characteristic polynomial of $V_{\beta}$ is equal to $P(X)$. The set $G\left(V_{\beta}\right)$ is recognized by a finite automaton, [15].

As an example let us take $\beta=\varphi$ the golden mean. Then $U_{\varphi}$ is the set of Fibonacci numbers, and $V_{\varphi}$ is the set of Lucas numbers (for $n \geq 1$ ). If $\beta$ is an integer, then the two systems $U_{\beta}$ and $V_{\beta}$ are the same, the standard $\beta$-ary numeration system.

### 6.3 Conversion in the Pisot case

Now we suppose that $\beta$ is a Pisot number.
Proposition 3. Let $\beta$ be a Pisot number such that its beta-polynomial $K(X)$ is equal to its minimal polynomial. Let $U$ be any linear sequence with characteristic polynomial equal to $K(X)$ (in particular $U_{\beta}$ ). The conversion from the linear numeration system $V_{\beta}$ to the linear numeration system $U$ (and conversely) is computable by a finite automaton.

Proof. It comes from the fact that $U$ and $V_{\beta}$ have the same characteristic polynomial, which is the minimal polynomial of a Pisot number. Thus normalization in both systems is computable by a finite automaton on any alphabet, and the result follows by Theorem 1.

## 7 Multiplicatively dependent numeration systems

First recall that if $\beta$ is a Pisot number of degree $m$ then, for any positive integer $k, \beta^{k}$ is a Pisot number of degree $m$ (see [1]). Two Pisot numbers $\beta$ and $\gamma$ are said to be multiplicatively dependent if there exist two positive integers $k$ and $\ell$ such that $\beta^{k}=\gamma^{\ell}$. Then $\beta$ and $\gamma$ have the same degree $m$.

Theorem 2. Let $\beta$ and $\gamma$ be two multiplicatively dependent Pisot numbers. Let $U$ and $Y$ be two linear sequences with characteristic polynomial equal to the minimal polynomial of $\beta$ and $\gamma$ respectively. Then the conversion from the $Y$-numeration system to the $U$-numeration system is computable by a finite automaton.

Proof. Set $\delta=\beta^{k}=\gamma^{\ell}$. As above, let $V_{\beta}=\left(v_{n}\right)_{n \geq 0}$ with $v_{0}=1$ and $v_{n}=\beta_{1}^{n}+\cdots+\beta_{m}^{n}$ for $n \geq 1$. The conjugates of $\delta$ are of the form $\delta_{i}=\beta_{i}^{k}$, for $2 \leq i \leq m$. Set $W=\left(w_{n}\right)_{n \geq 0}$ with $w_{n}=\delta_{1}^{n}+\cdots+$ $\delta_{m}^{n}$ for $n \geq 1$. Then $W$ is the Lucas-like numeration system associated with $\delta$. Now, for $n \geq 1, w_{n}=v_{k n}$. Thus any $W$-representation of an integer $N$ of the form $(N)_{W}=d_{k} \cdots d_{0}$ gives a $V_{\beta}$-representation $(N)_{V_{\beta}}=d_{k} 0^{k-1} d_{k-1} 0^{k-1} \cdots d_{1} 0^{k-1} d_{0}$, and thus the conversion from $W$ representations to Lucas-like $V_{\beta}$-representations is computable by a finite automaton. The same is true for the conversion from $W$-representations to $V_{\gamma}$-representations. By Proposition 3 the conversion from $Y$ to $V_{\gamma}$, and that from $V_{\beta}$ to $U$ are computable by a finite automaton, and the result follows.

A set $S$ of natural numbers is said to be $U$-recognizable if the set $\left\{\langle n\rangle_{U} \mid n \in S\right\}$ of normal $U$-representations of the elements of $S$ is recognizable by a finite automaton. The following result is an immediate consequence of Theorem 2.

Corollary 1. Let $\beta$ and $\gamma$ be two multiplicatively dependent Pisot numbers. Let $U$ and $Y$ be two linear sequences with characteristic polynomial equal to the minimal polynomial of $\beta$ and $\gamma$ respectively. Then a set which is $U$-recognizable is $Y$-recognizable as well.

## 8 Periodic points

Let $\beta$ be a Parry number. The beta-shift $S_{\beta}$ is sofic, i.e. the set of its finite factors is recognizable by a finite automaton, and periodic points of $S_{\beta}$ are periodic bi-infinite words that are labels of bi-infinite paths in the automaton that recognizes it.

The determination of the number of periodic points of the beta-shift $S_{\beta}$ is important, because the entropy of $S_{\beta}$ is equal to

$$
h\left(S_{\beta}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \operatorname{Per}_{n}\left(S_{\beta}\right)=\log \beta
$$

see [19, Th. 4.3.6].
Note that, for any prime $q, \operatorname{Per}_{q}\left(S_{\beta}\right) \equiv \operatorname{Per}_{1}\left(S_{\beta}\right) \bmod q$, see [23].
In the sequel, we assume that the minimal polynomial $P(X)$ of $\beta$ and its beta-polynomial $K(X)$ are identical, of degree $m$. As above, let $V_{\beta}=\left(v_{n}\right)_{n \geq 0}$ with $v_{n}=\beta^{n}+\beta_{2}^{n}+\cdots+\beta_{m}^{n}$ for $n \geq 1$.

### 8.1 The finite type case

If $d_{\beta}(1)=t_{1} \cdots t_{N}$, then $S_{\beta}$ is a system of finite type. We construct an automaton $\mathcal{A}_{\beta}$ which recognizes the set of factors of $S_{\beta}$. There are $N$ states $q_{1}, \ldots, q_{N}$. For each $i, 1 \leq i<N$, there is an edge labelled $t_{i}$ from $q_{i}$ to $q_{i+1}$. For $1 \leq i \leq N$, there are edges labelled by $0,1, \ldots, t_{i}-1$ from $q_{i}$ to $q_{1}$. The adjacency matrix of $\mathcal{A}_{\beta}$ is the companion matrix $M$ of $K(X)$, defined by, for $1 \leq i \leq N$

$$
\begin{aligned}
M[i, 1] & =t_{i} \\
M[i, i+1] & =1
\end{aligned}
$$

and other entries equal to 0 .

Proposition 4. Let $\beta$ be a Parry number such that $d_{\beta}(1)=t_{1} \cdots t_{N}$. Then for $n \geq 1$, $v_{n}=\operatorname{trace}\left(M^{n}\right)=\operatorname{Per}_{n}\left(S_{\beta}\right)$.

Proof. Since $M$ is the adjacency matrix of a system of finite type, the number of periodic points of period $n$ in $S_{\beta}$ is equal to trace $\left(M^{n}\right)$, see for instance [19]. On the other hand, since $M$ is the companion matrix of the minimal polynomial of $\beta$, we have that trace $\left(M^{n}\right)=\beta_{1}^{n}+\cdots+\beta_{N}^{n}=v_{n}$ for $n \geq 1$.

Corollary 2. When $d_{\beta}(1)$ is finite, the Lucas-like sequence $V_{\beta}$ is exactly realized by the beta-shift $S_{\beta}$.

### 8.2 The infinite sofic case

This is the case when $d_{\beta}(1)=t_{1} \cdots t_{N}\left(t_{N+1} \cdots t_{N+p}\right)^{\omega}$. We construct an automaton $\mathcal{A}_{\beta}$ which recognizes the set of factors of $S_{\beta}$. There are $N+p$ states $q_{1}, \ldots, q_{N+p}$. For each $i, 1 \leq i<N+p$, there is an edge labelled $t_{i}$ from $q_{i}$ to $q_{i+1}$. There is an edge labelled $t_{N+p}$ from $q_{N+p}$ to $q_{N+1}$. For $1 \leq i \leq N+p$, there are edges labelled by $0,1, \ldots, t_{i}-1$ from $q_{i}$ to $q_{1}$. The adjacency matrix of $\mathcal{A}_{\beta}$ is the matrix $M$ defined by for $1 \leq i \leq N+p$

$$
\begin{aligned}
M[i, 1] & =t_{i} \\
M[i, i+1] & =1 \text { for } i \neq N+p \\
M[N+p, N+1] & =1
\end{aligned}
$$

and other entries equal to 0 .
Proposition 5. Let $\beta$ be a Parry number such that

$$
d_{\beta}(1)=t_{1} \cdots t_{N}\left(t_{N+1} \cdots t_{N+p}\right)^{\omega} .
$$

Then for $n \geq 1, v_{n}=\operatorname{trace}\left(M^{n}\right)$.
Proof. Remark that $M$ is not the companion matrix of $P(X)$. The companion matrix $C$ is in that case the following one

$$
\begin{aligned}
C[i, 1] & =t_{i} \text { for } 1 \leq i \leq p-1 \\
C[p, 1] & =t_{p}+1 \\
C[i, 1] & =t_{i}-t_{i-p} \text { for } p+1 \leq i \leq N+p \\
C[i, i+1] & =1 \text { for } 1 \leq i \leq N+p
\end{aligned}
$$

and other entries equal to 0 . By a straightforward computation, it is possible to show that the matrices $M$ and $C$ are similar. More precisely,
there exists a matrix $Z$ such that $M=Z^{-1} C Z$, where $Z$ is defined by, for $1 \leq i, j \leq N+p$

$$
\begin{aligned}
Z[i, j] & =1 \text { if } i \equiv j \bmod p \text { and } i \geq j \\
& =0 \text { otherwise }
\end{aligned}
$$

Therefore trace $\left(M^{n}\right)=\operatorname{trace}\left(C^{n}\right)=\beta_{1}^{n}+\cdots+\beta_{N+p}^{n}=v_{n}$ for $n \geq 1$.
Contrarily to what happens in the case where the system is of finite type, in the sofic case different loops in the automaton $\mathcal{A}_{\beta}$ may have the same label, see Section 9.2 for the quadratic case. $\operatorname{So~}_{\operatorname{Per}_{n}}\left(S_{\beta}\right)$ is not equal to $v_{n}$.

Proposition 6. Let $\beta$ a Parry number such that

$$
d_{\beta}(1)=t_{1} \cdots t_{N}\left(t_{N+1} \cdots t_{N+p}\right)^{\omega} .
$$

Then for $n \geq 1$,

$$
\begin{aligned}
& \operatorname{Per}_{n}\left(S_{\beta}\right)=v_{n}-p \text { if } p \text { divides } n \\
& \operatorname{Per}_{n}\left(S_{\beta}\right)=v_{n} \text { otherwise. }
\end{aligned}
$$

Proof. Recall that $d_{\beta}(1)$ is strictly greater in the lexicographic order <lex than the shifted sequences $\sigma^{i}\left(d_{\beta}(1)\right)$ for $i>1$, [21].
First, suppose that for each $i, 1 \leq i \leq p, t_{N+i}<t_{1}$. Then in the automaton $\mathcal{A}_{\beta}$ there are two loops with label $t_{N+1} \cdots t_{N+p}$, one starting from state $q_{1}$ and the other one from state $q_{N+1}$.
Second, suppose that there exists $1 \leq i<p$ maximum such that $t_{1} \cdots t_{i}=$ $t_{N+1} \cdots t_{N+i}=w$. Then necessarily $t_{N+i+1}<t_{i+1}$. Thus there is a path

$$
q_{1} \xrightarrow{w} q_{i+1} \xrightarrow{t_{N+i+1}} q_{1}
$$

and since $t_{N+i+2} \cdots t_{N+p}<_{l e x} t_{1} \cdots t_{p-i-1}$, there is a loop with label $t_{N+i+2} \cdots t_{N+p}$ from $q_{1}$. Thus there are two loops with label $t_{N+1} \cdots t_{N+p}$. So there are $p$ times two loops with same label, a circular permutation of the word $t_{N+1} \cdots t_{N+p}$. Thus when counting the periodic bi-infinite words in the automaton that are labels of loops, we must remove $p$ of them each time the period is a multiple of $p$.

Corollary 3. The sequence $R_{\beta}=\left(r_{n}\right)_{n \geq 1}$ defined by $r_{0}=1$, and for $n \geq 1, r_{n}=v_{n}-p$ if $p$ divides $n$ and $r_{n}=v_{n}$ otherwise, is exactly realized by the sofic beta-shift $S_{\beta}$.

Proposition 7. The sequence $R_{\beta}$ is a linear recurrent sequence, of characteristic polynomial $\left(X^{p}-1\right) K(X)$.

Proof. Let us rewrite the minimal polynomial of $\beta$ as $K(X)=X^{N+p}-$ $a_{1} X^{N+p-1}-\cdots-a_{N+p}$. Hence, for $n \geq N+p+1$,

$$
v_{n}=a_{1} v_{n-1}+\cdots+a_{N+p} v_{n-N-p} .
$$

Suppose that $p$ does not divide $n$. Then

$$
r_{n}=v_{n}=\sum_{\substack{1 \leq i \leq N+p \\ p \backslash n-i}} a_{i} r_{n-i}+\sum_{\substack{1 \leq i \leq N+p \\ p \mid n-i}} a_{i}\left(r_{n-i}+p\right) .
$$

Thus

$$
\begin{equation*}
r_{n}=\sum_{1 \leq i \leq N+p} a_{i} r_{n-i}+\sum_{\substack{1 \leq i \leq N+p \\ p \mid n-i}} p . \tag{1}
\end{equation*}
$$

Similarly

$$
r_{n-p}=\sum_{1 \leq i \leq N+p} a_{i} r_{n-p-i}+\sum_{\substack{1 \leq i \leq N+p \\ p \backslash n-p-i}} p .
$$

Therefore, since the two last sums in $r_{n}$ and $r_{n-p}$ respectively are equal,

$$
r_{n}=\left(\sum_{1 \leq i \leq N+p} a_{i} r_{n-i}\right)+r_{n-p}-\sum_{1 \leq i \leq N+p} a_{i} r_{n-p-i} .
$$

If $p$ divides $n$ then

$$
\begin{equation*}
r_{n}=-p+\sum_{1 \leq i \leq N+p} a_{i} r_{n-i}+\sum_{\substack{1 \leq i \leq N+p \\ p \mid n-i}} p \tag{2}
\end{equation*}
$$

and the result follows as above. Hence the characteristic polynomial of $R_{\beta}$ is equal to $\left(X^{p}-1\right) K(X)$.

Proposition 8. The set $G\left(R_{\beta}\right)$ of normal $R_{\beta}$-representations of the natural numbers is not recognizable by a finite automaton.

Proof. Suppose that $G\left(R_{\beta}\right)$ is recognizable by a finite automaton. Then the set

$$
H=\left\{\left\langle r_{n}-1\right\rangle_{R_{\beta}} \mid n \geq 1\right\}
$$

of words of $G\left(R_{\beta}\right)$ that are maximal for the lexicographic order is recognizable by a finite automaton as well, see [26]. It is also known, by [18],
that the normal $R_{\beta}$-representation of $r_{n}-1$, for $n$ large enough, begins with a prefix of the form $t_{1} \cdots t_{N}\left(t_{N+1} \cdots t_{N+p}\right)^{j}$ for some integer $j$, because $\beta$ is the dominant root of the characteristic polynomial $J(X)=\left(X^{p}-1\right) K(X)$ of $R_{\beta}$, and $d_{\beta}(1)=t_{1} \cdots t_{N}\left(t_{N+1} \cdots t_{N+p}\right)^{\omega}$.

Denote by $K^{\prime}(X)$ the opposite of the reciprocal polynomial of $K(X)$, $K^{\prime}(X)=-1+t_{1} X+\cdots+t_{p-1} X^{p-1}+\left(t_{p}+1\right) X^{p}+\left(t_{p+1}-t_{1}\right) X^{p+1}+$ $\cdots+\left(t_{N+p}-t_{N}\right) X^{N+p}$. Similarly, let $J^{\prime}(X)=K^{\prime}(X)-X^{p} K^{\prime}(X)$.

By a direct computation, one gets, for each $j \geq 1$

$$
\begin{align*}
& J^{\prime}(X)+2 X^{p} J^{\prime}(X)+\cdots+(j+1) X^{p j} J^{\prime}(X)= \\
& K^{\prime}(X)+X^{p} K^{\prime}(X)+\cdots+X^{p j} K^{\prime}(X)-(j+1) X^{p(j+1)} K^{\prime}(X) \tag{3}
\end{align*}
$$

We introduce a notation: if $w=w_{0} \cdots w_{n}$ is a word, $\psi(w)=w_{0}+w_{1} X+$ $\cdots+w_{n} X^{n}$ is the polynomial associated with $w$ (with increasing powers). The signed digit $-d$ is denoted by $\bar{d}$. We then get, for each $j \geq 1$

$$
\begin{align*}
& K^{\prime}(X)+X^{p} K^{\prime}(X)+\cdots+X^{p j} K^{\prime}(X)= \\
& \quad \psi\left(\overline{1} t_{1} \cdots t_{N}\left(t_{N+1} \cdots t_{N+p}\right)^{j+1}\right)+X^{p(j+1)} \psi\left(1 \overline{t_{1}} \cdots t_{N}\right) \tag{4}
\end{align*}
$$

Case 1. $p \geq N+1$.
From Eq. (3) and (4) follows that, for $n=N+p(j+2)+\ell$, with $1 \leq \ell \leq p$, $r_{n}-1$ has a $R_{\beta}$-representation of the form

$$
\left(r_{n}-1\right)_{R_{\beta}}=t_{1} \cdots t_{N}\left(t_{N+1} \cdots t_{N+p}\right)^{j} w^{(n)}
$$

where $w^{(n)}$ is a word of length $2 p+\ell$, corresponding to the polynomial

$$
\begin{align*}
W^{(n)}(X)= & t_{N+1}+t_{N+2} X+\cdots t_{N+p} X^{p-1} \\
& +X^{p-N-1}-t_{1} X^{p-N}-\cdots-t_{N} X^{p-1} \\
& -(j+1) X^{p-N-1} K^{\prime}(X)-X^{2 p+\ell-1} \tag{5}
\end{align*}
$$

The difference between $W^{(N+p(j+3)+\ell)}$ and $W^{(N+p(j+2)+\ell)}$ is equal to $-X^{p-N-1} K^{\prime}(X)$. The word associated with $-X^{p-N-1} K^{\prime}(X)$ is of the form $s=0^{p-N-1} 1 \overline{t_{1}} \cdots \overline{t_{p-1}}\left(-t_{p}-1\right)\left(t_{1}-t_{p+1}\right) \cdots\left(t_{N}-t_{N+p}\right) 0^{\ell}$, and the value of $s$ in the system $R_{\beta}$ is equal to $\pi_{R_{\beta}}(s)=r_{N+p+\ell}-t_{1} r_{N+p+\ell-1}-$ $\cdots-t_{p-1} r_{N+\ell+1}-\left(t_{p}+1\right) r_{N+\ell}+\left(t_{1}-t_{p+1}\right) r_{N+\ell-1}+\cdots+\left(t_{N}-t_{N+p}\right) r_{\ell}$.

Suppose that $N+p+\ell$ is not divisible by $p$. From Eq. (1) follows that $\pi_{R_{\beta}}(s)$ is equal to the positive constant

$$
C(\ell)=\sum_{\substack{1 \leq i \leq N+p \\ p \mid N+\ell-i}} p
$$

For $1 \leq \ell \leq p$ fixed such that $N+p+\ell$ is not divisible by $p$, let $I(\ell)=$ $\{n \in \mathbb{N} \mid n=N+p(j+2)+\ell, j \geq 1\}$. Let $\kappa(n)=\pi_{R_{\beta}}\left(w^{(n)}\right)$. The family $(\kappa(n))_{n \in I(\ell)}$ is thus strictly increasing. Remember that the length $\left|w^{(n)}\right|$ is equal to $2 p+\ell$.
If $\kappa(n)<r_{2 p+\ell}$, then the normal $R_{\beta}$-representation of $r_{n}-1$ is of the form $\left\langle r_{n}-1\right\rangle_{R_{\beta}}=t_{1} \cdots t_{N}\left(t_{N+1} \cdots t_{N+p}\right)^{j} z^{(n)}$ where $z^{(n)}$ is a word of length $2 p+\ell$, equal to the normal $R_{\beta}$-representation of $w^{(n)}$, prefixed by an adequate number of 0 's.
If $\kappa(n) \geq 2 p+\ell$, then let $h$ be the smallest positive integer such that $\pi_{R_{\beta}}\left(\left(t_{N+1} \cdots t_{N+p}\right)^{h} w^{(n)}\right)<r_{p(h+2)+\ell}$. Then

$$
\left\langle r_{n}-1\right\rangle_{R_{\beta}}=t_{1} \cdots t_{N}\left(t_{N+1} \cdots t_{N+p}\right)^{j-h} z^{(n)}
$$

where $z^{(n)}$ is a word of length $p(h+2)+\ell$ that is the normal $R_{\beta^{-}}$ representation of $\left(t_{N+1} \cdots t_{N+p}\right)^{h} w^{(n)}$. From this follows that the set $\left\{\left\langle r_{n}-1\right\rangle_{R_{\beta}} \mid n \in I(\ell)\right\}$ is not recognizable by a finite automaton, and so it is for the set $H$ itself.

Case 2. $p<N+1$.
Let $k$ be the smallest integer $\geq 2$ such that $N+1 \leq k p$. Then from Eq. (3) and (4) follows that, for $n=N+p(j+2)+\ell$, with $1 \leq \ell \leq p, r_{n}-1$ has a $R_{\beta}$-representation of the form

$$
\left(r_{n}-1\right)_{R_{\beta}}=t_{1} \cdots t_{N}\left(t_{N+1} \cdots t_{N+p}\right)^{j+1-k} w^{(n)}
$$

where $w^{(n)}$ is a word of length $p(k+1)+\ell$, corresponding to the polynomial

$$
\begin{align*}
W^{(n)}(X)= & \left(t_{N+1}+t_{N+2} X+\cdots t_{N+p} X^{p-1}\right)\left(1+X+\cdots+X^{k}\right) \\
& +X^{k}\left(X^{p-N-1}-t_{1} X^{p-N}-\cdots-t_{N} X^{p-1}\right) \\
& -(j+1) K^{\prime}(X) X^{p k-N-1}-X^{p(k+1)+\ell-1} \tag{6}
\end{align*}
$$

With the same reasoning as in Case 1, we show that $H$ is not recognizable by a finite automaton.

## 9 Example : the quadratic case

Here we are interested only in the case where the root $\beta>1$ of the polynomial $P(X)=X^{2}-a X-b$, with $a$ and $b$ in $\mathbb{Z}$, is a Parry number, which is the case only if $a \geq b \geq 1$, or if $a \geq 3$ and $-a+2 \leq b \leq-1$. Note that $\beta$ is in fact a Pisot number. We denote the conjugate of $\beta$ by $\beta^{\prime},\left|\beta^{\prime}\right|<1$.

### 9.1 The finite type case

Suppose that $a \geq b \geq 1$. Then the $\beta$-expansion of 1 is $d_{\beta}(1)=a b$, and the canonical alphabet is $A_{\beta}=\{0, \ldots, a\}$. Forbidden words are those containing a factor in the finite set $I=\{a b, a(b+1), \ldots, a a\}$, hence the dynamical system $S_{\beta}$ associated with $\beta$ is of finite type. It is the set of bi-infinite sequences in the automaton described in Figure 2.


Fig. 2. Automaton in the finite type case

The matrix $M$ of $S_{\beta}$ is

$$
M=\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)
$$

The Fibonacci-like sequence $U_{\beta}$ is defined by $u_{n}=a u_{n-1}+b u_{n-2}$ for $n \geq 2$, with $u_{0}=1$ and $u_{1}=a+1$.

The Lucas-like sequence $V_{\beta}$ is defined by $v_{n}=a v_{n-1}+b v_{n-2}$ for $n \geq 3$, with $v_{0}=1, v_{1}=\beta+\beta^{\prime}=a$ and $v_{2}=\beta^{2}+\beta^{\prime 2}=a^{2}+2 b$. In the special case in which $a=b=1$ (Fibonacci), this definition gives $v_{0}=v_{1}=1$, which is not allowed, since the sequence must be stricly increasing. This case has been handled in Section 3.

Note that, for $n \geq 1$

$$
v_{n}=\frac{a-2 b}{a-b+1} u_{n}+\frac{2 a+2 b-a b}{a-b+1} u_{n-1}
$$

The sequence $V_{\beta}$ is exactly realizable. It is proved in [23] that if $a$ and $b$ are in $\mathbb{N}$, if $\Delta=a^{2}+4 b$ is not a square, and if $a$ and $a^{2}+2 b$ are relatively prime, then a sequence $V$ satisfying the polynomial $P$ is exactly realizable if and only if $\frac{v_{2}}{v_{1}}=\frac{a^{2}+2 b}{a}$.

### 9.2 The infinite sofic case

Suppose that $a \geq 3$ and $-a+2 \leq b \leq-1$. Then $d_{\beta}(1)=(a-1)(a+b-1)^{\omega}$ and the canonical alphabet is $A_{\beta}=\{0, \ldots, a-1\}$. The dynamical system $S_{\beta}$ associated with $\beta$ is sofic : it is the set of bi-infinite sequences in the automaton described in Figure 3. A word is forbidden if and only if it contains a factor in the set $I=\left\{(a-1)(a+b-1)^{n} d \mid a+b \leq d \leq\right.$ $a-1, n \geq 0\}$, which is recognizable by a finite automaton.


Fig. 3. Automaton in the sofic case

The matrix $M$ of $S_{\beta}$ is

$$
M=\left(\begin{array}{cc}
a-1 & 1 \\
a+b-1 & 1
\end{array}\right)
$$

The companion matrix of $\beta$ is

$$
C=\left(\begin{array}{ll}
a & 1 \\
b & 0
\end{array}\right)
$$

The Fibonacci-like sequence $U_{\beta}$ is defined by $u_{n}=a u_{n-1}+b u_{n-2}$ for $n \geq 2$, with $u_{0}=1$ and $u_{1}=a$.

The Lucas-like sequence $V_{\beta}$ is defined by $v_{n}=a v_{n-1}+b v_{n-2}$ for $n \geq 3$, with $v_{0}=1, v_{1}=\beta+\beta^{\prime}=a$ and $v_{2}=\beta^{2}+\beta^{\prime 2}=a^{2}+2 b$.

Note that, for $n \geq 1$ we have

$$
v_{n}=2 u_{n}-a u_{n-1}
$$

We have that, for $n \geq 1, \operatorname{Per}_{n}\left(S_{\beta}\right)=v_{n}-1$, since there are two different loops labelled by $(a+b-1)$ in the automaton of Figure 3 , one from state 1 and the other one from state 2 , because $0<a+b-1 \leq a-2$.

The sequence $R_{\beta}=\left(r_{n}\right)_{n \geq 0}$ defined by

$$
r_{n}=(a+1) r_{n-1}+(b-a) r_{n-2}-b r_{n-3}
$$

for $n \geq 3$, and $r_{0}=1, r_{1}=a-1, r_{2}=a^{2}+2 b-1$ and $r_{3}=a^{3}+3 a b-1$, exactly realizes the beta-shift.

Example 1. Take $a=3$ and $b=-1$. Then $\beta=\frac{3+\sqrt{5}}{2}, d_{\beta}(1)=21^{\omega}$, and $U_{\beta}=\{1,3,8,21,55,144,377, \ldots\}$ is the sequence of Fibonacci numbers of even index; $V_{\beta}=\{1,3,7,18,47,123,322, \ldots\}$ is the sequence of Lucas numbers of even index $n$ for $n \geq 1$. The sequence which exactly realizes $S_{\beta}$ is $R_{\beta}=\{1,2,6,17,46,122,321, \ldots\}$. The set $H=\left\{\left\langle r_{n}-1\right\rangle_{R_{\beta}} \mid n \geq 1\right\}$ is equal to $H=\{1,21,220,2121,21200,211201,2111210,21111211$, 211111220, 2111112000, ...\}.

## 10 Quadratic Pisot units

Here $\beta$ is a quadratic Pisot unit, that is to say the root $>1$ of the polynomial $P(X)=X^{2}-a X-1$, with $a \geq 1$, or of the polynomial $P(X)=X^{2}-a X+1$, with $a \geq 3$. In that case there are nice properties connecting the numeration in the systems $U_{\beta}$ and $V_{\beta}$ and in base $\beta$. It is known that, when $\beta$ is a quadratic Pisot unit, every positive integer has a finite $\beta$-expansion [15], the conversion from $U_{\beta}$-representations to $\beta$-representations folded around the radix point is computable by a finite automaton [14], and this property is characteristic of quadratic Pisot units [16].

As an example, we give in Table 2 the $\varphi$-expansions of the first integers.

| $N$ | $\varphi$-expansions |
| :---: | :---: |
| 1 | 1. |
| 2 | 10.01 |
| 3 | 100.01 |
| 4 | 101.01 |
| 5 | 1000.1001 |
| 6 | 1010.0001 |
| 7 | 10000.0001 |
| 8 | 10001.0001 |
| 9 | 10010.0101 |
| 10 | 10100.0101 |
| 11 | 10101.0101 |

Table 2. $\varphi$-expansions of the 11 first integers

We now make the link with the Lucas-like numeration $V_{\beta}$.

### 10.1 Case $\beta^{2}=a \beta+1$

First suppose that $a \geq 2$. The following result is a simple consequence of the fact that for $n \geq 1, v_{n}=\beta^{n}+\beta^{\prime n}$ and that $\beta^{\prime}=-\beta^{-1}$.

Lemma 1. Let $B$ be a finite alphabet of digits containing $A_{V_{\beta}}$. If $(N)_{V_{\beta}}=$ $d_{k} \cdots d_{0}$, with $d_{i} \in B$, then $(N)_{\beta}=d_{k} \cdots d_{0} \cdot \bar{d}_{1} d_{2} \bar{d}_{3} \cdots(-1)^{k} d_{k}$.

Note that the digits in $(N)_{\beta}$ are elements of the alphabet $\tilde{B}=\{d, \bar{d} \mid d \in$ $B\}$. Then the $\beta$-expansion of $N$ is obtained by using the normalization $\nu_{\beta, \tilde{B}^{\mathrm{N}}}$ (which is computable by a finite automaton).

Now we treat the case $a=1$. The connection between Lucas representations and representations in base the golden mean $\varphi$ is the following one.

Lemma 2. Let $B$ be a finite alphabet of digits containing $A_{L}$. If $(N)_{L}=$ $d_{k} \cdots d_{1}$, with $d_{i} \in B$, then $(N)_{\varphi}=d_{k} \cdots d_{1} 0 \cdot \bar{d}_{1} d_{2} \cdots(-1)^{k} d_{k}$.

As above, the $\varphi$-expansion of $N$ is obtained by using the normalization $\nu_{\varphi, \tilde{B}^{\mathrm{N}}}$.

### 10.2 Case $\beta^{2}=a \beta-1$

Then $d_{\beta}(1)=(a-1)(a-2)^{\omega}$.
The following lemma is just a consequence of the fact that for $n \geq 1$, $v_{n}=\beta^{n}+\beta^{\prime n}$ and that $\beta^{\prime}=\beta^{-1}$.

Lemma 3. Let $B$ be a finite alphabet of digits containing $A_{V_{\beta}}$. If $(N)_{V_{\beta}}=$ $d_{k} \cdots d_{0}$, with $d_{i} \in B$, then $(N)_{\beta}=d_{k} \cdots d_{0} \cdot d_{1} \cdots d_{k}$.

Proposition 9. If $d_{k} \cdots d_{0}$ is the normal $V_{\beta}$-representation of $N$ then $d_{k} \cdots d_{0} \cdot d_{1} \cdots d_{k}$ is the $\beta$-expansion of $N$.

Proof. Note that $G\left(V_{\beta}\right)=\left\{w \in G\left(U_{\beta}\right) \mid w \neq w^{\prime}(a-1)(a-2)^{n}, n \geq\right.$ $1\}$. Now, it is enough to show that if $w=d_{k} \cdots d_{0}$ is in $G\left(V_{\beta}\right)$, then $d_{k} \cdots d_{1} d_{0} d_{1} \cdots d_{k}$ contains no factor in $I=\left\{(a-1)(a-2)^{n}(a-1) \mid n \geq 0\right\}$. First, $w$ has no factor in $I$ since $G\left(V_{\beta}\right) \subset G\left(U_{\beta}\right)$. Second, $d_{0} d_{1} \cdots d_{k}$ has no factor in $I$ either, because $I$ is symmetrical. Third, suppose that $g=$ $d_{k} \cdots d_{1} d_{0} d_{1} \cdots d_{k}$ is of the form $g=g^{\prime}(a-1)(a-2)^{j}(a-2)^{n-j}(a-1) g^{\prime \prime}$, with $w=g^{\prime}(a-1)(a-2)^{j}$. Then $w \notin G\left(V_{\beta}\right)$, a contradiction.

## References

1. M.-J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J.- P. Schreiber, Pisot and Salem numbers, Birkha̋user, 1992.
2. A. Bertrand, Développements en base de Pisot et répartition modulo 1. C.R.Acad. Sc., Paris 285 (1977), 419-421.
3. A. Bertrand-Mathis, Comment écrire les nombres entiers dans une base qui n'est pas entière. Acta Math. Acad. Sci. Hungar. 54 (1989), 237-241.
4. A. Bès, An extension of the Cobham-Semënov Theorem. Journal of Symbolic Logic 65 (2000), 201-211.
5. J. R. Bűchi, Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen Math. 6 (1960), 66-92.
6. V. Bruyère and G. Hansel, Bertrand numeration systems and recognizability. Theoret. Comp. Sci. 181 (1997), 17-43.
7. A. Cobham, On the base-dependence of sets of numbers recognizable by finite automata. Math. Systems Theory 3 (1969), 186-192.
8. F. Durand, A generalization of Cobham's Theorem. Theory of Computing Systems 31 (1998), 169-185.
9. S. Eilenberg, Automata, Languages and Machines, vol. A, Academic Press, 1974.
10. S. Fabre, Une généralisation du théorème de Cobham. Acta Arithm. 67 (1994), 197-208.
11. A.S. Fraenkel, Systems of numeration. Amer. Math. Monthly 92(2) (1985), 105114.
12. Ch. Frougny, Representation of numbers and finite automata. Math. Systems Theory 25 (1992), 37-60.
13. Ch. Frougny, Conversion between two multiplicatively dependent linear numeration systems. In Proceedings of LATIN 02, Lectures Notes in Computer Science 2286 (2002), 64-75.
14. Ch. Frougny and J. Sakarovitch, Automatic conversion from Fibonacci representation to representation in base $\varphi$, and a generalization. Internat. J. Algebra Comput. 9 (1999), 351-384.
15. Ch. Frougny and B. Solomyak, On Representation of Integers in Linear Numeration Systems, In Ergodic theory of $\mathbf{Z}^{d}$-Actions, edited by M. Pollicott and K. Schmidt, London Mathematical Society Lecture Note Series 228 (1996), Cambridge University Press, 345-368.
16. Ch. Frougny and B. Solomyak, On the context-freeness of the $\theta$-expansions of the integers. Internat. J. Algebra Comput. 9 (1999), 347-350.
17. G. Hansel, Systèmes de numération indépendants et syndéticité. Theoret. Comp. Sci. 204 (1998), 119-130.
18. M. Hollander, Greedy numeration systems and regularity. Theory of Computing Systems 31 (1998), 111-133.
19. D. Lind and B. Marcus, An Introduction to Symbolic Dynamics, Cambridge University Press, 1995.
20. M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, 2002.
21. W. Parry, On the $\beta$-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960), 401-416.
22. Y. Puri and T. Ward, A dynamical property unique to the Lucas sequence. Fibonacci Quartely 39 (2001), 398-402.
23. Y. Puri and T. Ward, Arithmetic and growth of periodic orbits. J. of Integer Sequences 4 (2001), Article 01.2.1.
24. A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957), 477-493.
25. A. L. Semënov, The Presburger nature of predicates that are regular in two number systems. Siberian Math. J. 18 (1977), 289-299.
26. J. Shallit, Numeration systems, linear recurrences, and regular sets. Inform. Comput. 113 (1994), 331-347.

[^0]:    ${ }^{1}$ A Pisot number is an algebraic integer such that its algebraic conjugates are strictly less than 1 in modulus. The golden mean and the natural numbers are Pisot numbers.

