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Laboratoire de Mathématiques, CNRS UMR 5127

Université de Savoie
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1. Introduction

The goal of this paper is to study two-dimensional codes with horizontal and vertical
constraints of finite type, and to construct new tools in order to investigate the entropy
or capacity of such codes. In current storage devices – magnetic disks and tape
drives, and optical disk drives – the recording medium is considered as having one
dimension [3, 18, 24]. Hence information is a sequence stored on a track. For instance,
for binary information, some practical constraints like this one – bit transitions must
not occur too closely – are encountered. A well studied class of codes is the (d, k) −
RLL run length-limited codes, with d ≤ k, where there are at least d 0’s, but no
more than k 0’s, between successive 1’s. The (2, 7)−RLL code is classical for coding
information for example on a magnetic tape, see [3, 18], and the (1,∞) − RLL is
important from a theoretical point of view because it is related to the Fibonacci
sequence and to the golden number [15]. These topics are also related to number
representation in irrational base, see [16, Chap. 7].
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The research in future storage technologies considers recording medium as having
two dimensions: they are arrays stored on surfaces. They are encountered for in-
stance for holographic memories and 2D photon optical memories. Two-dimensional
constraints of finite type have been considered in terms of transition matrices [7, 23],
by bit-stuffing methods i. e. maps of unconstrained words into an array that satisfy
(1,∞)− RLL in row and column [22], or from an ergodic point of view [6]. In most
of the articles, authors investigate the case (1,∞) − RLL in row and column by us-
ing transition matrices constructed with square or rectangular blocks of various sizes.
The value of the entropy for this constraint is very close to 0.587891 . . ., see [7, 11, 10],
but to give an algebraic characterization of it is an open problem.

Our purpose is to describe two-dimensional constraints of finite type with tools
from combinatorics on words and automata theory. We consider general finite type
constraints in row and in column (not necessarily the same) and, in a first step, we
transform this problem into sets of minimal forbidden horizontal and vertical words.
Minimal forbidden words have been proved to be very useful for the description of
properties of symbolic dynamical systems, see in particular [4], and for the multidi-
mensional case [5].

In a second step, we construct a sequence of transition matrices in order to compute
the capacity of these two-dimensional codes. These transition matrices are built by
using two-dimensional squared substitutions of constant size and automata. The
link between automata and substitutions is also studied in [1] based on automatic
sequences introduced in [8]. In a different context, two-dimensional substitutions
with rectangle blocks have been considered in [17].

The organization of this article is the following: Section 2 is dedicated to definitions
and properties of words, automata and finite type constraints. Section 3 deals with
the construction of transition matrices by two-dimensional substitutions in the case
that the substitution has a fixed point. Two illustrations of the construction are
given: Section 4 presents the construction of transition matrices for the Fibonacci
constraint, that is to say the constraint (1,∞) − RLL in row and in column, and in
Section 5 we give a less peculiar example. In Section 6, the construction is shown
for the general case where the substitution has no fixed point. In the last section
we consider different types of constraint – such as diagonal ones – and by different
methods we obtain transition matrices for first-order checkerboards constraints by
substitutions.

2. Preliminaries

2.1. Words

An alphabet A is a finite set. A finite sequence of elements of A is called a word, and
the set of words on A is the free monoid A∗. The length of a word v is equal to the
number of its letters, and is denoted by |v|. The empty word is denoted by ε. Let v
be a word of A∗, denote by vn the concatenation of n times the word v, and by An

the set of words on A of length n. A word u is a factor of a word v if v = xuy. If x
(resp. y) is the empty word, u is a prefix (resp. suffix ) of v. A factor u of v is strict
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if it is not equal to the entire word v.

In this work we consider a two-dimensional generalization. A two-dimensional word
of height m and length n is an array of letters of A of dimension m× n.

2.2. Automata

We refer the reader to [9, 20]. An automaton over A, A = (Q,A,E, I, T ), is a
directed graph labelled by elements of A. The set of vertices, traditionally called
states, is denoted by Q, I ⊂ Q is the set of initial states, T ⊂ Q is the set of terminal

states and E ⊂ Q×A×Q is the set of labelled edges. If (p, a, q) ∈ E, we note p
a−→ q.

The automaton is finite if Q is finite. A subset L of A∗ is said to be recognizable by a

finite automaton if there exists a finite automaton A such that L is equal to the set
of labels of paths starting in an initial state and ending in a terminal state.

We recall some classical notions we will use in the sequel. The right congruence

modulo a language L ⊂ A∗ is defined by

u ∼L v iff (∀w ∈ A∗, uw ∈ L ⇐⇒ vw ∈ L).

It is known that L is recognizable by a finite automaton if and only if ∼L has finite
index. In that case, the minimal finite automaton recognizing L has for set of states
the set of equivalence classes modulo L. There is an edge [u]L

a−→ [ua]L for every
a in A. The initial state is equal to [ε]L. The set of terminal states is equal to
{[u]L | u ∈ L}. There is a sink, which is the class of words not in L.

2.3. System of Finite Type

This notion is traditionally defined for biinfinite sequences, see [15] for more details
on these topics. Here we introduce the same notion for finite words. Let A be a finite
alphabet, and let H be a finite subset of A∗, the constraint. A language of finite type

is a subset SH of A∗ such that no word in SH contains a strict factor in H. A word
v of A∗ is said to be H-admissible if it does not contain a strict factor in H. In the
following we assume that the set H is the set of minimal forbidden words, that is, no
strict factor of H is in H. Clearly, if a word v is in SH , any factor of v is in SH as well.
A language of finite type is recognizable by a finite automaton, where all the states
are initial and terminal. Let AH be a deterministic finite automaton recognizing SH .
The transition matrix MH of the automaton is defined by MH [p, q] = k where k is
the number of edges from state p to state q in the automaton AH . The subshift of

finite type SH defined by H is thus the set of biinfinite sequences that are labels of
biinfinite paths in the automaton AH . Equivalently, any finite factor of SH is in the
language SH .

Denote by pH(n) the number of admissible words of length n in SH . The entropy

(also called the capacity) of SH is defined as

h(SH) = lim
n→∞

1

n
log pH(n).
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We recall some results from Perron-Frobenius Theory. Let λH > 0 be the largest
eigenvalue of MH . The entropy of the subshift of finite type SH is equal to log λH ,
see [15, Chap. 4].

We now consider two-dimensional constraints. A two-dimensional subshift of finite
type is usually defined as a set of two-dimensional arrays that avoid a finite number
of patterns, see [5] for instance. In this work we consider a different sort of two-
dimensional constraint. Take two finite sets of constraints on an alphabet A, the
horizontal one H and the vertical one V . A two-dimensional word is said to be
(H,V )-admissible if each row is H-admissible and each column is V -admissible. The
two-dimensional language of finite type SH,V is the set of (H,V )-admissible two-
dimensional words. Let PH,V (m,n) be the number of admissible words m × n with
height m and length n under the constraints H and V . The entropy or capacity of
SH,V is defined as

h(SH,V ) = lim
m,n→∞

1

mn
logPH,V (m,n).

The value of limn→∞ PH,V (n, n)
n−2

is called the entropy constant by certain authors,
see [10].

2.4. Substitutions

A substitution σ on the alphabet A is a morphism σ : A → A∗. The image by σ of
a word is the concatenation of the images of its letters, that is, if σ(a) = w0 . . . wn−1

then σ2(a) = σ(w0) . . . σ(wn−1). If for each a in A, the length of σ(a) is the same,
the substitution is said to be of constant length. The link between substitutions and
finite automata is explicited in [8].

When there is a letter a such that σ(a) begins with a, the substitution has a fixed

point w = (wj)j≥0 defined as the limit when p goes to infinity of σp(a).

A two-dimensional substitution Σ maps a letter of A onto an array of letters of A

Σ(a) =

w(0,0) · · · w(0,n−1)

...
...

w(m−1,0) · · · w(m−1,n−1)

.

The image of such an array is a block-matrix image, that is,

Σ2(a) =

Σ(w(0,0)) · · · Σ(w(0,n−1))
...

...
Σ(w(m−1,0)) · · · Σ(w(m−1,n−1))

.

If for each a in A, the dimension of Σ(a) is always equal to m×n, the substitution is
said to be of constant dimension.

When there is a letter a such that in the array Σ(a) the letter w(0,0) is equal to a,
then the substitution Σ has a fixed point which is a semi-infinite matrix defined as
the limit when p goes to infinity of Σp(a).
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3. Substitutions with Fixed Point

In this section we assume that H and V do not contain words beginning with 00.
The general case will be handled in Section 5. One can always suppose that words in
the constraints H and V have length ≥ 2.

The construction can be followed on two examples, the two-dimensional Fibonacci
case in Section 4 and another example in Section 5.

3.1. Horizontal Constraint

Let A be a finite alphabet, which can always be taken as a set of contiguous digits
{0, 1, . . .}. Let H be a finite set of minimal forbidden words on A. We construct a
characteristic automaton CH associated with the horizontal constraint H as follows.

• The set of states of CH is QH = A ∪ P (H) where P (H) is the set of strict
prefixes of H of length ≥ 2. All states are initial and terminal.

• There is an edge between states p and q labelled by a if and only if pa is H-
admissible and q = ua, where ua is the largest word in QH which is a suffix of
pa. Clearly the automaton is deterministic. Remark that, by construction, in
CH every edge arriving in a state of name ua is labelled by a.

Proposition 1 The characteristic automaton CH recognizes the set SH . The entries

of its transition matrix MH are equal to 0 or 1.

Proof. By construction there is no transition outgoing from a state of QH arriving
in an element of H, so every word which is recognized by CH is H-admissible.

Conversely let w be a word with no factor in H. There exists a factorization of w
into elements of QH of maximal length, so w is the label of a path in CH . 2

In general the characteristic automaton is not minimal.
Let κ be the cardinality of QH , and let K = {0, 1, . . . , κ − 1}. To each state p of

QH is associated an integer ρ(p) which is its rank in the lexicographical order

ρ : QH → K

p 7→ ρ(p)

3.2. Vertical Constraint

Let V = {v1, . . . , vr} be the vertical constraint on A, chosen minimal. For w a non-
empty word, we denote by ψ(w) the last letter of w. For each word vi of V , of length
|vi|, we consider the set of stacks of states of QH of height |vi| such that the vertical
word formed by the last letter of each state of the stack is equal to the word vi, and
let X be the set of all such stacks corresponding to all the words vi of V . Formally
let

X =

{ q0
...

q|vi|−1

∣

∣

∣

∣

∣

0 ≤ j ≤ |vi| − 1, qj ∈ QH ; vi = ψ(q|vi|−1) . . . ψ(q0), ∀vi ∈ V
}

.
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Let

F =

{

ρ(qs) . . . ρ(q0)

∣

∣

∣

∣

∣

q0
...
qs

∈ X
}

be the set of forbidden stacks of states for the vertical constraint V .
We construct the minimal automaton MF recognizing the set of F -admissible

words on K. We use a sink, denoted by the letter z, because we need that the
automaton be complete, i. e., from each state there is a transition labelled by each
letter of the alphabet.

Let QF be the set of states ofMF . We define a substitution σV of constant length
κ on QF as follows. For each p in QF \ {z}, there is a rule p → p(0) . . . p(κ−1) with

p(j) = q such that the edge p
j→ q, 0 ≤ j ≤ κ−1, is inMF . The sink rule is z → zκ−1.

Set Card(QF ) = δ, we order QF = {a0, . . . , aδ−1} with a0 such that σV (a0) begins
with a0, and aδ−1 = z.

Proposition 2 Let w = (wj)j≥0 be the fixed point of σV . Then wj = z if and only

if the base κ expansion of j contains a forbidden factor in F .

Proof. This is a particular case of Corollary 7 below. 2

3.3. Two-Dimensional Substitution

First we define the cartesian product CH × CH as follows. Its transition matrix is
equal to the tensorial productMH⊗MH , obtained by replacing inMH each 1 byMH

and each 0 by the zero matrix of same dimensions. More generally, for each m ≥ 1,
we consider CmH with adjacency matrix MH⊗m.

For 0 ≤ i ≤ 2m−1 let <i>κ = im−1 . . . i0 be the base κ expansion of i and let

î =

i0
...

im−1

and by abuse ρ−1(̂i) =

ρ−1(i0)
...

ρ−1(im−1)

Each ρ−1(ik), for 0 ≤ k ≤ m − 1, is a state in QH . The following result is then
straightforward.

Lemma 3 For 0 ≤ i, j ≤ 2m−1, MH ⊗m [i, j] = 1 if and only if, for every 0 ≤
k ≤ m − 1, there is an edge between states ρ−1(ik) and ρ−1(jk) in the characteristic

automaton CH .

Now, we build a two-dimensional substitution ΣH,V from the substitution σV and

the matrix MH : ΣH,V = σV ∧MH is defined as follows. A rule ai → a
(0)
i . . . a

(κ−1)
i of

σV gives birth to a rule ai → Wai
in the two-dimensional substitution ΣH,V , where

Wai
is a κ × κ-matrix defined by Wai

[p, q] = a
(q)
i if MH [p, q] = 1, and Wai

[p, q] = z

otherwise.
Let π be the projection defined on QF by π(ai) = 1 if ai 6= z, and π(z) = 0.
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The previous construction does the following. The horizontal constraint for two-
dimensional words of height m is controlled by the tensorial product MH⊗m of the
matrix MH . The fixed point of the substitution σV removes non-V -admissible states
of the automaton. Thus the substitution ΣH,V = σV ∧MH replaces every non-V -
admissible column by a zero column. We control only the admissibility of the indices
of the columns because we are interested in the dominant eigenvalue, which means
the cycles of the transition graph.

Theorem 4 Let H and V be finite subsets of A∗, and let θm be the dominant eigen-

value of Tm = π(Σm
H,V (a0)). The number PH,V (m,n) of (H,V )-admissible words of

dimension m× n satisfies

lim
m,n→∞

1

mn
logPH,V (m,n) = lim

m→∞
1

m
log θm.

Proof. For 0 ≤ i, j ≤ 2m−1, we have that Tm[i, j] = 1 if and only if, for every
0 ≤ k ≤ m−1, there is an edge between states ρ−1(ik) and ρ

−1(jk) in the characteristic
automaton CH (from Lemma 3), and if ρ−1(ĵ) is V -admissible (by Proposition 2),
hence both horizontal and vertical constraints are satisfied. Now fix m, and denote
by SH,V (m) the set of bands of height m in SH,V . Then the entropy of SH,V (m) is
equal to

h(SH,V (m)) = lim
p→∞

1

p
log Perp(SH,V (m))

where Perp(SH,V (m)) is the number of periodic points of period p of SH,V (m), see [15].
Since SH,V (m) is a system of finite type we have that Perp(SH,V (m)) = trace(Tm)p.
Thus the entropy of SH,V (m) is given by (see [12])

h(SH,V (m)) = lim
n→∞

1

mn
logPH,V (m,n) = lim

n→∞
1

mn
log trace(Tm)n =

1

m
log θm.

2

It is known that the entropy of the system SH,V exists, see [11, 14, 19].

Corollary 5 The entropy θ of the system SH,V is given by limm→∞
1
m
log θm = θ

where θm is the dominant eigenvalue of Tm.

Proof. Recall that h(SH,V ) = limm,n→∞
1

mn
logPH,V (m,n). By Theorem 4,

limm,n→∞
1

mn
logPH,V (m,n) = limm→∞

1
m
log θm. And by sub-additivity argument

(see [14]) limm→∞
1
m
log θm = θ. 2

3.4. Finite Automaton

We now give the construction of the finite automaton which recognizes (H,V )-
admissible words of fixed height m. The matrix Tm = π(Σm

H,V (a0)) is the transi-
tion matrix of the automaton and is the transition matrix of SH,V (m). For each

0 ≤ i ≤ κm − 1, ρ−1(̂i) =

p0
...

pm−1

is a state of the automaton.
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Edges are of the form

p0
...

pm−1

d0
...

dm−1−→
q0
...

qm−1

where ρ−1(ĵ) =

q0
...

qm−1

and dk is the last letter of the state qk of QH for 0 ≤ k ≤ m−1.

4. The two-Dimensional Fibonacci Case

The Fibonacci constraint in one dimension is classically defined for finite words on
the alphabet A = {0, 1}: a word is Fibonacci-admissible if it does not contain two
consecutive 1’s as a subword. In the two-dimensional version, an array is admissible
if it does not contain two consecutive 1’s in row and in column.

This problem also appears in the literature with various denominations as hard-
square model [22], diamond constraint [23], checkerboard constraint [7, 23], two-
dimensional (1,∞) − RLL codes [21], two-dimensional golden subshift [15, 6]. The
hard square entropy constant is equal to 1.50304808247533226 . . . Nothing is known
about its arithmetic character, see [10].

Let H = {11}. The set of H-admissible words is recognizable by the following
finite automaton CH (see Figure 1). The set of states is QH = {0, 1}, where 0 and
1 are considered as letters. Every state is initial and terminal. Since there are two
states, κ = 2 and K = {0, 1} (here 0 and 1 are integers).

0 1

0

1

0

Figure 1: Automaton for the Fibonacci constraint

The transition matrix MH is equal to

MH =

(

1 1
1 0

)

It is well known that, under this constraint, the entropy is equal to h(SH) =

limn→∞
1
n
log pH(n) = log 1+

√
5

2 .

The vertical constraint is V = {11}, thus the set X is equal to X =

{

1
1

}

, and

F = {11}.
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The minimal automatonMF recognizing the set of F -admissible words is the same
as in Figure 1, with a sink denoted by z (see Figure 2). Every state excepted z is
terminal.

a b z

0

1

0

1

0, 1

Figure 2: Minimal automaton for the vertical Fibonacci constraint

The associated substitution σV with constant length 2 is

σV :







a→ ab

b → az

z → zz

Since σV (a) begins with an a, the substitution σV has a fixed point, denoted by
w = (wj)j≥0 = abazabzzab . . .. We have that wj 6= z if and only if the 2-expansion of
j, <j>2, is without two consecutive ones. For instance, w3 = z and <3>2 = 11.

The two-dimensional substitution Σ = ΣH,V = σV ∧MH is defined by

a→ a b

a z

b→ a z

a z

z → z z

z z
.

As an example, for words of height two, we compute the matrix Σ2(a) replacing
each letter by the corresponding 2× 2 block

a→ Σ(a) =
a b

a z
→ Σ2(a) =

a b a z

a z a z

a b z z

a z z z

.

Now, we project Σ2(a) by π

T2 = π(Σ2(a)) =









1 1 1 0
1 0 1 0
1 1 0 0
1 0 0 0









.

Remark that words of height 2 satisfying the horizontal constraint H only (no
vertical constraint) are recognized by the cartesian product CH × CH , which has for
transition matrix the tensorial product MH ⊗MH ,

MH ⊗MH =









1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0








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Note that T2 is just the matrix MH ⊗MH in which the last column, of index 3, is
replaced by a zero column. This is because <3>2 = 11 is not Fibonacci-admissible.

The matrix T2 is the transition matrix of the automaton recognizing Fibonacci-
admissible (horizontally and vertically) words of height 2. Only the trimmed part is
shown on Figure 3. The labelling of an edge here is just the name of the arrival state.

0
0

1
0

0
1

0
0

1
0

0
0

0
1

0
0

1
0

0
1

Figure 3: Automaton for Fibonacci-admissible words of height 2

The entropy for Fibonacci-admissible words of height 2 is equal to

lim
n→∞

1

2n
logP{11},{11} =

1

2
log(1 +

√
2)

because 1+
√
2 is the dominant eigenvalue of T2, the transition matrix of the system.

5. Another Example

Let A={0,1,2}, H = {202, 212, 222} and V= {22}. The characteristic automaton
of SH has six states QH = {0, 1, 2, 20, 21, 22}, ordered by lexicographic order. It is
shown on Figure 4.

Its transition matrix is

MH =

















1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 1 1
1 1 0 0 0 0
1 1 0 0 0 0
0 0 0 1 1 0

















The set K is equal to K = {0, . . . , 5} and κ = 6. Then X =

{

2
2 ,

2
22 ,

22
2 ,

22
22

}

and F = {22, 52, 25, 55}.
The minimal automaton is shown on Figure 5. Every state is terminal excepted

the sink z.
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2 22

1 21

0 20

0

1

0

0

1

1

2

1 12

0 1

2 0

0

Figure 4: Characteristic automaton CH for H = {202, 212, 222}

za b

0, 1, 3, 4 0, . . . , 5

2, 5 2, 5

0, 1, 3, 4

Figure 5: Minimal automaton MF for F = {22, 25, 52, 55} on {0, . . . , 5}

The associated substitution σV is

σV :







a→ aabaab

b → aazaaz

z → zzzzzz

The two-dimensional substitution ΣH,V = σV ∧MH is

a→ a a b z z z

a a b z z z

z z z a a b

a a z z z z

a a z z z z

z z z a a z

b→ a a z z z z

a a z z z z

z z z a a z

a a z z z z

a a z z z z

z z z a a z

z → z z z z z z

z z z z z z

z z z z z z

z z z z z z

z z z z z z

z z z z z z

.
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Let T2 = π(Σ2
H,V (a)). Take i = 2 and j = 11, then T2[i, j] = 1 because <2>6 =

02, <11>6 = 15, ρ−1(̂i) =
2
0
, ρ−1(ĵ) =

22
1
, ρ−1(ĵ) is V -admissible, and in the

characteristic automaton CH , there is an edge between states 2 and 22, and between
states 0 and 1.

6. General Case

Here we consider the case where H or V can contain words beginning with 00. The
consequence of this fact is that it will not be possible to construct a substitution ΣH,V

having a fixed point.
First the construction given in Section 3 is carried along the same way. Denote by

L the language recognized by the automaton MF . The start word for σV is a word
s = s0 . . . sκ−1 ∈ K∗ such that for each 0 ≤ j ≤ κ − 1, sj = [j]L is the state of MF

denoting the right class of j modulo L (see Section 2.2 for definitions).
Let n and i be positive integers with i < κn, and denote by (i)κ,n the representation

of i in base κ with n digits.

Proposition 6 Let σnV (s) = y0 . . . yκn+1−1. Then, for 0 ≤ j ≤ κn+1− 1, the letter yj
is the state denoting the class [(j)κ,n+1]L.

Proof. We have that j = κi + `, with 0 ≤ ` < κ. Thus in the word σn−1
V (s) =

x0 . . . xκn−1, the image of the letter xi by the substitution σV is equal to

σV (xi) = x
(0)
i . . . x

(κ−1)
i

with yj = x
(`)
i . By recurrence hypothesis, xi is the state denoting the class [(i)κ,n]L.

By construction, there is an edge xi
`−→ x

(`)
i in the automaton MF . Hence yj is the

state denoting the class modulo L of the word (i)κ,n`, which is equal to (j)κ,n+1. 2

Corollary 7 In σnV (s) = y0 . . . yκn+1−1 the letter yj is equal to z if and only if the

representation (j)κ,n+1 is not F -admissible.

If σV (a0) begins with a0, then the start word is nothing else than σV (a0). Thus
Proposition 2 is a consequence of Corollary 7.

We then define the substitution ΣH,V = Σ as in Section 3.3. If H or V contains
some words beginning with 00, there is no fixed point for Σ. Let s = s0 . . . sκ−1

be the start word for σV . The start matrix W for Σ is defined by W [p, q] = sq if
MH [p, q] = 1, W [p, q] = z otherwise.

Example 1 Take A = {0, 1}, H = {11}, and for vertical constraint the constraint
(d, k) = (1, 2). Thus V = {000, 11}. Since the automaton for SH has two states, 0 and
1 (see Figure 1), K is equal to {0, 1}, and the constraint V consists in forbidding stacks
of states having a factor in F = {000, 11}. On Figure 6 is the minimal automatonMF .
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ca b

z

0

1 0

0

1

1

0, 1

Figure 6: Minimal automaton for F = {000, 11} on {0, 1}

We have that a = [1]L, b = [0]L, c = [00]L, and z = [000]L = [11]L.
The associated substitution σV is

σV :















a→ bz

b → ca

c → za

z → zz

The start word for σV is s = ba. Then σV (s) = cabz, σ2
V (s) = zabzcazz, and so

on.
The substitution Σ = ΣH,V = σV ∧MH is given by

a→ b z

b z

b→ c a

c z

c→ z a

z z

z → z z

z z
.

The start matrix for Σ is equal to

W =
b a

b z
.

Then

Σ(W ) =

c a b z

c z b z

c a z z

c z z z

.

¦

Example 2 A famous example where the entropy is exactly computed is the following
one. Take A = {0, 1, 2}, and H = V = {00, 11, 22}. The value of the entropy of SH,V

is equal to 3
2 log

4
3 , see [2].

The associated substitution given by our method is Σ = ΣH,V

a→ z b c

z z c

z b z

b→ z z c

a z c

a z z

c→ z b z

a z z

a b z

z → z z z

z z z

z z z

.
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The start matrix for Σ is equal to

W =
z b c

a z c

a b z

.
¦

As in Section 3, we have

Theorem 8 Let θm be the dominant eigenvalue of π(Σm−1(W )). The entropy θ of

SH,V exists and is given by

lim
m,n→∞

1

mn
logPH,V = lim

m→∞
1

m
log θm = θ.

7. Checkerboard Constraints

We now consider other types of constraints, the checkerboard constraints, see [23].
They are binary two-dimensional arrangements where a 1 is surrounded by 0’s accord-
ing to some constraints in rows, columns and diagonals. We consider only first-order
constraints. A future work is to find a general construction for these kinds of con-
straints.

The Fibonacci constraint H = V = {11} on the alphabet A = {0, 1} presented in
Section 4 can be seen as the following cross

0
0 1 0

0

which means that each 1 in a word m× n is surrounded by 0’s in rows and columns.
Let m be the fixed height, and denote <i>2 = im−1 . . . i0, and

î =

i0
...

im−1

.

As we have seen earlier, 11 is forbidden in row in the juxtaposition îĵ if and only
if MH ⊗m [i, j] = 1 where

MH =

(

1 1
1 0

)

.

Remark that the matrix MH⊗m is equal to the matrix B2m of the Pascal triangle
modulo 2 of dimension 2m defined by B2m [i, j] = B2m [i− 1, j] +B2m [i, j− 1] mod 2.
Denote the golden number by ϕ and its conjugate by ϕ′. The set of eigenvalues of
B2m is equal to {ϕkϕ′` | k + ` = m}.

Note that B2m [i, j] = 1 if and only if the scalar product < i, j >= i0j0 + · · · +
im−1jm−1 = 0. The associated two-dimensional substitution is of course defined by

a→ a a

a z
. (1)
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In this section, the rule

z → z z

z z

must be added for each substitution. Then each letter not equal to z is projected
onto 1 and z is projected onto 0. We consider z as a “zero”.

The vertical constraint

0
1
0

is generated by the two-dimensional substitution

a→ a b

a b

b→ a z

a z
. (2)

We need to define the cartesian product of two two-dimensional substitutions. We
do it only for dimension 2 × 2. Let Σ1 and Σ2 be defined on alphabets A1 and A2

respectively. The cartesian product Σ = Σ1×Σ2 is defined on the alphabet of couples
A = A1 ×A2. If

Σ1(a1) =
b1 c1
d1 e1

, Σ2(a2) =
b2 c2
d2 e2

then

Σ((a1, a2)) =
(b1, b2) (c1, c2)
(d1, d2) (e1, e2)

Then the 2-dimensional Fibonacci substitution

a→ a b

a z

b→ a z

a z

z → z z

z z

(see Section 4) can be obtained as the cartesian product of substitutions (1) and (2)
with the additional convention that any couple of the form (a, z) or (z, a) must be
considered as a zero z.

We now introduce diagonal constraints. The 1-diagonal constraint

0
1

0

is equivalent to the scalar product i1j0 + · · ·+ im−1jm−2 = 0. This is realized by the
two-dimensional substitution

a→ a a

b b

b→ a z

b z
. (3)

As the other 1-diagonal constraint

0
1

0
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is equivalent to i0j1 + i1j2 + · · ·+ im−2jm−1 = 0, it is given by

a→ a b

a b

b→ a b

z z
. (4)

Thus the 2-diagonal constraint

0 0
1

0 0

is obtained by the product of the substitutions (3) and (4)

a→ a b

c d

b→ a b

z z

c→ a z

c z

d → a z

z z
. (5)

The oblique constraint is the following one

0
0 1 0
0

.

The associated substitution is obtained by the product of the substitutions (1) and
(3), thus

a→ a a

b z

b→ a z

b z
. (6)

The oblique constraint has the same entropy as the 2-dimensional Fibonacci con-
straint.

The hexagonal constraint is

0 0
0 1 0
0 0

.

The associated substitution is the product of the 2-dimensional Fibonacci substi-
tution and the substitution (3)

a→ a b

b z

b→ a z

b z
. (7)

For the hexagonal constraint it is known that the entropy constant is an algebraic
number [13, 10].

The square constraint is

0 0 0
0 1 0
0 0 0

.
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The substitution is the product of the 2-dimensional Fibonacci substitution and
the substitution (5)

a→ a b

b z

b→ a z

z z
. (8)
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