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Abstract

Let 3 be a real number > 1. The digit set conversion between real numbers repre-
sented in fixed base § is shown to be computable by an on-line algorithm, and thus is a
continuous function. When £ is a Pisot number the digit set conversion is computable
by an on-line finite automaton.

1 Introduction

In computer arithmetic, on-line computation consists of performing arithmetic operations
in Most Significant Digit First (MSDF) mode, digit serially after a certain latency delay
[8]. This allows the pipelining of different operations such as addition, multiplication and
division. It is also appropriate for the processing of real numbers having infinite expansions:
it is well known that when multiplying two real numbers, only the left part of the result
is significant. To be able to perform on-line addition, it is necessary to use a redundant
number system (see [19], [8]).

On the other hand, a function is computable by a finite automaton if it needs only a
finite auxiliary storage memory, independent of the size of the data. In that setting, it is
known that addition of two integers in the classical b-ary system is computable by a finite
automaton, but that squaring is not (see [7]). Actually, the natural finite automaton one
designs to perform addition is a sequential one, processing numbers in the Least Significant
Digit First (LSDF) mode.

On-line finite automata have been introduced by Muller [16]. They are sequential finite
automata processing data in MSDF mode. In integral base b on the canonical digit set
{0,...,b— 1}, addition is not on-line computable, but with a balanced alphabet of signed
digits of the form {—a,...,a} withb/2 < a < b—1, using the algorithms of Avizienis [1] and
Chow and Robertson [6], addition is computable by an on-line finite automaton (see [16],
[14]). In the same spirit we have shown that, in a complex base of the form /b, where b is
a relative integer such that |b| > 2, and with digit set {—a,...,a} with |b]/2 < a < |b] — 1,
addition is computable by an on-line finite automaton as well [12].
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In this paper we consider a base 8 which is a real number > 1, generally not an integer.
For any 8 > 1, by the greedy algorithm of Rényi [18], one can compute a representation in
base /3 of any real number belonging to the interval [0, 1], called its S-expansion, and where
the digits are elements of the canonical digit set A ={0,...,[3]} if 8 is not an integer, or
of A=1{0,...,8 — 1} if § is an integer. In such a representation, not all the patterns of
digits are allowed (see [17] for instance). Recall that a Pisot number is an algebraic integer
such that all its algebraic conjugates have modulus less than 1. The natural integers and
the golden ratio are Pisot numbers. In a previous work, we have shown that the function of
normalization which maps a representation in real base  of a number on any digit set onto
its B-expansion is computable by a finite automaton if and only if 5 is a Pisot number [2],
but the automaton is not sequential, that is to say, data are not processed deterministically
in MSDF nor in LSDF mode. It is known that it is not possible to find a sequential finite
automaton realizing the normalization [10].

A digit set conversion in base [ is a function from a digit set D onto the canonical
digit set A which transforms the S-representation of a number z with digits in D onto a
representation of z with digits in the canonical digit set A. In general, the conversion is
nonnormalized, that is to say, the result is expressed with digits in A, but need not be the
greedy [-expansion. Nonnormalized addition and multiplication by a fixed positive integer
are particular cases of digit set conversions.

For some Pisot bases of a special kind, nonnormalized conversion was known to be
computable by an on-line finite automaton, namely for bases § > 1 where 3 is the dominant
root of an equation of the form

X™ _gX™ 1l _gX™m 2 ... _gX -0

where ¢ > b > 1 are integers, and m > 2. The most well-known case is the golden ratio
(1++5)/2, withm =2, a=>0b=1 (see [12]).
In this work we generalize this result to any Pisot number.

The paper is organized as follows. First we show that for any real base 8 > 1 and any
set of nonnegative digits D O A = {0,..., 8]}, the (nonnormalized) conversion from D to
A is computable by an on-line algorithm (Theorem 1). We then show that such a function
is continuous for the product topology on the set DN, and the function induced on real
numbers is continuous as well.

When £ is a Pisot number, we show that this algorithm can be realized by an on-line
finite automaton (Theorem 2). Note that this result applies to the case where ( is an
integer and the alphabet A is equal to {0,...,5}. The case f =2 and A = {0,1,2} is the
well-known “Carry-Save” representation used in computer arithmetic.

Conversely, if for any digit set D, this conversion from D to A is realizable by an on-line
finite automaton, then the base must be an algebraic integer. We give an example of a
Perron number which is not a Pisot number such that the conversion is not realizable by
an on-line finite automaton.

In the case where  is a Pisot number, one can define linear numeration systems asso-
ciated with g, like the Fibonacci numeration system associated with the golden ratio. In
these systems, any natural number has a greedy representation by an algorithm of Fraenkel
[9]. As a corollary of the previous results, the digit set conversion in a linear numeration
system associated with a Pisot number is computable by an on-line finite automaton.



A preliminary version of this work has been presented in [13].

2 Preliminaries

An alphabet A is a finite set. A finite sequence of elements of A is called a word, and the set
of words on A is the free monoid A*. The empty word is denoted by €. The set of infinite
sequences or infinite words on A is denoted by AN. Let v be a word of A*, denote by v™
the concatenation of v to itself n times, and by v“ the infinite concatenation vvv - --.

2.1 Beta-representations

A survey on numeration systems can be found in [11]. Let 8 > 1 be a real number and let
D be an alphabet of digits. A [-representation on D of a number z of [0, 1] is an infinite
sequence (d;);>1 of DY such that > i1 d;~7 = x.

Any real number z € [0, 1] can be represented in base 8 by the following greedy algorithm
[18]:

Denote by |.| and by {.} the integral part and the fractional part of a number. Let
z1 = |Bz] and let r; = {fz}. Then iterate for j > 2, z; = |fr;—1] and r; = {Br;j_1}.
Thus z = 2]21 x]ﬂ_j, where the digits z; are elements of the canonical alphabet A =
{0,..., 18]} if B¢ N, A={0,...,8 — 1} otherwise. The sequence (z;);>1 of AN is called
the B-ezpansion of x. When £ is not an integer, a number z may have several different (-
representations on A: this system is naturally redundant. The S-expansion obtained by the
greedy algorithm is the greatest one in the lexicographic order. When a (-representation
ends with infinitely many zeroes, it is said to be finite, and the 0’s are omitted.

Let dg(1) = (tj)j>1 be the p-expansion of 1. If dg(1) is finite, dg(1) = t1---tn, set
ds(1) = (t1---tn—1(ty — 1))“, otherwise set dj(1) = dg(1). We recall the following result
of Parry [17]. An infinite word s = (s;);>1 is the -expansion of a number x of [0, 1] if and
only if for every p > 1, s,5,11 -+ is smaller in the lexicographic order than dg(1)*.

Let D be a digit set. The numerical value in base 8 on D is the function mg : DN — R
such that mg((dj);>1) = 3251 d;3~7. The normalization on D is the function vp : DY —s
AN which maps any sequence (d;);>1 € D" where z = 73((d;);>1) belongs to [0,1] onto
the [-expansion of z.

A digit set conversion in base 8 from D to A is a function x : DY — AN such that for
each sequence (d;);>1 € DY where z = m5((d;);>1) belongs to [0, 1], there exists a sequence
(a;j)j>1 € AN such that z = ms((aj)j>1). Note that apriori the result of a conversion is
not unique, but all the processes we shall consider later on are deterministic, and thus
compute functions. Remark that the image x((d;);>1) belongs to AN, but need not be the
B-expansion of x as computed by the greedy algorithm.

To perform addition in base [ the process is the following one: take two numbers
v = Zj>1v]ﬂ*j and y = 35 y; 87 with v; and y; in A, such that v +y € [0,1]. Set
zj = vj —;yj. Then z; is an element of B = {0,...,2|8]}, and v+y = Zj>1 zjB~7. Addition
consists of transforming the representation (zj);>1 of v +y on B into an equivalent one
(57)j>1, such that v +y = Zj>1 sjB77, with s; € A. Multiplication by a fixed integer
m > 1 is analogous: multiply by m each digit of the S-expansion. This gives a sequence
on the alphabet {0,...,m|3]}, to be converted into an equivalent [-representation on A.



Nonnormalized addition and multiplication by a fixed positive integer are thus special cases
of digit set conversion.

2.2 On-line computability

Let X and Y be two finite digit sets, X is the input alphabet, and Y is the output alphabet.
Let

p: XN — YN
(z)j>1 — (yj)j>1

The function ¢ is said to be on-line computable with delay d if there exists a natural
number 0 such that, for each j > 1 there exists a function ®; : XJt0 Y such that
yj = Pj(@1 - zj49).

It is well known that some functions are not on-line computable, like addition in the
binary system with canonical digit set {0, 1}. Addition is considered as a conversion y from
{0,1,2} to {0,1}. Since x(01"20¢) = 10¥ and x(01"0¥) = 01"0% for any n > 1, one sees
that the most significant digit of the result depends on the least significant digits of the
input.

2.3 Automata

We refer the reader to [7]. An automaton over A, A = (Q,A,E,I,T), is a directed graph
labelled by elements of A. The set of vertices, traditionally called states, is denoted by @,
I C Q is the set of initial states, T' C Q) is the set of terminal states and £ C Q x A X Q) is
the set of labelled edges. If (p,a,q) € E, we note p — g. The automaton is finite if Q is
finite. The automaton A is deterministic if E is the graph of a (partial) function from @ x A
into @, and if there is a unique initial state. A subset H of A* is said to be recognizable
by a finite automaton if there exists a finite automaton A such that H is equal to the set
of labels of paths starting in an initial state and ending in a terminal state. A subset K of
AV is said to be recognizable by a finite automaton if there exists a finite automaton A such
that K is equal to the set of labels of infinite paths starting in an initial state and going
infinitely often through a terminal state.

In this paper we are interested in 2-tape automata, see [3]. Let X and Y be two
alphabets. A 2-tape automaton is an automaton over the non-free monoid X* x Y* :
A= (Q,X*xY* E IT) is a directed graph the edges of which are labelled by elements
of X* x Y*. Words of X* are referred to as input words, as words of Y* are referred to

as output words. 1If (p,(f,9),q) € E, we note p LY g. The automaton is finite if ) and
FE are finite. The finite 2-tape automata are also known as transducers. A relation R of
X* x Y™ is said to be computable by a finite 2-tape automaton if there exists a finite 2-tape
automaton A such that R is equal to the set of labels of paths starting in an initial state
and ending in a terminal state. A function is computable by a finite 2-tape automaton if
its graph is computable by a finite 2-tape automaton. These definitions extend to relations
and functions of infinite words as above.

A sequential automaton is a 2-tape automaton where edges are labelled by elements of
X x Y*, and such that the underlying input automaton obtained by taking the projection
over X of the label of every edge is deterministic. An on-line automaton with delay ¢,



A=(Q,X x(YUe),E,{q},w), is a sequential automaton composed of a transient part
and of a synchronous part (see [16], [14]). The set of states is equal to Q) = Q; U Qs, where
Q: is the set of transient states and Qs is the set of synchronous states. In the transient
part, every path of length 0 starting in the initial state qg is of the form

QOII—/EMH%“'%—/EMI&
where qo,...,qs—1 are in Q¢, z; in X, for 1 < j <4, and the only edge arriving in a state

of QQ; is as above. In the synchronous part, edges are labelled by elements of X x Y. This
means that the automaton starts reading words of length < ¢ and outputting nothing, and
after that delay, outputs serially one digit for each input digit. If the set of states @) and
the set of edges E are finite, the on-line automaton is said to be finite.

For finite words, there is a terminal function w : Qs — Y™, whose value is concatenated
to the output word corresponding to a computation in 4. The same definition works for
functions of infinite words, considering infinite paths in A, but there is no terminal function
w in that case.

3 On-line digit set conversion in real base

Let A ={0,...,|A]} be the canonical alphabet associated with 3, and let D = {0,...,d}
be a digit set containing A, that is, d > |5]. We show that the conversion from D to A is
always on-line computable.

THEOREM 1 . There exists a digit set conversion x : DY — AN in base B which is
on-line computable with delay &, where § is the smallest positive integer such that
P +d < (B8] +1) (*)

Proof. Clearly a number ¢ satisfying (*) exists. Let k& be the smallest nonnegative integer
such that d/B¥(8 — 1) < 1. In order to avoid overflow, all input words are supposed to

begin with a run of k zeroes .

On-line algorithm.

Input: a sequence (d;);j>1 € DY such that dy = --- = dj, = 0.
Output: a sequence (aj)j>1 € AN such that doi>1 a;7 = > i1 d; .
begin

go < 0

for j < 1tod do
qj < Bgj-1+d;
j1
while 7 > 1 do
Zovj < Basrj1+ dsyj
if Z54i < ﬂd—H
then a;j < |254;/8°]
else a; + 3]

'Then k < § for any 8 > 3/2.



G545 < z51j — Ba;
j—ij+1
end
Proof of the algorithm.
Claim: For all 7 > 1, one has 0 < ¢; < A% and aj € A.
1. For 1 < j <4, we get
gj =B "+ +d

Then ¢; < g5 < 3% by hypothesis on the input (dj)j>1-
2. Suppose that for some 5 > 1
0<gsrj1<p (H)

o If z;4; < BT! then aj = |254/8°]. Thus 0 < a; < B. Then gs1; = B{z54;/8°} < B°.
o If z5,; > 77! then a; = |B] and gs4; = 2545 — [B]B°. Then g5y; > g+ — [B]B° > 0.
On the other hand, gs;; = Bgs+j—1 +dsij — |B]8° < BT +d — | B]B° by Hypothesis (H),
thus by Condition (*), g54; < (3°. Hence the claim is proved.

We then get, for all j > 1,

dy doyj _ @ aj | Qo+j
E+H‘+W_E+.“+E+W.
Since gs4j < (3, when j tends towards infinity, 2]21 d;~7 = 2]21 a;B77, with the digits
aj in A, thus X((dj)jZI) = (aj)jzl. | ]

REMARK 1 . If ¢ satisfies (*), then any natural y > § satisfies (*) as well.

4 Continuity

Let D be a finite alphabet. One defines a distance p on DV as follows: let v = (vj);>1 and
w = (wj)j>1 be in DY, p(v,w) = 27" where r = min{j | v; # w;}. The set D" is then a
compact metric space. This topology is equivalent to the product topology. We first prove
a general result, not related to the base.

PROPOSITION 1 . Let D and A be two finite alphabets. Any function ¢ : DN — AN
which is on-line computable with delay & is 2°-Lipschitz, and is thus uniformly continuous.

Proof. Suppose that ¢ is on-line computable with delay §. Let v and w in D" such

that p(v,w) = 27". Then v = vy -+ v, 1V, V41 -+ and w = V1 -+ Vp_WpWy41 - -+ With
vp # wp. Thus (V) =y1- - Yr 5 1Yr 6Yro+1°+- and (W) = Y1+ Yr 618, §Sr 541"
Thus plp(v), @) < 2 p(v, w). .

As a corollary we get the following result.

PROPOSITION 2 . Let D be a set of nonnegative digits containing A. The digit set
conversion x : DN — AN in base B defined in Theorem 1 is uniformly continuous.

The results presented below are a straightforward generalization of those proved by
Eilenberg [7] in the case where /3 is an integer.



PROPOSITION 3 . Let D be a finite alphabet of digits. The function numerical value
g DN — R is continuous.

Proof. Let v and w in DY such that p(v,w) = 277. Then v = vy -+ v, 100,41 --- and
W=V Vp_ WpWyp1 - -+ with v, # w,. Let m(D) be the maximum of the absolute values
of the elements of D. Thus

D
[ms(v) = ma(w)| =Y 0B =D Jwif” J|—ng)>

jr jr

thus g is continuous. ]

We now consider functions taking their values in base /3 into the unit interval [0, 1]. Let
A=1{0,...,|8]} and D = {0,...,d}, d > |B]. A function x : DN — AN is said to be
B-consistent if there exists a function f : [0, 1] — [0, 1] such that the diagram

DN X AN

= | 7

[07 1] T) [07 1]
comimutes.

PROPOSITION 4 . Let f and x as above. If x is on-line computable then f is continuous.

Proof. Since x and mg are continuous, so is mg o f. Since 7g is surjective and continuous,
and DY and [0, 1] are compact metric spaces, the continuity of f follows. [ |

5 The Pisot case

An algebraic integer is a root of a monic polynomial with integral coefficients. A Pisot
number is an algebraic integer > 1 such that all its algebraic conjugates are smaller than
1 in modulus. In this section we show that if the base 3 is a Pisot number, the on-line
algorithm described above can be realized by an on-line finite automaton. Examples are
presented in Section 8.

THEOREM 2 .  Let 8 be a Pisot number, let A = {0,...,[B]}, and let D = {0,...,d}
such that d > |B]. There exists an on-line finite automaton with delay §, where § satisfies
(*), which realizes a digit set conversion x : DY — AN in base S.

Proof. Let M(X) be the minimal polynomial of /3, of degree m, and let 51 = 3, fo, ...,
Bm be its roots. For 2 <i < m, |B;] < 1. Recall that A = Z[X]/(M (X)) is a discrete lattice
of rank m. Define

Aifm<d
As=1< {g(X) =25 1 X P+ 2o+ 20X 4 425 X0 | XM 0(X) € A}
otherwise



The norm of an element ¢ of A; is taken as ||g|| = maxi<j<m, |q(53;)]. For 2 <4 < m set
vi =sup{lc —af’| | c€ D, ac A}.

We define an on-line automaton A = (Q,D x (A Ue¢),E,{q}) as follows. The set of
synchronous states is equal to

Qs = {a(X) € As 0.2 4(B) < " and for2 <i <m, ()] < =7}

Since for any ¢ in Qg, ||¢|| is bounded, Qs is a finite set. The set of transient states @ is
defined by

Q={¢j(X)=di X' +---4+d; mod M |1<j<d-1,d,...,dj € D} U{q}.

Note that if g; € Q then ¢;(8) < % and, for 2 <4 < m, |g;(8;)| < d/(1~|6i) < 7/(1-|6il)
since |B;| < 1. Hence transient states satisfy the same bound inequalities as synchronous
states. For 1 < j < 4, transient edges are defined by

dj/e
gj-1(X) == ¢;(X)
with ¢o(X) =0 and ¢;(X) = X¢j_1(X) + d;.
The synchronous edges are defined by: for j > 1 and ¢s54;—1(X) € Q, set an edge
ds4j/a;
G5j—1(X) 57 g5i(X)
such that
X545 1(X) +dsij = X%a;+ g55(X)  mod M(X)
with a; in A. For the choice of a; we process as in the on-line algorithm given in Theorem 1,
replacing X by 8. Hence for all j >0, 0 < g54(8) < 8°.
For 2 <1 < m, we get
YRS } 26 0 M
19545 (Bi)| = |Bito+5-1(Bi) + dotj — ;87| <|Bilv—77 + 7= —77-
1- |/Bz| 1- |/Bz|
Thus, for all 7 > 0, ¢s4; belongs to Q@s. As in Theorem 1, there is an infinite path in the
automaton A starting in gy and labelled by

d d d ds 1
a0 2 g B g T gy T gy
iff 325 d;7 = > i1 a;37, with the digits a; in 4, and x((d;)j>1) = (a;);>1- ]
COROLLARY 1 . If B is a Pisot number, nonnormalized addition and multiplication by a

fized positive integer are computable by on-line finite automata.



6 The inverse problem

We now set up the inverse problem: if the conversion is supposed to be computable by an
on-line finite automaton, what kind of number # must be? Although we conjecture that g
must be a Pisot number, we are only able to prove the following results.

PROPOSITION 5 . If the conversion x in base B from an alphabet D = {0,--- ,d}, d > |5],
to A is realized by the on-line finite automaton of Theorem 2, then B must be an algebraic
integer.

Proof. Let § be the delay of the automaton A. Set dj(1) = (e;);>1 and let s =
Oep -+ e5—1(es+1)0¢. Then Bt < ms(s) < 1+ B797L. We feed the automaton with s (in
case that d = | 3], and s is not an element of AV, it is always possible to choose for s the word
s =0¢}(e;+1)0¥ € AN and § = 7). The automaton arrives in state gs = e; 302 +--- +es_;
and has output nothing. Then it reads (es + 1) and outputs |(Bgs + es + 1)/8F| = 1.
Thus the image of s in the automaton is of the form 1bgbs - - -, that is, there is an infinite
path starting in gy and labelled by
40 O—/E>Q1 81—/E>Q2"' 651{8%6(5“ 1Q6+1 O/—b2>%+2"'

Now we use the fact that the automaton is finite. This implies that there exist two states
which are the same, i.e. there exist n > 0 and p > 1 such that ¢, = ¢u4,. Then

tn=ef" 7+ e 1T A (e )BT = BT = by — e — by
Analogously,
Gnip = €1 2o teg 1B (et )BT By 2y 50
Thus if ¢, = gn4p, [ is an algebraic integer. [
PROPOSITION 6 . Let 8 be an algebraic integer of degree m, and let B1 = B, B2, ..., Bm

be its algebraic conjugates. If the conversion x in base 3 from an alphabet D = {0,--- ,d},
d > |B], to A is realized by the on-line finite automaton A of Theorem 2, then for every
state q and for every i, 1 <i < m,
i .
q(Bi =T o Bl >1
0B < g if 1

, i .
Bl < e i 1Bl <1

Proof. Suppose that there is a path in A

IN

d1+dn a1 G
q0 ? qdn

with n > 8. Then ¢,(X) = d; X" '+ 4+ d, —a; X" ' — - —a,_sX° mod M. If Ais
finite there exists a p > 1 such that ¢, (X) = ¢,4,(X). Hence

n(X) = XPqu(X) + (dng1 — an 5321 X)XP "+ 4 (dnyp — an 54pX°)  mod M



Thus for every 1 <1 < m,

Qn(ﬁz) = 5ZPQTL(5Z) + (dn-i-l - a'n76+1/6z§)5zp_1 +-+ (dn-i-p - an76+pﬁf)

Therefore, if |3;| > 1

, Vi
|Qn(5z)| < 7|,6z| ]

and if |ﬂz| <1

] Vi
|an(Bi)| < 17— Bl

COROLLARY 2 . If there exists a state q of A accessible from the initial state satisfying

} Yi
lq(Bi)] > 1B — 1

for some conjugate B;, i > 2, such that |B;| > 1, then A cannot be finite.

Now we make a connexion with the problem of normalization.

COROLLARY 3 . If the automaton A realizing the conversion from D to A is infinite then
the normalization vp : DN — AN is not computable by a finite automaton.

Proof. By a result from [10], the set
Z(B,D) = {(Cj)jzl | ZCjﬁfj =0, ¢ € D= {—d,...,0,...,d}}
i>1

is recognizable by a finite automaton if and only if the number of remainders modulo M of
polynomials of the form ¢; X"~! 4 --- + ¢, for some (¢;)j>1 in Z(B, D) is finite.
But if there is in A a path from gq to g, labelled by (dy - - - dp, a1 - - - ap,_g), then ¢, (X) is

the remainder of the division of i X" '+ +d, —a; X" ' —- - —a,_s X° by M. Consider
an infinite path in A, with an infinite number of different states. This implies that Z (3, D)
is not recognizable by a finite automaton. ]

In fact, this result implies that if Z(8, D) is recognizable by a finite automaton, then
the automaton A realizing the conversion from D to A is computable by a finite automaton,
and it is known that this is the case when £ is a Pisot number [10]. But the proof given in
Theorem 2 is more direct.

Now we give an example for which the automaton realizing the conversion is not finite.

ExaMPLE 1 . Recall that a Perron number is a real 8 > 1 such that its algebraic conjugates
are less than B in modulus. Let us consider the polynomial M (X) = X* —2X3 —2X2 -2,
The dominant root of M is 8 ~ 2.803. There is a conjugate B2 ~ —1.134, thus § is a Perron
number which is not a Pisot number. We have dg(1) = 2202 and A = {0,1,2}. Let D = A,
then the delay 6 computed by (*) is equal to § = 3. Suppose that the conversion is realized
by the finite automaton A. There is a path

d1++dn a1 G
q0 ? qdn

10



with n = 17, dy - - - d, = 00022101020102010, a; - - - ap—3 = 00100010200020 and ¢, (X) =
—4X? + 15X — 8 + 8X 1. Here v2/(|32] — 1) ~ 36.650 and g,,(B2) ~ —37.211, thus the
automaton 4 cannot be finite.

As a consequence the normalization v4 on A is not computable by a finite automaton.
Note that since § is not a Pisot number, then for any alphabet D D {0,...,[8] + 1} =
{0,1,2,3}, the normalization vp on D is not computable by a finite automaton (see [2, 15]),
but up to now nothing was known for the normalization v4 on the canonical alphabet.

7 Numeration systems for the integers

Let us first recall some definitions. Let U = (uj);>1 be a strictly increasing sequence of
integers with ug = 1. Every positive integer N has a representation in the system U by
the following greedy algorithm (see [9]): Let n such that u, < N < upy1; let s, be the
quotient of the Euclidean division of N by u,, and let r,, be the remainder: s, = q(N,uy,)
and r, = r(N,uy). Then iterate s; = q(rj41,u;) and r; = r(rj41,u;) forn —1 > 5 > 0.
Then s = s,up + -+ + spug. The digits s; are such that 0 < s; < w;y1/u;. The word
Sp -+ 80 is the normal Ug-representation of s.

Let dj(1) = (ej)j>1, see Subsect. 2.1. A sequence Ug = (u;);>o of integers can be
canonically associated with 3 as follows. Let ug = 1 and for j > 1 let

Uj = €1Uj—1 —+ —I—ejuo + 1.

The following result holds true [5]: the finite factors of S-expansions of real numbers of
[0,1] and the normal Ug-representations of positive integers are the same. In particular,
normal Ug-representations of the integers are words on the alphabet A = {0,...,[3]}. The
system Ug is the numeration system associated with [3.

Let x : D* — A*. The prolongation of x is a function x : D*0¥ — A*0¥ defined
by : let v and w be in D* such that x(v) = w, then x(v0¥) = w0¥. The function x will be
said to be continuous if its prolongation is continuous. By Theorem 1 and Proposition 2
we have the following result.

COROLLARY 4 . Let Ug be the numeration system associated with a number 8 > 1. Let
D be o set of nonnegative digits containing A. Then there exists a digit set conversion
X : D* — A" in the system Ug which is on-line computable and continuous.

Proof. The algorithm presented in Theorem 1 can be used again. Let d;---d, € D* be
an input word satisfying N = dju,_1 + -+ + dpug < uy. Suppose that n > §. So the word
ay - - ap_g is output, and the algorithm stops in a state g,, the “value” of which is equal to
qn = N — (a1up—1+- - +a,_sus). For every state g, define w(gy) as a Ug-representation of
gn on the alphabet A and of length § (this is possible because g, < ugs). Thus we get that
x(di--dp) = a1 ap sw(q) € A™

If n <4, then x(d; ---d,) = w(qn), gn being the state where the algorithm stops. [ |

If 3 is a Pisot number then dg(1) is eventually periodic [4]. In that case, the sequence

Up is linearly recurrent.
As a direct consequence of Theorem 2 we get
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COROLLARY 5 . Let Ug be the linear numeration system associated with a Pisot number
B. Let D be a set of nonnegative digits containing A. Then there exists a digit set conversion
X : D* — A" in the system Ug which is computable by an on-line finite automaton with
delay §, where § satisfies (*).

Proof. We can use the construction given in Theorem 2. The terminal function w is
defined as in Corollary 4. ]

8 Examples
We illustrate the previous results on well-known Pisot numbers.

EXAMPLE 2 . Let 8 be an integer > 2. On the alphabet A = {0,--- , 8}, the representation
of numbers is redundant. Addition on A is computable by an on-line finite automaton, with
delay 2.

For g = 2, this representation is the well-known Carry-Save representation. We give
below the on-line finite automaton for addition in base § = 2. Let A = (Q,{0,...,4} x
({0,1,2}Ue), E, qv), with Q@ = Q;UQs. All input words begin with 00. The set of transient
states is Q; = {qo,q1}. The set of synchronous states is

Qs = {q(X) € Z[X]/(X - 2) | 0< Q(2) < 4} = {07 1’273}'

Transient edges are
0/e 0/e
Qo — q1 — 0.
The transition matrix of the synchronous part of A is given in the array below: the entry
(i,7) contains the label of egdes from state i to state j.

0 1 2 3
0/0,4/1 | 1/0 | 2/0 |3/0

2/1 | 3/1]0/0,4/1 [ 1/0
4/2,0/1 [1/1 | 2/1 [3/1
31 2/2 [3/2[4/2,0/11/1

N =D

For integers, that is to say for finite representations, the terminal function is defined by

EXAMPLE 3 . Let 8 = (1 +1/5)/2 be the golden ratio, the associated linear numeration
system is the Fibonacci numeration system, with uwg = 1, uy = 2 and for n > 2, u, =
Up—1 + Up—2. The canonical alphabet is A = {0,1}. Formula (*) gives ¢ = 4 for addition,
with D = {0, 1,2}. This value is not optimal: I have given in [12] an on-line finite automaton
for addition with delay 3. The automaton constructed with delay 4 by the method above
is not minimal in the number of states, but it is equivalent to the automaton with delay 3.
In fact, the construction given in Theorem 1 and in Theorem 2 works with delay ¢ = 3,
the bound on the states becoming

0<q(B) <p
with 1 = 8+ 2, and Condition (*) being replaced by

Bu+d< BB +p (**)
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The on-line finite automaton with delay 3 is described below.

Let A = (Q,{0,1,2} x ({0,1} Ue),E,{qo}). Input words begin with 00. The set of
transient states is {qo, q1,q2}. The elements of A are denoted by words of length 2, with
dyds representing the polynomial dq X + do, and the signed digit —1 being denoted by 1.

The transient part of A is of the form

0 0 0 1 2
qo £>q1 ﬁ)QQ and ¢ ﬁ)OO; Q2 £>01; Q2 ﬁ)OZ.

In the synchronous part of A edges are the following ones:

00 | 01 | 02 |11 [ 12 | 10 | T2 | 03 | 1T | 20
00 | 0/0 | 1/0 | 2/0
01 1/0 | 2/0 | 0/0
02 | 1/1 | 2/1 0/0
11{0/1|1/1]2/1
12 1/1]2/1]0/1
10 0/0 | 1/0 2/1
12 2/0 1/0 0/0
03 2/1 1/1 0/1
11 0/0 | 1/0 2/0
20 0/1 | 1/1 2/1

For the Fibonacci numeration system the terminal function is defined by w(00) = 000,
w(01) = 001, w(02) = 010, w(11) = 100, w(12) = 101, w(10) = 010, w(I2) = 000, w(03) =

100, w(11) = 001, w(20) = 101. O]
EXAMPLE 4 . Let 8 = (3 +v/5)/2. Here A = {0,1,2}. For addition the delay computed
by (*) is 3, which is minimal. O
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