
On-line digit set 
onversion in real baseChristiane FrougnyUniversit�e Paris 8 and L.I.A.F.A. �Dedi
ated to Jean Berstel for his sixtieth birthdayAbstra
tLet � be a real number > 1. The digit set 
onversion between real numbers repre-sented in �xed base � is shown to be 
omputable by an on-line algorithm, and thus is a
ontinuous fun
tion. When � is a Pisot number the digit set 
onversion is 
omputableby an on-line �nite automaton.1 Introdu
tionIn 
omputer arithmeti
, on-line 
omputation 
onsists of performing arithmeti
 operationsin Most Signi�
ant Digit First (MSDF) mode, digit serially after a 
ertain laten
y delay[8℄. This allows the pipelining of di�erent operations su
h as addition, multipli
ation anddivision. It is also appropriate for the pro
essing of real numbers having in�nite expansions:it is well known that when multiplying two real numbers, only the left part of the resultis signi�
ant. To be able to perform on-line addition, it is ne
essary to use a redundantnumber system (see [19℄, [8℄).On the other hand, a fun
tion is 
omputable by a �nite automaton if it needs only a�nite auxiliary storage memory, independent of the size of the data. In that setting, it isknown that addition of two integers in the 
lassi
al b-ary system is 
omputable by a �niteautomaton, but that squaring is not (see [7℄). A
tually, the natural �nite automaton onedesigns to perform addition is a sequential one, pro
essing numbers in the Least Signi�
antDigit First (LSDF) mode.On-line �nite automata have been introdu
ed by Muller [16℄. They are sequential �niteautomata pro
essing data in MSDF mode. In integral base b on the 
anoni
al digit setf0; : : : ; b� 1g, addition is not on-line 
omputable, but with a balan
ed alphabet of signeddigits of the form f�a; : : : ; ag with b=2 � a � b�1, using the algorithms of Avizienis [1℄ andChow and Robertson [6℄, addition is 
omputable by an on-line �nite automaton (see [16℄,[14℄). In the same spirit we have shown that, in a 
omplex base of the form mpb, where b isa relative integer su
h that jbj � 2, and with digit set f�a; : : : ; ag with jbj=2 � a � jbj � 1,addition is 
omputable by an on-line �nite automaton as well [12℄.�L.I.A.F.A., UMR 7089, Case 7014, 2 pla
e Jussieu, 75251 Paris Cedex 05, Fran
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In this paper we 
onsider a base � whi
h is a real number > 1, generally not an integer.For any � > 1, by the greedy algorithm of R�enyi [18℄, one 
an 
ompute a representation inbase � of any real number belonging to the interval [0; 1℄, 
alled its �-expansion, and wherethe digits are elements of the 
anoni
al digit set A = f0; : : : ; b�
g if � is not an integer, orof A = f0; : : : ; � � 1g if � is an integer. In su
h a representation, not all the patterns ofdigits are allowed (see [17℄ for instan
e). Re
all that a Pisot number is an algebrai
 integersu
h that all its algebrai
 
onjugates have modulus less than 1. The natural integers andthe golden ratio are Pisot numbers. In a previous work, we have shown that the fun
tion ofnormalization whi
h maps a representation in real base � of a number on any digit set ontoits �-expansion is 
omputable by a �nite automaton if and only if � is a Pisot number [2℄,but the automaton is not sequential, that is to say, data are not pro
essed deterministi
allyin MSDF nor in LSDF mode. It is known that it is not possible to �nd a sequential �niteautomaton realizing the normalization [10℄.A digit set 
onversion in base � is a fun
tion from a digit set D onto the 
anoni
aldigit set A whi
h transforms the �-representation of a number x with digits in D onto arepresentation of x with digits in the 
anoni
al digit set A. In general, the 
onversion isnonnormalized, that is to say, the result is expressed with digits in A, but need not be thegreedy �-expansion. Nonnormalized addition and multipli
ation by a �xed positive integerare parti
ular 
ases of digit set 
onversions.For some Pisot bases of a spe
ial kind, nonnormalized 
onversion was known to be
omputable by an on-line �nite automaton, namely for bases � > 1 where � is the dominantroot of an equation of the formXm � aXm�1 � aXm�2 � � � � � aX � bwhere a � b � 1 are integers, and m � 2. The most well-known 
ase is the golden ratio(1 +p5)=2, with m = 2, a = b = 1 (see [12℄).In this work we generalize this result to any Pisot number.The paper is organized as follows. First we show that for any real base � > 1 and anyset of nonnegative digits D � A = f0; : : : ; b�
g, the (nonnormalized) 
onversion from D toA is 
omputable by an on-line algorithm (Theorem 1). We then show that su
h a fun
tionis 
ontinuous for the produ
t topology on the set DN , and the fun
tion indu
ed on realnumbers is 
ontinuous as well.When � is a Pisot number, we show that this algorithm 
an be realized by an on-line�nite automaton (Theorem 2). Note that this result applies to the 
ase where � is aninteger and the alphabet A is equal to f0; : : : ; �g. The 
ase � = 2 and A = f0; 1; 2g is thewell-known \Carry-Save" representation used in 
omputer arithmeti
.Conversely, if for any digit set D, this 
onversion from D to A is realizable by an on-line�nite automaton, then the base must be an algebrai
 integer. We give an example of aPerron number whi
h is not a Pisot number su
h that the 
onversion is not realizable byan on-line �nite automaton.In the 
ase where � is a Pisot number, one 
an de�ne linear numeration systems asso-
iated with �, like the Fibona

i numeration system asso
iated with the golden ratio. Inthese systems, any natural number has a greedy representation by an algorithm of Fraenkel[9℄. As a 
orollary of the previous results, the digit set 
onversion in a linear numerationsystem asso
iated with a Pisot number is 
omputable by an on-line �nite automaton.2



A preliminary version of this work has been presented in [13℄.2 PreliminariesAn alphabet A is a �nite set. A �nite sequen
e of elements of A is 
alled a word, and the setof words on A is the free monoid A�. The empty word is denoted by ". The set of in�nitesequen
es or in�nite words on A is denoted by AN . Let v be a word of A�, denote by vnthe 
on
atenation of v to itself n times, and by v! the in�nite 
on
atenation vvv � � � .2.1 Beta-representationsA survey on numeration systems 
an be found in [11℄. Let � > 1 be a real number and letD be an alphabet of digits. A �-representation on D of a number x of [0; 1℄ is an in�nitesequen
e (dj)j�1 of DN su
h that Pj�1 dj��j = x.Any real number x 2 [0; 1℄ 
an be represented in base � by the following greedy algorithm[18℄:Denote by b:
 and by f:g the integral part and the fra
tional part of a number. Letx1 = b�x
 and let r1 = f�xg. Then iterate for j � 2, xj = b�rj�1
 and rj = f�rj�1g.Thus x = Pj�1 xj��j , where the digits xj are elements of the 
anoni
al alphabet A =f0; : : : ; b�
g if � =2 N, A = f0; : : : ; � � 1g otherwise. The sequen
e (xj)j�1 of AN is 
alledthe �-expansion of x. When � is not an integer, a number x may have several di�erent �-representations on A: this system is naturally redundant. The �-expansion obtained by thegreedy algorithm is the greatest one in the lexi
ographi
 order. When a �-representationends with in�nitely many zeroes, it is said to be �nite, and the 0's are omitted.Let d�(1) = (tj)j�1 be the �-expansion of 1. If d�(1) is �nite, d�(1) = t1 � � � tN , setd��(1) = (t1 � � � tN�1(tN � 1))! , otherwise set d��(1) = d�(1). We re
all the following resultof Parry [17℄. An in�nite word s = (sj)j�1 is the �-expansion of a number x of [0; 1[ if andonly if for every p � 1, spsp+1 � � � is smaller in the lexi
ographi
 order than d�(1)�.Let D be a digit set. The numeri
al value in base � on D is the fun
tion �� : DN �! Rsu
h that ��((dj)j�1) =Pj�1 dj��j . The normalization on D is the fun
tion �D : DN �!AN whi
h maps any sequen
e (dj)j�1 2 DN where x = ��((dj)j�1) belongs to [0; 1℄ ontothe �-expansion of x.A digit set 
onversion in base � from D to A is a fun
tion � : DN �! AN su
h that forea
h sequen
e (dj)j�1 2 DN where x = ��((dj)j�1) belongs to [0; 1℄, there exists a sequen
e(aj)j�1 2 AN su
h that x = ��((aj)j�1). Note that apriori the result of a 
onversion isnot unique, but all the pro
esses we shall 
onsider later on are deterministi
, and thus
ompute fun
tions. Remark that the image �((dj)j�1) belongs to AN , but need not be the�-expansion of x as 
omputed by the greedy algorithm.To perform addition in base � the pro
ess is the following one: take two numbersv = Pj�1 vj��j and y = Pj�1 yj��j with vj and yj in A, su
h that v + y 2 [0; 1℄. Setzj = vj+yj. Then zj is an element of B = f0; : : : ; 2b�
g, and v+y =Pj�1 zj��j . Addition
onsists of transforming the representation (zj)j�1 of v + y on B into an equivalent one(sj)j�1, su
h that v + y = Pj�1 sj��j, with sj 2 A. Multipli
ation by a �xed integerm � 1 is analogous: multiply by m ea
h digit of the �-expansion. This gives a sequen
eon the alphabet f0; : : : ;mb�
g, to be 
onverted into an equivalent �-representation on A.3



Nonnormalized addition and multipli
ation by a �xed positive integer are thus spe
ial 
asesof digit set 
onversion.2.2 On-line 
omputabilityLet X and Y be two �nite digit sets, X is the input alphabet, and Y is the output alphabet.Let ' : XN ! Y N(xj)j�1 7! (yj)j�1The fun
tion ' is said to be on-line 
omputable with delay Æ if there exists a naturalnumber Æ su
h that, for ea
h j � 1 there exists a fun
tion �j : Xj+Æ ! Y su
h thatyj = �j(x1 � � � xj+Æ).It is well known that some fun
tions are not on-line 
omputable, like addition in thebinary system with 
anoni
al digit set f0; 1g. Addition is 
onsidered as a 
onversion � fromf0; 1; 2g to f0; 1g. Sin
e �(01n20!) = 10! and �(01n0!) = 01n0! for any n � 1, one seesthat the most signi�
ant digit of the result depends on the least signi�
ant digits of theinput.2.3 AutomataWe refer the reader to [7℄. An automaton over A, A = (Q;A;E; I; T ), is a dire
ted graphlabelled by elements of A. The set of verti
es, traditionally 
alled states, is denoted by Q,I � Q is the set of initial states, T � Q is the set of terminal states and E � Q�A�Q isthe set of labelled edges. If (p; a; q) 2 E, we note p a�! q. The automaton is �nite if Q is�nite. The automaton A is deterministi
 if E is the graph of a (partial) fun
tion from Q�Ainto Q, and if there is a unique initial state. A subset H of A� is said to be re
ognizableby a �nite automaton if there exists a �nite automaton A su
h that H is equal to the setof labels of paths starting in an initial state and ending in a terminal state. A subset K ofAN is said to be re
ognizable by a �nite automaton if there exists a �nite automaton A su
hthat K is equal to the set of labels of in�nite paths starting in an initial state and goingin�nitely often through a terminal state.In this paper we are interested in 2-tape automata, see [3℄. Let X and Y be twoalphabets. A 2-tape automaton is an automaton over the non-free monoid X� � Y � :A = (Q;X� � Y �; E; I; T ) is a dire
ted graph the edges of whi
h are labelled by elementsof X� � Y �. Words of X� are referred to as input words, as words of Y � are referred toas output words. If (p; (f; g); q) 2 E, we note p f=g�! q. The automaton is �nite if Q andE are �nite. The �nite 2-tape automata are also known as transdu
ers. A relation R ofX��Y � is said to be 
omputable by a �nite 2-tape automaton if there exists a �nite 2-tapeautomaton A su
h that R is equal to the set of labels of paths starting in an initial stateand ending in a terminal state. A fun
tion is 
omputable by a �nite 2-tape automaton ifits graph is 
omputable by a �nite 2-tape automaton. These de�nitions extend to relationsand fun
tions of in�nite words as above.A sequential automaton is a 2-tape automaton where edges are labelled by elements ofX � Y �, and su
h that the underlying input automaton obtained by taking the proje
tionover X of the label of every edge is deterministi
. An on-line automaton with delay Æ,4



A = (Q;X � (Y [ "); E; fq0g; !), is a sequential automaton 
omposed of a transient partand of a syn
hronous part (see [16℄, [14℄). The set of states is equal to Q = Qt [Qs, whereQt is the set of transient states and Qs is the set of syn
hronous states. In the transientpart, every path of length Æ starting in the initial state q0 is of the formq0 x1="�! q1 x2="�! � � � xÆ="�! qÆwhere q0; : : : ; qÆ�1 are in Qt, xj in X, for 1 � j � Æ, and the only edge arriving in a stateof Qt is as above. In the syn
hronous part, edges are labelled by elements of X � Y . Thismeans that the automaton starts reading words of length � Æ and outputting nothing, andafter that delay, outputs serially one digit for ea
h input digit. If the set of states Q andthe set of edges E are �nite, the on-line automaton is said to be �nite.For �nite words, there is a terminal fun
tion ! : Qs �! Y �, whose value is 
on
atenatedto the output word 
orresponding to a 
omputation in A. The same de�nition works forfun
tions of in�nite words, 
onsidering in�nite paths in A, but there is no terminal fun
tion! in that 
ase.3 On-line digit set 
onversion in real baseLet A = f0; : : : ; b�
g be the 
anoni
al alphabet asso
iated with �, and let D = f0; : : : ; dgbe a digit set 
ontaining A, that is, d � b�
. We show that the 
onversion from D to A isalways on-line 
omputable.Theorem 1 . There exists a digit set 
onversion � : DN �! AN in base � whi
h ison-line 
omputable with delay Æ, where Æ is the smallest positive integer su
h that�Æ+1 + d � �Æ(b�
 + 1) (*)Proof. Clearly a number Æ satisfying (*) exists. Let k be the smallest nonnegative integersu
h that d=�k(� � 1) � 1. In order to avoid over
ow, all input words are supposed tobegin with a run of k zeroes 1.On-line algorithm.Input: a sequen
e (dj)j�1 2 DN su
h that d1 = � � � = dk = 0.Output: a sequen
e (aj)j�1 2 AN su
h that Pj�1 aj��j =Pj�1 dj��j.begin q0  0for j  1 to Æ doqj  �qj�1 + djj  1while j � 1 dozÆ+j  �qÆ+j�1 + dÆ+jif zÆ+j < �Æ+1then aj  bzÆ+j=�Æ
else aj  b�
1Then k � Æ for any � � 3=2. 5



qÆ+j  zÆ+j � �Æajj  j + 1endProof of the algorithm.Claim: For all j � 1, one has 0 � qj < �Æ and aj 2 A.1. For 1 � j � Æ, we get qj = �j�1d1 + � � � + djThen qj � qÆ < �Æ by hypothesis on the input (dj)j�1.2. Suppose that for some j � 1 0 � qÆ+j�1 < �Æ (H)� If zÆ+j < �Æ+1 then aj = bzÆ+j=�Æ
. Thus 0 � aj < �. Then qÆ+j = �ÆfzÆ+j=�Æg < �Æ.� If zÆ+j � �Æ+1 then aj = b�
 and qÆ+j = zÆ+j � b�
�Æ . Then qÆ+j � �Æ+1 � b�
�Æ � 0.On the other hand, qÆ+j = �qÆ+j�1+ dÆ+j � b�
�Æ < �Æ+1 + d� b�
�Æ by Hypothesis (H),thus by Condition (*), qÆ+j < �Æ. Hen
e the 
laim is proved.We then get, for all j � 1,d1� + � � � + dÆ+j�Æ+j = a1� + � � �+ aj�j + qÆ+j�Æ+j :Sin
e qÆ+j < �Æ, when j tends towards in�nity,Pj�1 dj��j =Pj�1 aj��j , with the digitsaj in A, thus �((dj)j�1) = (aj)j�1.Remark 1 . If Æ satis�es (*), then any natural 
 > Æ satis�es (*) as well.4 ContinuityLet D be a �nite alphabet. One de�nes a distan
e � on DN as follows: let v = (vj)j�1 andw = (wj)j�1 be in DN , �(v; w) = 2�r where r = minfj j vj 6= wjg. The set DN is then a
ompa
t metri
 spa
e. This topology is equivalent to the produ
t topology. We �rst provea general result, not related to the base.Proposition 1 . Let D and A be two �nite alphabets. Any fun
tion ' : DN �! ANwhi
h is on-line 
omputable with delay Æ is 2Æ-Lips
hitz, and is thus uniformly 
ontinuous.Proof. Suppose that ' is on-line 
omputable with delay Æ. Let v and w in DN su
hthat �(v; w) = 2�r. Then v = v1 � � � vr�1vrvr+1 � � � and w = v1 � � � vr�1wrwr+1 � � � withvr 6= wr. Thus '(v) = y1 � � � yr�Æ�1yr�Æyr�Æ+1 � � � and '(w) = y1 � � � yr�Æ�1sr�Æsr�Æ+1 � � � .Thus �('(v); '(w)) � 2Æ�(v; w).As a 
orollary we get the following result.Proposition 2 . Let D be a set of nonnegative digits 
ontaining A. The digit set
onversion � : DN �! AN in base � de�ned in Theorem 1 is uniformly 
ontinuous.The results presented below are a straightforward generalization of those proved byEilenberg [7℄ in the 
ase where � is an integer.6



Proposition 3 . Let D be a �nite alphabet of digits. The fun
tion numeri
al value�� : DN �! R is 
ontinuous.Proof. Let v and w in DN su
h that �(v; w) = 2�r. Then v = v1 � � � vr�1vrvr+1 � � � andw = v1 � � � vr�1wrwr+1 � � � with vr 6= wr. Let m(D) be the maximum of the absolute valuesof the elements of D. Thusj��(v)� ��(w)j = jXj�r vj��j �Xj�r wj��j j � 2 m(D)�r�1(� � 1)thus �� is 
ontinuous.We now 
onsider fun
tions taking their values in base � into the unit interval [0; 1℄. LetA = f0; : : : ; b�
g and D = f0; : : : ; dg, d � b�
. A fun
tion � : DN �! AN is said to be�-
onsistent if there exists a fun
tion f : [0; 1℄ �! [0; 1℄ su
h that the diagramDN �����! AN��??y ??y��[0; 1℄ ����!f [0; 1℄
ommutes.Proposition 4 . Let f and � as above. If � is on-line 
omputable then f is 
ontinuous.Proof. Sin
e � and �� are 
ontinuous, so is �� Æ f . Sin
e �� is surje
tive and 
ontinuous,and DN and [0; 1℄ are 
ompa
t metri
 spa
es, the 
ontinuity of f follows.5 The Pisot 
aseAn algebrai
 integer is a root of a moni
 polynomial with integral 
oeÆ
ients. A Pisotnumber is an algebrai
 integer > 1 su
h that all its algebrai
 
onjugates are smaller than1 in modulus. In this se
tion we show that if the base � is a Pisot number, the on-linealgorithm des
ribed above 
an be realized by an on-line �nite automaton. Examples arepresented in Se
tion 8.Theorem 2 . Let � be a Pisot number, let A = f0; : : : ; b�
g, and let D = f0; : : : ; dgsu
h that d � b�
. There exists an on-line �nite automaton with delay Æ, where Æ satis�es(*), whi
h realizes a digit set 
onversion � : DN �! AN in base �.Proof. Let M(X) be the minimal polynomial of �, of degree m, and let �1 = �, �2, . . . ,�m be its roots. For 2 � i � m, j�ij < 1. Re
all that � = Z[X℄=(M(X)) is a dis
rete latti
eof rank m. De�ne�Æ = 8<: � if m � Æfq(X) = zÆ�1XÆ�1 + � � �+ z0 + z�1X�1 + � � �+ zÆ�mXÆ�m j Xm�Æq(X) 2 �gotherwise 7



The norm of an element q of �Æ is taken as kqk = max1�i�m jq(�i)j. For 2 � i � m set
i = supfj
� a�Æi j j 
 2 D; a 2 Ag:We de�ne an on-line automaton A = (Q;D � (A [ "); E; fq0g) as follows. The set ofsyn
hronous states is equal toQs = fq(X) 2 �Æ j 0 � q(�) < �Æ and for 2 � i � m; jq(�i)j < 
i1� j�ijg:Sin
e for any q in Qs, kqk is bounded, Qs is a �nite set. The set of transient states Qt isde�ned byQt = fqj(X) = d1Xj�1 + � � � + dj mod M j 1 � j � Æ � 1; d1; : : : ; dj 2 Dg [ fq0g:Note that if qj 2 Qt then qj(�) < �Æ ; and, for 2 � i � m, jqj(�i)j < d=(1�j�ij) � 
i=(1�j�ij)sin
e j�ij < 1. Hen
e transient states satisfy the same bound inequalities as syn
hronousstates. For 1 � j � Æ, transient edges are de�ned byqj�1(X) dj="�! qj(X)with q0(X) = 0 and qj(X) = Xqj�1(X) + dj .The syn
hronous edges are de�ned by: for j � 1 and qÆ+j�1(X) 2 Q, set an edgeqÆ+j�1(X) dÆ+j=aj�! qÆ+j(X)su
h that XqÆ+j�1(X) + dÆ+j = XÆaj + qÆ+j(X) mod M(X)with aj in A. For the 
hoi
e of aj we pro
ess as in the on-line algorithm given in Theorem 1,repla
ing X by �. Hen
e for all j � 0, 0 � qÆ+j(�) < �Æ.For 2 � i � m, we getjqÆ+j(�i)j = j�iqÆ+j�1(�i) + dÆ+j � aj�Æi j < j�ij 
i1� j�ij + 
i = 
i1� j�ij :Thus, for all j � 0, qÆ+j belongs to Qs. As in Theorem 1, there is an in�nite path in theautomaton A starting in q0 and labelled byq0 d1="�! q1 � � � dÆ="�! qÆ dÆ+1=a1�! qÆ+1 dÆ+2=a2�! qÆ+2 � � �i� Pj�1 dj��j =Pj�1 aj��j , with the digits aj in A, and �((dj)j�1) = (aj)j�1.Corollary 1 . If � is a Pisot number, nonnormalized addition and multipli
ation by a�xed positive integer are 
omputable by on-line �nite automata.
8



6 The inverse problemWe now set up the inverse problem: if the 
onversion is supposed to be 
omputable by anon-line �nite automaton, what kind of number � must be? Although we 
onje
ture that �must be a Pisot number, we are only able to prove the following results.Proposition 5 . If the 
onversion � in base � from an alphabet D = f0; � � � ; dg, d � b�
,to A is realized by the on-line �nite automaton of Theorem 2, then � must be an algebrai
integer.Proof. Let Æ be the delay of the automaton A. Set d��(1) = (ei)i�1 and let s =0e1 � � � eÆ�1(eÆ+1)0!. Then ��1 < ��(s) < ��1+��Æ�1. We feed the automaton with s (in
ase that d = b�
, and s is not an element of AN , it is always possible to 
hoose for s the words = 0ei1(ei+1)0! 2 AN and Æ = i). The automaton arrives in state qÆ = e1�Æ�2+ � � �+ eÆ�1and has output nothing. Then it reads (eÆ + 1) and outputs b(�qÆ + eÆ + 1)=�Æ+1
 = 1.Thus the image of s in the automaton is of the form 1b2b3 � � � , that is, there is an in�nitepath starting in q0 and labelled byq0 0="�! q1 e1="�! q2 � � � eÆ�1="�! qÆ eÆ+1=1�! qÆ+1 0=b2�! qÆ+2 � � �Now we use the fa
t that the automaton is �nite. This implies that there exist two stateswhi
h are the same, i.e. there exist n � Æ and p � 1 su
h that qn = qn+p. Thenqn = e1�n�2 + � � �+ eÆ�1�n�Æ + (eÆ + 1)�n�Æ�1 � �n�1 � b2�n�2 � � � � � bn�Æ�Æ:Analogously,qn+p = e1�n+p�2+� � �+eÆ�1�n+p�Æ+(eÆ+1)�n+p�Æ�1��n+p�1�b2�n+p�2�� � ��bn+p�Æ�Æ:Thus if qn = qn+p, � is an algebrai
 integer.Proposition 6 . Let � be an algebrai
 integer of degree m, and let �1 = �, �2, . . . , �mbe its algebrai
 
onjugates. If the 
onversion � in base � from an alphabet D = f0; � � � ; dg,d � b�
, to A is realized by the on-line �nite automaton A of Theorem 2, then for everystate q and for every i, 1 � i � m,jq(�i)j � 
ij�ij � 1 if j�ij > 1jq(�i)j � 
i1� j�ij if j�ij < 1Proof. Suppose that there is a path in Aq0 d1���dn=a1���an�Æ�! qnwith n > Æ. Then qn(X) = d1Xn�1 + � � �+ dn � a1Xn�1 � � � � � an�ÆXÆ mod M . If A is�nite there exists a p � 1 su
h that qn(X) = qn+p(X). Hen
eqn(X) = Xpqn(X) + (dn+1 � an�Æ+1XÆ)Xp�1 + � � �+ (dn+p � an�Æ+pXÆ) mod M9



Thus for every 1 � i � m,qn(�i) = �pi qn(�i) + (dn+1 � an�Æ+1�Æi )�p�1i + � � �+ (dn+p � an�Æ+p�Æi )Therefore, if j�ij > 1 jqn(�i)j � 
ij�ij � 1and if j�ij < 1 jqn(�i)j � 
i1� j�ij :Corollary 2 . If there exists a state q of A a

essible from the initial state satisfyingjq(�i)j > 
ij�ij � 1for some 
onjugate �i, i � 2, su
h that j�ij > 1, then A 
annot be �nite.Now we make a 
onnexion with the problem of normalization.Corollary 3 . If the automaton A realizing the 
onversion from D to A is in�nite thenthe normalization �D : DN ! AN is not 
omputable by a �nite automaton.Proof. By a result from [10℄, the setZ(�;D) = f(
j)j�1 jXj�1 
j��j = 0; 
j 2 ~D = f�d; : : : ; 0; : : : ; dggis re
ognizable by a �nite automaton if and only if the number of remainders modulo M ofpolynomials of the form 
1Xn�1 + � � �+ 
n for some (
j)j�1 in Z(�;D) is �nite.But if there is in A a path from q0 to qn labelled by (d1 � � � dn; a1 � � � an�Æ), then qn(X) isthe remainder of the division of d1Xn�1+ � � �+dn�a1Xn�1�� � ��an�ÆXÆ byM . Consideran in�nite path in A, with an in�nite number of di�erent states. This implies that Z(�;D)is not re
ognizable by a �nite automaton.In fa
t, this result implies that if Z(�;D) is re
ognizable by a �nite automaton, thenthe automaton A realizing the 
onversion from D to A is 
omputable by a �nite automaton,and it is known that this is the 
ase when � is a Pisot number [10℄. But the proof given inTheorem 2 is more dire
t.Now we give an example for whi
h the automaton realizing the 
onversion is not �nite.Example 1 . Re
all that a Perron number is a real � > 1 su
h that its algebrai
 
onjugatesare less than � in modulus. Let us 
onsider the polynomial M(X) = X4 � 2X3 � 2X2 � 2.The dominant root ofM is � � 2:803. There is a 
onjugate �2 � �1:134, thus � is a Perronnumber whi
h is not a Pisot number. We have d�(1) = 2202 and A = f0; 1; 2g. Let D = A,then the delay Æ 
omputed by (*) is equal to Æ = 3. Suppose that the 
onversion is realizedby the �nite automaton A. There is a pathq0 d1���dn=a1���an�Æ�! qn10



with n = 17, d1 � � � dn = 00022101020102010, a1 � � � an�3 = 00100010200020 and qn(X) =�4X2 + 15X � 8 + 8X�1. Here 
2=(j�2j � 1) � 36:650 and qn(�2) � �37:211, thus theautomaton A 
annot be �nite.As a 
onsequen
e the normalization �A on A is not 
omputable by a �nite automaton.Note that sin
e � is not a Pisot number, then for any alphabet D � f0; : : : ; b�
 + 1g =f0; 1; 2; 3g, the normalization �D on D is not 
omputable by a �nite automaton (see [2, 15℄),but up to now nothing was known for the normalization �A on the 
anoni
al alphabet. �7 Numeration systems for the integersLet us �rst re
all some de�nitions. Let U = (uj)j�1 be a stri
tly in
reasing sequen
e ofintegers with u0 = 1. Every positive integer N has a representation in the system U bythe following greedy algorithm (see [9℄): Let n su
h that un � N < un+1; let sn be thequotient of the Eu
lidean division of N by un, and let rn be the remainder: sn = q(N;un)and rn = r(N;un). Then iterate sj = q(rj+1; uj) and rj = r(rj+1; uj) for n � 1 � j � 0.Then s = snun + � � � + s0u0. The digits sj are su
h that 0 � sj < uj+1=uj . The wordsn � � � s0 is the normal U�-representation of s.Let d��(1) = (ej)j�1, see Subse
t. 2.1. A sequen
e U� = (uj)j�0 of integers 
an be
anoni
ally asso
iated with � as follows. Let u0 = 1 and for j � 1 letuj = e1uj�1 + � � � + eju0 + 1:The following result holds true [5℄: the �nite fa
tors of �-expansions of real numbers of[0; 1℄ and the normal U�-representations of positive integers are the same. In parti
ular,normal U�-representations of the integers are words on the alphabet A = f0; : : : ; b�
g. Thesystem U� is the numeration system asso
iated with �.Let � : D� �! A�. The prolongation of � is a fun
tion �̂ : D�0! �! A�0! de�nedby : let v and w be in D� su
h that �(v) = w, then �̂(v0!) = w0!. The fun
tion � will besaid to be 
ontinuous if its prolongation is 
ontinuous. By Theorem 1 and Proposition 2we have the following result.Corollary 4 . Let U� be the numeration system asso
iated with a number � > 1. LetD be a set of nonnegative digits 
ontaining A. Then there exists a digit set 
onversion� : D� �! A� in the system U� whi
h is on-line 
omputable and 
ontinuous.Proof. The algorithm presented in Theorem 1 
an be used again. Let d1 � � � dn 2 D� bean input word satisfying N = d1un�1 + � � �+ dnu0 < un. Suppose that n > Æ. So the worda1 � � � an�Æ is output, and the algorithm stops in a state qn, the \value" of whi
h is equal toqn = N � (a1un�1+ � � �+an�ÆuÆ). For every state qn de�ne !(qn) as a U�-representation ofqn on the alphabet A and of length Æ (this is possible be
ause qn < uÆ). Thus we get that�(d1 � � � dn) = a1 � � � an�Æ!(qn) 2 A�.If n � Æ, then �(d1 � � � dn) = !(qn), qn being the state where the algorithm stops.If � is a Pisot number then d�(1) is eventually periodi
 [4℄. In that 
ase, the sequen
eU� is linearly re
urrent.As a dire
t 
onsequen
e of Theorem 2 we get11



Corollary 5 . Let U� be the linear numeration system asso
iated with a Pisot number�. Let D be a set of nonnegative digits 
ontaining A. Then there exists a digit set 
onversion� : D� �! A� in the system U� whi
h is 
omputable by an on-line �nite automaton withdelay Æ, where Æ satis�es (*).Proof. We 
an use the 
onstru
tion given in Theorem 2. The terminal fun
tion ! isde�ned as in Corollary 4.8 ExamplesWe illustrate the previous results on well-known Pisot numbers.Example 2 . Let � be an integer � 2. On the alphabet A = f0; � � � ; �g, the representationof numbers is redundant. Addition on A is 
omputable by an on-line �nite automaton, withdelay 2.For � = 2, this representation is the well-known Carry-Save representation. We givebelow the on-line �nite automaton for addition in base � = 2. Let A = (Q; f0; : : : ; 4g �(f0; 1; 2g["); E; q0), with Q = Qt[Qs. All input words begin with 00. The set of transientstates is Qt = fq0; q1g. The set of syn
hronous states isQs = fq(X) 2 Z[X℄=(X � 2) j 0 � q(2) < 4g = f0; 1; 2; 3g:Transient edges are q0 0="�! q1 0="�! 0:The transition matrix of the syn
hronous part of A is given in the array below: the entry(i; j) 
ontains the label of egdes from state i to state j.0 1 2 30 0=0, 4=1 1=0 2=0 3=01 2=1 3=1 0=0, 4=1 1=02 4=2, 0=1 1=1 2=1 3=13 2=2 3=2 4=2, 0=1 1=1For integers, that is to say for �nite representations, the terminal fun
tion is de�ned by!(0) = 00, !(1) = 01, !(2) = 10, !(3) = 11. �Example 3 . Let � = (1 + p5)=2 be the golden ratio, the asso
iated linear numerationsystem is the Fibona

i numeration system, with u0 = 1, u1 = 2 and for n � 2, un =un�1 + un�2. The 
anoni
al alphabet is A = f0; 1g. Formula (*) gives Æ = 4 for addition,withD = f0; 1; 2g. This value is not optimal: I have given in [12℄ an on-line �nite automatonfor addition with delay 3. The automaton 
onstru
ted with delay 4 by the method aboveis not minimal in the number of states, but it is equivalent to the automaton with delay 3.In fa
t, the 
onstru
tion given in Theorem 1 and in Theorem 2 works with delay Æ0 = 3,the bound on the states be
oming 0 � q(�) � �with � = � + 2, and Condition (*) being repla
ed by��+ d � b�
�Æ0 + � (**)12



The on-line �nite automaton with delay 3 is des
ribed below.Let A = (Q; f0; 1; 2g � (f0; 1g [ "); E; fq0g). Input words begin with 00. The set oftransient states is fq0; q1; q2g. The elements of � are denoted by words of length 2, withd1d2 representing the polynomial d1X + d2, and the signed digit �1 being denoted by �1.The transient part of A is of the formq0 0="�! q1 0="�! q2 and q2 0="�! 00; q2 1="�! 01; q2 2="�! 02.In the syn
hronous part of A edges are the following ones:00 01 02 11 12 10 �12 03 1�1 2000 0=0 1=0 2=001 1=0 2=0 0=002 1=1 2=1 0=011 0=1 1=1 2=112 1=1 2=1 0=110 0=0 1=0 2=1�12 2=0 1=0 0=003 2=1 1=1 0=11�1 0=0 1=0 2=020 0=1 1=1 2=1For the Fibona

i numeration system the terminal fun
tion is de�ned by !(00) = 000,!(01) = 001, !(02) = 010, !(11) = 100, !(12) = 101, !(10) = 010, !(�12) = 000, !(03) =100, !(1�1) = 001, !(20) = 101. �Example 4 . Let � = (3 + p5)=2. Here A = f0; 1; 2g. For addition the delay 
omputedby (*) is 3, whi
h is minimal. �Referen
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