
On-line digit set onversion in real baseChristiane FrougnyUniversit�e Paris 8 and L.I.A.F.A. �Dediated to Jean Berstel for his sixtieth birthdayAbstratLet � be a real number > 1. The digit set onversion between real numbers repre-sented in �xed base � is shown to be omputable by an on-line algorithm, and thus is aontinuous funtion. When � is a Pisot number the digit set onversion is omputableby an on-line �nite automaton.1 IntrodutionIn omputer arithmeti, on-line omputation onsists of performing arithmeti operationsin Most Signi�ant Digit First (MSDF) mode, digit serially after a ertain lateny delay[8℄. This allows the pipelining of di�erent operations suh as addition, multipliation anddivision. It is also appropriate for the proessing of real numbers having in�nite expansions:it is well known that when multiplying two real numbers, only the left part of the resultis signi�ant. To be able to perform on-line addition, it is neessary to use a redundantnumber system (see [19℄, [8℄).On the other hand, a funtion is omputable by a �nite automaton if it needs only a�nite auxiliary storage memory, independent of the size of the data. In that setting, it isknown that addition of two integers in the lassial b-ary system is omputable by a �niteautomaton, but that squaring is not (see [7℄). Atually, the natural �nite automaton onedesigns to perform addition is a sequential one, proessing numbers in the Least Signi�antDigit First (LSDF) mode.On-line �nite automata have been introdued by Muller [16℄. They are sequential �niteautomata proessing data in MSDF mode. In integral base b on the anonial digit setf0; : : : ; b� 1g, addition is not on-line omputable, but with a balaned alphabet of signeddigits of the form f�a; : : : ; ag with b=2 � a � b�1, using the algorithms of Avizienis [1℄ andChow and Robertson [6℄, addition is omputable by an on-line �nite automaton (see [16℄,[14℄). In the same spirit we have shown that, in a omplex base of the form mpb, where b isa relative integer suh that jbj � 2, and with digit set f�a; : : : ; ag with jbj=2 � a � jbj � 1,addition is omputable by an on-line �nite automaton as well [12℄.�L.I.A.F.A., UMR 7089, Case 7014, 2 plae Jussieu, 75251 Paris Cedex 05, Frane.Email: Christiane.Frougny�liafa.jussieu.fr 1



In this paper we onsider a base � whih is a real number > 1, generally not an integer.For any � > 1, by the greedy algorithm of R�enyi [18℄, one an ompute a representation inbase � of any real number belonging to the interval [0; 1℄, alled its �-expansion, and wherethe digits are elements of the anonial digit set A = f0; : : : ; b�g if � is not an integer, orof A = f0; : : : ; � � 1g if � is an integer. In suh a representation, not all the patterns ofdigits are allowed (see [17℄ for instane). Reall that a Pisot number is an algebrai integersuh that all its algebrai onjugates have modulus less than 1. The natural integers andthe golden ratio are Pisot numbers. In a previous work, we have shown that the funtion ofnormalization whih maps a representation in real base � of a number on any digit set ontoits �-expansion is omputable by a �nite automaton if and only if � is a Pisot number [2℄,but the automaton is not sequential, that is to say, data are not proessed deterministiallyin MSDF nor in LSDF mode. It is known that it is not possible to �nd a sequential �niteautomaton realizing the normalization [10℄.A digit set onversion in base � is a funtion from a digit set D onto the anonialdigit set A whih transforms the �-representation of a number x with digits in D onto arepresentation of x with digits in the anonial digit set A. In general, the onversion isnonnormalized, that is to say, the result is expressed with digits in A, but need not be thegreedy �-expansion. Nonnormalized addition and multipliation by a �xed positive integerare partiular ases of digit set onversions.For some Pisot bases of a speial kind, nonnormalized onversion was known to beomputable by an on-line �nite automaton, namely for bases � > 1 where � is the dominantroot of an equation of the formXm � aXm�1 � aXm�2 � � � � � aX � bwhere a � b � 1 are integers, and m � 2. The most well-known ase is the golden ratio(1 +p5)=2, with m = 2, a = b = 1 (see [12℄).In this work we generalize this result to any Pisot number.The paper is organized as follows. First we show that for any real base � > 1 and anyset of nonnegative digits D � A = f0; : : : ; b�g, the (nonnormalized) onversion from D toA is omputable by an on-line algorithm (Theorem 1). We then show that suh a funtionis ontinuous for the produt topology on the set DN , and the funtion indued on realnumbers is ontinuous as well.When � is a Pisot number, we show that this algorithm an be realized by an on-line�nite automaton (Theorem 2). Note that this result applies to the ase where � is aninteger and the alphabet A is equal to f0; : : : ; �g. The ase � = 2 and A = f0; 1; 2g is thewell-known \Carry-Save" representation used in omputer arithmeti.Conversely, if for any digit set D, this onversion from D to A is realizable by an on-line�nite automaton, then the base must be an algebrai integer. We give an example of aPerron number whih is not a Pisot number suh that the onversion is not realizable byan on-line �nite automaton.In the ase where � is a Pisot number, one an de�ne linear numeration systems asso-iated with �, like the Fibonai numeration system assoiated with the golden ratio. Inthese systems, any natural number has a greedy representation by an algorithm of Fraenkel[9℄. As a orollary of the previous results, the digit set onversion in a linear numerationsystem assoiated with a Pisot number is omputable by an on-line �nite automaton.2



A preliminary version of this work has been presented in [13℄.2 PreliminariesAn alphabet A is a �nite set. A �nite sequene of elements of A is alled a word, and the setof words on A is the free monoid A�. The empty word is denoted by ". The set of in�nitesequenes or in�nite words on A is denoted by AN . Let v be a word of A�, denote by vnthe onatenation of v to itself n times, and by v! the in�nite onatenation vvv � � � .2.1 Beta-representationsA survey on numeration systems an be found in [11℄. Let � > 1 be a real number and letD be an alphabet of digits. A �-representation on D of a number x of [0; 1℄ is an in�nitesequene (dj)j�1 of DN suh that Pj�1 dj��j = x.Any real number x 2 [0; 1℄ an be represented in base � by the following greedy algorithm[18℄:Denote by b: and by f:g the integral part and the frational part of a number. Letx1 = b�x and let r1 = f�xg. Then iterate for j � 2, xj = b�rj�1 and rj = f�rj�1g.Thus x = Pj�1 xj��j , where the digits xj are elements of the anonial alphabet A =f0; : : : ; b�g if � =2 N, A = f0; : : : ; � � 1g otherwise. The sequene (xj)j�1 of AN is alledthe �-expansion of x. When � is not an integer, a number x may have several di�erent �-representations on A: this system is naturally redundant. The �-expansion obtained by thegreedy algorithm is the greatest one in the lexiographi order. When a �-representationends with in�nitely many zeroes, it is said to be �nite, and the 0's are omitted.Let d�(1) = (tj)j�1 be the �-expansion of 1. If d�(1) is �nite, d�(1) = t1 � � � tN , setd��(1) = (t1 � � � tN�1(tN � 1))! , otherwise set d��(1) = d�(1). We reall the following resultof Parry [17℄. An in�nite word s = (sj)j�1 is the �-expansion of a number x of [0; 1[ if andonly if for every p � 1, spsp+1 � � � is smaller in the lexiographi order than d�(1)�.Let D be a digit set. The numerial value in base � on D is the funtion �� : DN �! Rsuh that ��((dj)j�1) =Pj�1 dj��j . The normalization on D is the funtion �D : DN �!AN whih maps any sequene (dj)j�1 2 DN where x = ��((dj)j�1) belongs to [0; 1℄ ontothe �-expansion of x.A digit set onversion in base � from D to A is a funtion � : DN �! AN suh that foreah sequene (dj)j�1 2 DN where x = ��((dj)j�1) belongs to [0; 1℄, there exists a sequene(aj)j�1 2 AN suh that x = ��((aj)j�1). Note that apriori the result of a onversion isnot unique, but all the proesses we shall onsider later on are deterministi, and thusompute funtions. Remark that the image �((dj)j�1) belongs to AN , but need not be the�-expansion of x as omputed by the greedy algorithm.To perform addition in base � the proess is the following one: take two numbersv = Pj�1 vj��j and y = Pj�1 yj��j with vj and yj in A, suh that v + y 2 [0; 1℄. Setzj = vj+yj. Then zj is an element of B = f0; : : : ; 2b�g, and v+y =Pj�1 zj��j . Additiononsists of transforming the representation (zj)j�1 of v + y on B into an equivalent one(sj)j�1, suh that v + y = Pj�1 sj��j, with sj 2 A. Multipliation by a �xed integerm � 1 is analogous: multiply by m eah digit of the �-expansion. This gives a sequeneon the alphabet f0; : : : ;mb�g, to be onverted into an equivalent �-representation on A.3



Nonnormalized addition and multipliation by a �xed positive integer are thus speial asesof digit set onversion.2.2 On-line omputabilityLet X and Y be two �nite digit sets, X is the input alphabet, and Y is the output alphabet.Let ' : XN ! Y N(xj)j�1 7! (yj)j�1The funtion ' is said to be on-line omputable with delay Æ if there exists a naturalnumber Æ suh that, for eah j � 1 there exists a funtion �j : Xj+Æ ! Y suh thatyj = �j(x1 � � � xj+Æ).It is well known that some funtions are not on-line omputable, like addition in thebinary system with anonial digit set f0; 1g. Addition is onsidered as a onversion � fromf0; 1; 2g to f0; 1g. Sine �(01n20!) = 10! and �(01n0!) = 01n0! for any n � 1, one seesthat the most signi�ant digit of the result depends on the least signi�ant digits of theinput.2.3 AutomataWe refer the reader to [7℄. An automaton over A, A = (Q;A;E; I; T ), is a direted graphlabelled by elements of A. The set of verties, traditionally alled states, is denoted by Q,I � Q is the set of initial states, T � Q is the set of terminal states and E � Q�A�Q isthe set of labelled edges. If (p; a; q) 2 E, we note p a�! q. The automaton is �nite if Q is�nite. The automaton A is deterministi if E is the graph of a (partial) funtion from Q�Ainto Q, and if there is a unique initial state. A subset H of A� is said to be reognizableby a �nite automaton if there exists a �nite automaton A suh that H is equal to the setof labels of paths starting in an initial state and ending in a terminal state. A subset K ofAN is said to be reognizable by a �nite automaton if there exists a �nite automaton A suhthat K is equal to the set of labels of in�nite paths starting in an initial state and goingin�nitely often through a terminal state.In this paper we are interested in 2-tape automata, see [3℄. Let X and Y be twoalphabets. A 2-tape automaton is an automaton over the non-free monoid X� � Y � :A = (Q;X� � Y �; E; I; T ) is a direted graph the edges of whih are labelled by elementsof X� � Y �. Words of X� are referred to as input words, as words of Y � are referred toas output words. If (p; (f; g); q) 2 E, we note p f=g�! q. The automaton is �nite if Q andE are �nite. The �nite 2-tape automata are also known as transduers. A relation R ofX��Y � is said to be omputable by a �nite 2-tape automaton if there exists a �nite 2-tapeautomaton A suh that R is equal to the set of labels of paths starting in an initial stateand ending in a terminal state. A funtion is omputable by a �nite 2-tape automaton ifits graph is omputable by a �nite 2-tape automaton. These de�nitions extend to relationsand funtions of in�nite words as above.A sequential automaton is a 2-tape automaton where edges are labelled by elements ofX � Y �, and suh that the underlying input automaton obtained by taking the projetionover X of the label of every edge is deterministi. An on-line automaton with delay Æ,4



A = (Q;X � (Y [ "); E; fq0g; !), is a sequential automaton omposed of a transient partand of a synhronous part (see [16℄, [14℄). The set of states is equal to Q = Qt [Qs, whereQt is the set of transient states and Qs is the set of synhronous states. In the transientpart, every path of length Æ starting in the initial state q0 is of the formq0 x1="�! q1 x2="�! � � � xÆ="�! qÆwhere q0; : : : ; qÆ�1 are in Qt, xj in X, for 1 � j � Æ, and the only edge arriving in a stateof Qt is as above. In the synhronous part, edges are labelled by elements of X � Y . Thismeans that the automaton starts reading words of length � Æ and outputting nothing, andafter that delay, outputs serially one digit for eah input digit. If the set of states Q andthe set of edges E are �nite, the on-line automaton is said to be �nite.For �nite words, there is a terminal funtion ! : Qs �! Y �, whose value is onatenatedto the output word orresponding to a omputation in A. The same de�nition works forfuntions of in�nite words, onsidering in�nite paths in A, but there is no terminal funtion! in that ase.3 On-line digit set onversion in real baseLet A = f0; : : : ; b�g be the anonial alphabet assoiated with �, and let D = f0; : : : ; dgbe a digit set ontaining A, that is, d � b�. We show that the onversion from D to A isalways on-line omputable.Theorem 1 . There exists a digit set onversion � : DN �! AN in base � whih ison-line omputable with delay Æ, where Æ is the smallest positive integer suh that�Æ+1 + d � �Æ(b� + 1) (*)Proof. Clearly a number Æ satisfying (*) exists. Let k be the smallest nonnegative integersuh that d=�k(� � 1) � 1. In order to avoid overow, all input words are supposed tobegin with a run of k zeroes 1.On-line algorithm.Input: a sequene (dj)j�1 2 DN suh that d1 = � � � = dk = 0.Output: a sequene (aj)j�1 2 AN suh that Pj�1 aj��j =Pj�1 dj��j.begin q0  0for j  1 to Æ doqj  �qj�1 + djj  1while j � 1 dozÆ+j  �qÆ+j�1 + dÆ+jif zÆ+j < �Æ+1then aj  bzÆ+j=�Æelse aj  b�1Then k � Æ for any � � 3=2. 5



qÆ+j  zÆ+j � �Æajj  j + 1endProof of the algorithm.Claim: For all j � 1, one has 0 � qj < �Æ and aj 2 A.1. For 1 � j � Æ, we get qj = �j�1d1 + � � � + djThen qj � qÆ < �Æ by hypothesis on the input (dj)j�1.2. Suppose that for some j � 1 0 � qÆ+j�1 < �Æ (H)� If zÆ+j < �Æ+1 then aj = bzÆ+j=�Æ. Thus 0 � aj < �. Then qÆ+j = �ÆfzÆ+j=�Æg < �Æ.� If zÆ+j � �Æ+1 then aj = b� and qÆ+j = zÆ+j � b��Æ . Then qÆ+j � �Æ+1 � b��Æ � 0.On the other hand, qÆ+j = �qÆ+j�1+ dÆ+j � b��Æ < �Æ+1 + d� b��Æ by Hypothesis (H),thus by Condition (*), qÆ+j < �Æ. Hene the laim is proved.We then get, for all j � 1,d1� + � � � + dÆ+j�Æ+j = a1� + � � �+ aj�j + qÆ+j�Æ+j :Sine qÆ+j < �Æ, when j tends towards in�nity,Pj�1 dj��j =Pj�1 aj��j , with the digitsaj in A, thus �((dj)j�1) = (aj)j�1.Remark 1 . If Æ satis�es (*), then any natural  > Æ satis�es (*) as well.4 ContinuityLet D be a �nite alphabet. One de�nes a distane � on DN as follows: let v = (vj)j�1 andw = (wj)j�1 be in DN , �(v; w) = 2�r where r = minfj j vj 6= wjg. The set DN is then aompat metri spae. This topology is equivalent to the produt topology. We �rst provea general result, not related to the base.Proposition 1 . Let D and A be two �nite alphabets. Any funtion ' : DN �! ANwhih is on-line omputable with delay Æ is 2Æ-Lipshitz, and is thus uniformly ontinuous.Proof. Suppose that ' is on-line omputable with delay Æ. Let v and w in DN suhthat �(v; w) = 2�r. Then v = v1 � � � vr�1vrvr+1 � � � and w = v1 � � � vr�1wrwr+1 � � � withvr 6= wr. Thus '(v) = y1 � � � yr�Æ�1yr�Æyr�Æ+1 � � � and '(w) = y1 � � � yr�Æ�1sr�Æsr�Æ+1 � � � .Thus �('(v); '(w)) � 2Æ�(v; w).As a orollary we get the following result.Proposition 2 . Let D be a set of nonnegative digits ontaining A. The digit setonversion � : DN �! AN in base � de�ned in Theorem 1 is uniformly ontinuous.The results presented below are a straightforward generalization of those proved byEilenberg [7℄ in the ase where � is an integer.6



Proposition 3 . Let D be a �nite alphabet of digits. The funtion numerial value�� : DN �! R is ontinuous.Proof. Let v and w in DN suh that �(v; w) = 2�r. Then v = v1 � � � vr�1vrvr+1 � � � andw = v1 � � � vr�1wrwr+1 � � � with vr 6= wr. Let m(D) be the maximum of the absolute valuesof the elements of D. Thusj��(v)� ��(w)j = jXj�r vj��j �Xj�r wj��j j � 2 m(D)�r�1(� � 1)thus �� is ontinuous.We now onsider funtions taking their values in base � into the unit interval [0; 1℄. LetA = f0; : : : ; b�g and D = f0; : : : ; dg, d � b�. A funtion � : DN �! AN is said to be�-onsistent if there exists a funtion f : [0; 1℄ �! [0; 1℄ suh that the diagramDN �����! AN��??y ??y��[0; 1℄ ����!f [0; 1℄ommutes.Proposition 4 . Let f and � as above. If � is on-line omputable then f is ontinuous.Proof. Sine � and �� are ontinuous, so is �� Æ f . Sine �� is surjetive and ontinuous,and DN and [0; 1℄ are ompat metri spaes, the ontinuity of f follows.5 The Pisot aseAn algebrai integer is a root of a moni polynomial with integral oeÆients. A Pisotnumber is an algebrai integer > 1 suh that all its algebrai onjugates are smaller than1 in modulus. In this setion we show that if the base � is a Pisot number, the on-linealgorithm desribed above an be realized by an on-line �nite automaton. Examples arepresented in Setion 8.Theorem 2 . Let � be a Pisot number, let A = f0; : : : ; b�g, and let D = f0; : : : ; dgsuh that d � b�. There exists an on-line �nite automaton with delay Æ, where Æ satis�es(*), whih realizes a digit set onversion � : DN �! AN in base �.Proof. Let M(X) be the minimal polynomial of �, of degree m, and let �1 = �, �2, . . . ,�m be its roots. For 2 � i � m, j�ij < 1. Reall that � = Z[X℄=(M(X)) is a disrete lattieof rank m. De�ne�Æ = 8<: � if m � Æfq(X) = zÆ�1XÆ�1 + � � �+ z0 + z�1X�1 + � � �+ zÆ�mXÆ�m j Xm�Æq(X) 2 �gotherwise 7



The norm of an element q of �Æ is taken as kqk = max1�i�m jq(�i)j. For 2 � i � m seti = supfj� a�Æi j j  2 D; a 2 Ag:We de�ne an on-line automaton A = (Q;D � (A [ "); E; fq0g) as follows. The set ofsynhronous states is equal toQs = fq(X) 2 �Æ j 0 � q(�) < �Æ and for 2 � i � m; jq(�i)j < i1� j�ijg:Sine for any q in Qs, kqk is bounded, Qs is a �nite set. The set of transient states Qt isde�ned byQt = fqj(X) = d1Xj�1 + � � � + dj mod M j 1 � j � Æ � 1; d1; : : : ; dj 2 Dg [ fq0g:Note that if qj 2 Qt then qj(�) < �Æ ; and, for 2 � i � m, jqj(�i)j < d=(1�j�ij) � i=(1�j�ij)sine j�ij < 1. Hene transient states satisfy the same bound inequalities as synhronousstates. For 1 � j � Æ, transient edges are de�ned byqj�1(X) dj="�! qj(X)with q0(X) = 0 and qj(X) = Xqj�1(X) + dj .The synhronous edges are de�ned by: for j � 1 and qÆ+j�1(X) 2 Q, set an edgeqÆ+j�1(X) dÆ+j=aj�! qÆ+j(X)suh that XqÆ+j�1(X) + dÆ+j = XÆaj + qÆ+j(X) mod M(X)with aj in A. For the hoie of aj we proess as in the on-line algorithm given in Theorem 1,replaing X by �. Hene for all j � 0, 0 � qÆ+j(�) < �Æ.For 2 � i � m, we getjqÆ+j(�i)j = j�iqÆ+j�1(�i) + dÆ+j � aj�Æi j < j�ij i1� j�ij + i = i1� j�ij :Thus, for all j � 0, qÆ+j belongs to Qs. As in Theorem 1, there is an in�nite path in theautomaton A starting in q0 and labelled byq0 d1="�! q1 � � � dÆ="�! qÆ dÆ+1=a1�! qÆ+1 dÆ+2=a2�! qÆ+2 � � �i� Pj�1 dj��j =Pj�1 aj��j , with the digits aj in A, and �((dj)j�1) = (aj)j�1.Corollary 1 . If � is a Pisot number, nonnormalized addition and multipliation by a�xed positive integer are omputable by on-line �nite automata.
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6 The inverse problemWe now set up the inverse problem: if the onversion is supposed to be omputable by anon-line �nite automaton, what kind of number � must be? Although we onjeture that �must be a Pisot number, we are only able to prove the following results.Proposition 5 . If the onversion � in base � from an alphabet D = f0; � � � ; dg, d � b�,to A is realized by the on-line �nite automaton of Theorem 2, then � must be an algebraiinteger.Proof. Let Æ be the delay of the automaton A. Set d��(1) = (ei)i�1 and let s =0e1 � � � eÆ�1(eÆ+1)0!. Then ��1 < ��(s) < ��1+��Æ�1. We feed the automaton with s (inase that d = b�, and s is not an element of AN , it is always possible to hoose for s the words = 0ei1(ei+1)0! 2 AN and Æ = i). The automaton arrives in state qÆ = e1�Æ�2+ � � �+ eÆ�1and has output nothing. Then it reads (eÆ + 1) and outputs b(�qÆ + eÆ + 1)=�Æ+1 = 1.Thus the image of s in the automaton is of the form 1b2b3 � � � , that is, there is an in�nitepath starting in q0 and labelled byq0 0="�! q1 e1="�! q2 � � � eÆ�1="�! qÆ eÆ+1=1�! qÆ+1 0=b2�! qÆ+2 � � �Now we use the fat that the automaton is �nite. This implies that there exist two stateswhih are the same, i.e. there exist n � Æ and p � 1 suh that qn = qn+p. Thenqn = e1�n�2 + � � �+ eÆ�1�n�Æ + (eÆ + 1)�n�Æ�1 � �n�1 � b2�n�2 � � � � � bn�Æ�Æ:Analogously,qn+p = e1�n+p�2+� � �+eÆ�1�n+p�Æ+(eÆ+1)�n+p�Æ�1��n+p�1�b2�n+p�2�� � ��bn+p�Æ�Æ:Thus if qn = qn+p, � is an algebrai integer.Proposition 6 . Let � be an algebrai integer of degree m, and let �1 = �, �2, . . . , �mbe its algebrai onjugates. If the onversion � in base � from an alphabet D = f0; � � � ; dg,d � b�, to A is realized by the on-line �nite automaton A of Theorem 2, then for everystate q and for every i, 1 � i � m,jq(�i)j � ij�ij � 1 if j�ij > 1jq(�i)j � i1� j�ij if j�ij < 1Proof. Suppose that there is a path in Aq0 d1���dn=a1���an�Æ�! qnwith n > Æ. Then qn(X) = d1Xn�1 + � � �+ dn � a1Xn�1 � � � � � an�ÆXÆ mod M . If A is�nite there exists a p � 1 suh that qn(X) = qn+p(X). Heneqn(X) = Xpqn(X) + (dn+1 � an�Æ+1XÆ)Xp�1 + � � �+ (dn+p � an�Æ+pXÆ) mod M9



Thus for every 1 � i � m,qn(�i) = �pi qn(�i) + (dn+1 � an�Æ+1�Æi )�p�1i + � � �+ (dn+p � an�Æ+p�Æi )Therefore, if j�ij > 1 jqn(�i)j � ij�ij � 1and if j�ij < 1 jqn(�i)j � i1� j�ij :Corollary 2 . If there exists a state q of A aessible from the initial state satisfyingjq(�i)j > ij�ij � 1for some onjugate �i, i � 2, suh that j�ij > 1, then A annot be �nite.Now we make a onnexion with the problem of normalization.Corollary 3 . If the automaton A realizing the onversion from D to A is in�nite thenthe normalization �D : DN ! AN is not omputable by a �nite automaton.Proof. By a result from [10℄, the setZ(�;D) = f(j)j�1 jXj�1 j��j = 0; j 2 ~D = f�d; : : : ; 0; : : : ; dggis reognizable by a �nite automaton if and only if the number of remainders modulo M ofpolynomials of the form 1Xn�1 + � � �+ n for some (j)j�1 in Z(�;D) is �nite.But if there is in A a path from q0 to qn labelled by (d1 � � � dn; a1 � � � an�Æ), then qn(X) isthe remainder of the division of d1Xn�1+ � � �+dn�a1Xn�1�� � ��an�ÆXÆ byM . Consideran in�nite path in A, with an in�nite number of di�erent states. This implies that Z(�;D)is not reognizable by a �nite automaton.In fat, this result implies that if Z(�;D) is reognizable by a �nite automaton, thenthe automaton A realizing the onversion from D to A is omputable by a �nite automaton,and it is known that this is the ase when � is a Pisot number [10℄. But the proof given inTheorem 2 is more diret.Now we give an example for whih the automaton realizing the onversion is not �nite.Example 1 . Reall that a Perron number is a real � > 1 suh that its algebrai onjugatesare less than � in modulus. Let us onsider the polynomial M(X) = X4 � 2X3 � 2X2 � 2.The dominant root ofM is � � 2:803. There is a onjugate �2 � �1:134, thus � is a Perronnumber whih is not a Pisot number. We have d�(1) = 2202 and A = f0; 1; 2g. Let D = A,then the delay Æ omputed by (*) is equal to Æ = 3. Suppose that the onversion is realizedby the �nite automaton A. There is a pathq0 d1���dn=a1���an�Æ�! qn10



with n = 17, d1 � � � dn = 00022101020102010, a1 � � � an�3 = 00100010200020 and qn(X) =�4X2 + 15X � 8 + 8X�1. Here 2=(j�2j � 1) � 36:650 and qn(�2) � �37:211, thus theautomaton A annot be �nite.As a onsequene the normalization �A on A is not omputable by a �nite automaton.Note that sine � is not a Pisot number, then for any alphabet D � f0; : : : ; b� + 1g =f0; 1; 2; 3g, the normalization �D on D is not omputable by a �nite automaton (see [2, 15℄),but up to now nothing was known for the normalization �A on the anonial alphabet. �7 Numeration systems for the integersLet us �rst reall some de�nitions. Let U = (uj)j�1 be a stritly inreasing sequene ofintegers with u0 = 1. Every positive integer N has a representation in the system U bythe following greedy algorithm (see [9℄): Let n suh that un � N < un+1; let sn be thequotient of the Eulidean division of N by un, and let rn be the remainder: sn = q(N;un)and rn = r(N;un). Then iterate sj = q(rj+1; uj) and rj = r(rj+1; uj) for n � 1 � j � 0.Then s = snun + � � � + s0u0. The digits sj are suh that 0 � sj < uj+1=uj . The wordsn � � � s0 is the normal U�-representation of s.Let d��(1) = (ej)j�1, see Subset. 2.1. A sequene U� = (uj)j�0 of integers an beanonially assoiated with � as follows. Let u0 = 1 and for j � 1 letuj = e1uj�1 + � � � + eju0 + 1:The following result holds true [5℄: the �nite fators of �-expansions of real numbers of[0; 1℄ and the normal U�-representations of positive integers are the same. In partiular,normal U�-representations of the integers are words on the alphabet A = f0; : : : ; b�g. Thesystem U� is the numeration system assoiated with �.Let � : D� �! A�. The prolongation of � is a funtion �̂ : D�0! �! A�0! de�nedby : let v and w be in D� suh that �(v) = w, then �̂(v0!) = w0!. The funtion � will besaid to be ontinuous if its prolongation is ontinuous. By Theorem 1 and Proposition 2we have the following result.Corollary 4 . Let U� be the numeration system assoiated with a number � > 1. LetD be a set of nonnegative digits ontaining A. Then there exists a digit set onversion� : D� �! A� in the system U� whih is on-line omputable and ontinuous.Proof. The algorithm presented in Theorem 1 an be used again. Let d1 � � � dn 2 D� bean input word satisfying N = d1un�1 + � � �+ dnu0 < un. Suppose that n > Æ. So the worda1 � � � an�Æ is output, and the algorithm stops in a state qn, the \value" of whih is equal toqn = N � (a1un�1+ � � �+an�ÆuÆ). For every state qn de�ne !(qn) as a U�-representation ofqn on the alphabet A and of length Æ (this is possible beause qn < uÆ). Thus we get that�(d1 � � � dn) = a1 � � � an�Æ!(qn) 2 A�.If n � Æ, then �(d1 � � � dn) = !(qn), qn being the state where the algorithm stops.If � is a Pisot number then d�(1) is eventually periodi [4℄. In that ase, the sequeneU� is linearly reurrent.As a diret onsequene of Theorem 2 we get11



Corollary 5 . Let U� be the linear numeration system assoiated with a Pisot number�. Let D be a set of nonnegative digits ontaining A. Then there exists a digit set onversion� : D� �! A� in the system U� whih is omputable by an on-line �nite automaton withdelay Æ, where Æ satis�es (*).Proof. We an use the onstrution given in Theorem 2. The terminal funtion ! isde�ned as in Corollary 4.8 ExamplesWe illustrate the previous results on well-known Pisot numbers.Example 2 . Let � be an integer � 2. On the alphabet A = f0; � � � ; �g, the representationof numbers is redundant. Addition on A is omputable by an on-line �nite automaton, withdelay 2.For � = 2, this representation is the well-known Carry-Save representation. We givebelow the on-line �nite automaton for addition in base � = 2. Let A = (Q; f0; : : : ; 4g �(f0; 1; 2g["); E; q0), with Q = Qt[Qs. All input words begin with 00. The set of transientstates is Qt = fq0; q1g. The set of synhronous states isQs = fq(X) 2 Z[X℄=(X � 2) j 0 � q(2) < 4g = f0; 1; 2; 3g:Transient edges are q0 0="�! q1 0="�! 0:The transition matrix of the synhronous part of A is given in the array below: the entry(i; j) ontains the label of egdes from state i to state j.0 1 2 30 0=0, 4=1 1=0 2=0 3=01 2=1 3=1 0=0, 4=1 1=02 4=2, 0=1 1=1 2=1 3=13 2=2 3=2 4=2, 0=1 1=1For integers, that is to say for �nite representations, the terminal funtion is de�ned by!(0) = 00, !(1) = 01, !(2) = 10, !(3) = 11. �Example 3 . Let � = (1 + p5)=2 be the golden ratio, the assoiated linear numerationsystem is the Fibonai numeration system, with u0 = 1, u1 = 2 and for n � 2, un =un�1 + un�2. The anonial alphabet is A = f0; 1g. Formula (*) gives Æ = 4 for addition,withD = f0; 1; 2g. This value is not optimal: I have given in [12℄ an on-line �nite automatonfor addition with delay 3. The automaton onstruted with delay 4 by the method aboveis not minimal in the number of states, but it is equivalent to the automaton with delay 3.In fat, the onstrution given in Theorem 1 and in Theorem 2 works with delay Æ0 = 3,the bound on the states beoming 0 � q(�) � �with � = � + 2, and Condition (*) being replaed by��+ d � b��Æ0 + � (**)12



The on-line �nite automaton with delay 3 is desribed below.Let A = (Q; f0; 1; 2g � (f0; 1g [ "); E; fq0g). Input words begin with 00. The set oftransient states is fq0; q1; q2g. The elements of � are denoted by words of length 2, withd1d2 representing the polynomial d1X + d2, and the signed digit �1 being denoted by �1.The transient part of A is of the formq0 0="�! q1 0="�! q2 and q2 0="�! 00; q2 1="�! 01; q2 2="�! 02.In the synhronous part of A edges are the following ones:00 01 02 11 12 10 �12 03 1�1 2000 0=0 1=0 2=001 1=0 2=0 0=002 1=1 2=1 0=011 0=1 1=1 2=112 1=1 2=1 0=110 0=0 1=0 2=1�12 2=0 1=0 0=003 2=1 1=1 0=11�1 0=0 1=0 2=020 0=1 1=1 2=1For the Fibonai numeration system the terminal funtion is de�ned by !(00) = 000,!(01) = 001, !(02) = 010, !(11) = 100, !(12) = 101, !(10) = 010, !(�12) = 000, !(03) =100, !(1�1) = 001, !(20) = 101. �Example 4 . Let � = (3 + p5)=2. Here A = f0; 1; 2g. For addition the delay omputedby (*) is 3, whih is minimal. �Referenes[1℄ A. Avizienis, Signed-digit number representations for fast parallel arithmeti. IRETransations on eletroni omputers 10 (1961), 389{400.[2℄ D. Berend and Ch.Frougny, Computability by �nite automata and Pisot bases. Math.Systems Theory 27 (1994), 274{282.[3℄ J. Berstel, Transdutions and ontext-free languages, Teubner, 1979.[4℄ A. Bertrand, D�eveloppements en base de Pisot et r�epartition modulo 1. C.R.Aad.S., Paris 285 (1977), 419{421.[5℄ A. Bertrand-Mathis, Comment �erire les nombres entiers dans une base qui n'est pasenti�ere. Ata Math. Aad. Si. Hungar. 54 (1989), 237{241.[6℄ C.Y. Chow and J.E.Robertson, Logial design of a redundant binary adder. Pro.4th Symposium on Computer Arithmeti, I.E.E.E. Computer Soiety Press (1978),109{115. 13
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