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: : : in an issue dedicated to Marcel-Paul Sch�utzenbergerAutomatic conversionfrom Fibonacci representation to representation in base ',and a generalization11 Where the reader is introduced to Fibonacci and base ' numera-tion systems, presented with a small tribute to Marcel-Paul Sch�ut-zenberger, and asked two questions.The writing of numbers, the various ways it can take, have always attracted attention ofmathematicians as well as of computer scientists. Some systems | such as the redundantdecimal system with digits f�6;�5; : : : ; 6g | have been invented in order to implementimproved algorithms for some operations (cf. [1]). Some have been considered becausethey bring to light remarkable mathematical objects or properties. This is the case, forinstance, of both the Fibonacci numeration system and the golden mean base.Let F = fFn j n 2 Ng be the sequence of Fibonacci numbers, de�ned by the recurrencerelation Fn+2 = Fn+1 + Fn (�)and by the \initial conditions" 2 F0 = 1 , F1 = 2 .It is well-known3 that every positive integer can be written as a sum of Fibonacci numbers;the sequence F together with the two-digit alphabet A = f0; 1g de�nes thus the Fibonaccinumeration system, i.e., every integer is represented by a sequence of 0's and 1's; e.g.,24 = F6 + F2 and 24 is represented by 1000100 .In contrast to what happens in the binary numeration system (i.e., the sequence of powersof 2, together with A) the representation of numbers in the Fibonacci system is not unique;e.g., 24 = F5 + F4 + F2 and 24 is also represented by 110100 .1A preliminary version of this paper appeared under the title \From the Fibonacci numeration systemto the golden mean base and some generalizations" in the Proceedings of the Conference \Formal PowerSeries and Algebraic Combinatorics", Florence, Italy, June 21{25, 1993, 231{244. In several places thisversion has been signi�cantly rewritten.2These are not the \usual" initial conditions but they happen to be the \good" ones when one wantsto turn the Fibonacci sequence into a numeration system.3and usually credited to Zeckendorf [21]; cf. also the Exercise 1.2.8.34 in [16].Corrected �nal version 3 February 9, 1998



To appear in the International Journal of Algebra and Computation : : :However, every non-negative integer can be given a normal representation, the largest4in the lexicographic ordering, which is characterized by the fact it does not contain twoconsecutive 1's (cf. the exercise quoted above). The set of all normal representations ofthe positive integers is thus RF = 1A� nA�11A� ,a rational 5 set of words of the free monoid A�, i.e., a set of words recognized by a �niteautomaton.It seems that it was Sch�utzenberger who �rst noticed that it is not only true that thereexists a �nite automaton that recognizes the set of all normal representations but therealso exists a �nite two-tape automaton (an automaton with output) that computes thenormal representation equivalent to any given representation. Figure 1 shows a facsimileof a manuscript6 of Sch�utzenberger giving such an automaton7.
Figure 1: A Fibonacci \standardisateur" by Sch�utzenberger.In the same letter, Sch�utzenberger also conjectured that this property should hold for4when considering representations of the same length after adding leading 0's to the shorter ones.5as we follow the terminology and notation of [18] | which are also those of [6] | we say rationalrather than regular (cf. Section 3).6We are thankful to Jean Berstel who kindly gave us a copy of it.7Sch�utzenberger writes numbers least signi�cant digit �rst, i.e., in the opposite way we are using here,and his automaton performs then the reduction 110 gives 001. \Standardisateur" is a neologism thatSch�utzenberger coined for the occasion and means normalizer. Note also that this automaton is notdeterministic in the input; it is not the \simplest" that performs the Fibonacci normalization (cf. [18, p.44] where a normalizer with 4 states is given) but it is a direct consequence of basic results ([3, Th. IV.2.8])that such a normalizer cannot be deterministic in the input.Corrected �nal version 4 February 9, 1998



: : : in an issue dedicated to Marcel-Paul Sch�utzenbergerany numeration system de�ned by a linear recurrence relation (with integral coe�cients).It is now known that the result is not true in general but, roughly speaking, only for thoselinear relations that correspond (via their characteristic polynomial) to Pisot numbers [9,13], a statement that is probably even more striking than the original conjecture.On the other hand, it has been observed that numbers (integers but also real numbersin general) can be represented in (geometric) numeration systems de�ned by non-integralbases (cf. [19]). Such representations form symbolic dynamical systems that have beenextensively studied.In particular, let ' be the golden mean i.e., the larger zero ofP (X) = X2 �X � 1 ,which is the characteristic polynomial of the recurrence relation (�). As above, it is known(cf. [16, Exercise 1.2.8.35]) that every number x can be written as a sum of (positive andnegative) powers of ' and thus can be represented as a sequence | possibly in�nite | of0's and 1's together with a radix point; e.g.,5 = '3 + '�1 + '�4 and 5 is represented by 1000.1001 .Such a sequence is called a '-representation of x. For every real number there exists aunique normal '-representation, called its '-expansion : the one that does not contain twoadjacent 1's and does not terminate by the in�nite factor 101010 : : : . From this statementfollows that the set of all '-expansions (of the real numbers) is recognized by a �niteautomaton (accepting in�nite words) and it is not di�cult to adapt the Sch�utzenbergernormalizer in order to get a two-tape automaton (on in�nite words) that computes the'-expansion equivalent to any given '-representation. This characterizes the set of the'-expansions of the reals.The comparison of the two situations leads to the following two questions. Does thereexist a characterization of the '-expansions of the integers? And is there any relationshipbetween the '-expansion of an integer and its normal representation in the Fibonaccisystem?2 Where the answer is given, the solution that leads to it presented,still on the example of the Fibonacci system, and the domain ofvalidity of the answer precisely delimited.The answer is yes, to both questions, and this is what the paper is all about. The answer isyes to the �rst one, as a consequence of the yes to the second. The latter was announced inthe title: \automatic" is to be understood as \computable by a �nite two-tape automaton",Corrected �nal version 5 February 9, 1998



To appear in the International Journal of Algebra and Computation : : :just as, for instance, in \automatic group", that are groups in which the multiplication(by a generator) is realized by a (letter-to-letter) �nite two-tape automaton (cf. [8]).As we already stated, the set of all normal Fibonacci representations of the positiveintegers8 is the rational language RF = 1A� nA�11A� .To begin with, let us be empirical in approaching the characterization of the set R' ofthe '-expansions of all positive integers. It �rst appears that every positive integer has a�nite '-expansion (cf. Proposition 1). Table 1 below gives the '-expansion of the �rst 15integers together with their Fibonacci normal representation.The position of the radix point, roughly situated, as Table 1 shows, in the middle ofevery expansion, suggests that R' is not a rational language. It will be eventually shownthat R' is a linear context-free language9 (see Corollary 4). This is the consequence ofa much more precise result that will require some transformations on R' in order to bestated.Let f .g be the '-expansion of an integer N , i.e., an element of R'; the words f and gbelong to f0; 1g�. It is a classical result ([20]) that R' is a linear context-free language ifthe set S = f(f; gt) j f .g 2 R'gis a rational set in f0; 1g� � f0; 1g� (gt denotes the mirror image of g). Moreover, as wehave already noted, the lengths of f and of g are approximately equal | the di�erence ofthese lengths is indeed bounded by 1 | and this property implies that S is a rational setin f0; 1g� � f0; 1g� if, and only if, it is a rational set in (f0; 1g � f0; 1g)� (cf. [7, 6, 10]).Such a statement will be made more intelligible by means of the following convention.Every element of J = f0; 1g� f0; 1g will be written as a \vertical double-digit" :J = f 00; 01; 10; 11g .Any element of J� can be read as the superposition of two words of equal length, an\upper word" above a \lower word". If f .g is the '-expansion of N , its expression ( fgt )as an element of J� will naturally be called the folded '-expansion of N ; e.g., the folded'-expansion of 5 is ( 11 00 00 01 ). Table 1 gives the folded '-expansion of the 15 �rst integersas well.Let T' be the set of folded '-expansions of all positive integers; the announced char-acterization of R' then reads :8It is convenient not to deal with 0. Whatever representation is chosen for 0 | 0, to stick to commonsense, or the empty word, to be more consistent with the rest of the theory | it will not �t with thegeneral case.9All de�nitions are postponed to Section 3.Corrected �nal version 6 February 9, 1998



: : : in an issue dedicated to Marcel-Paul Sch�utzenbergerN Fibonacci representations '-expansions Folded '-expansions1 1 1. 102 10 10.01 11 003 100 100.01 10 01 004 101 101.01 10 01 105 1000 1000.1001 11 00 00 016 1001 1010.0001 11 00 10 007 1010 10000.0001 10 01 00 00 008 10000 10001.0001 10 01 00 00 109 10001 10010.0101 10 01 00 11 0010 10010 10100.0101 10 01 10 01 0011 10100 10101.0101 10 01 10 01 1012 10101 100000.101001 11 00 00 01 00 0113 100000 100010.001001 11 00 00 01 10 0014 100001 100100.001001 11 00 00 11 00 0015 100010 100101.001001 11 00 00 11 00 10Table 1: Fibonacci representations and '-expansions of the 15 �rst integersProposition A T' is a rational set of J�.Indeed, Proposition A appears as the consequence of a much stronger result that, forevery integer N , relates its Fibonacci representation and its folded '-expansion and whichis stated by the following:Theorem B There exists a letter-to-letter �nite two-tape automaton A' that maps theFibonacci representation of any integer onto its folded '-expansion.The automaton A' is not constructed directly. Rather, its construction is broken upinto several steps. A major one consists in the fact that normalization | i.e., computationof the '-expansion from any '-representation | can be achieved by a letter-to-letter �nitetwo-tape automaton (cf. [9]). A few other ones amount to constructions involving letter-to-letter �nite two-tape automata (Propositions 7 and 8).Corrected �nal version 7 February 9, 1998



To appear in the International Journal of Algebra and Computation : : :But the main step in proving Theorem B (later, Theorem 2) is the construction ofan automaton T' that reads words where the letters have been grouped into blocks oflength 4, and with the property that there is at most one digit 1 in every block. As seenon its (deterministic) underlying input automaton shown in Figure 2, this automaton T'is remarkably simple. It has 5 states, in a one-to-one correspondence with the abovementioned blocks; it consists in the complete oriented graph with 5 vertices, as indicatedin Table 2 which gives the input and output labels of every edge. Every state is �nal, anddenoted as such by an outgoing arrow.
0001

1000

0010

0100 0000Figure 2: The underlying input automaton of T'. This is a partial view: the only transi-tions represented are those labelled by 0 0 0 1 (bold arrows), by 0 0 1 0 (dashed arrows)and by 0 0 0 0 (loops). The transitions labelled by 0 1 0 0 (resp. by 1 0 0 0 ) are thereverse of those labelled by 0 0 0 1 (resp. by 0 0 1 0 ).It should be noted that the output labels of the edges in T' are far from being normal-ized (since digits like 2 or even negative digits like �1 are allowed). It is this freedom in thechoice of the output labels that makes possible the construction of a two-tape automatonwith such a simple (and deterministic) underlying input automaton, here, and even morestrikingly in the general case.The aim of this paper is to establish a more general version of Theorem B | and thusProposition A | the generalization consisting of proving the property not only for thegolden mean ' but for any quadratic Pisot unit �.The precise statement requires more de�nitions and notation that will be given inthe next section. The core of the proof will be the complete description of the two-tapeautomaton T� in the general case (Sections 6 and 7). This description is made possibleby the identi�cation of the underlying input automaton of T� with a �nite Abelian group,the existence of which is \discovered" in Section 6. In Section 5, it is shown how themain theorem (Theorem 2) can be derived from the construction of T� , the idea of whicharises | in Section 4 | from the computation (Proposition 5) of the �-expansion of theelements of the sequence U� (that generalizes the Fibonacci sequence F ).Corrected �nal version 8 February 9, 1998



: : : in an issue dedicated to Marcel-Paul Sch�utzenbergerend 0000 0001 0010 0100 1000origin label0000 0000 / 00000000 0001 / 00000010 0010 / 00001100 0100 / 00100100 1000 / 110000010001 0100 / 110�10000 0000 / 01000010 1000 / 12001000 0010 / 01100100 0001 / 010011000010 1000 / 10100000 0010 / 00110010 0000 / 00011000 0001 / 00100100 0100 / 110000000100 0001/ 100�10000 1000/ 11100010 0100 / 11001000 0000 / 00100100 0010 / 110000011000 0010 / 10100000 0100 / 10100010 0001 / 10001000 1000 / 20000110 0000 / 10000001Table 2: The labelled edges of the two-tape automaton T'As said above, an immediate (and weak) corollary of the generalization of Proposition Astates then that the set of �-expansions of the integers is a (linear) context-free language. Ashort note following this paper ([14]) establishes that, conversely, if the set of �-expansionsof the integers is a context-free language then � is a quadratic Pisot unit.3 Where some de�nitions are made precise, some notation given,and some classical results recalled, so as to state, at last, the maintheorem.We �rst recall classical de�nitions about �nite automata and numeration systems, and wethen state results on Pisot numbers upon which this paper is based.3.1 Finite automataWe basically follow the exposition of [18] or [6] for the de�nition of �nite automata over analphabet. An automaton over a �nite alphabet A, A = (Q;A;E; I; T) is a directed graphlabelled by elements of A; Q is the set of states, I � Q is the set of initial states, T � Q isthe set of terminal states and E � Q�A�Q is the set of labelled edges. The automaton Ais �nite if Q is �nite, and this will always be the case in this paper. The transition functionof A is the function � : Q �A �! P(Q) de�ned by �(p; a) = fq 2 Q j (p; a; q) 2 Eg. Theautomaton is deterministic if E is the graph of a (partial) function from Q�A intoQ. Notethat with these de�nitions, automata are non-deterministic by default and determinismdoes not imply completeness.Corrected �nal version 9 February 9, 1998



To appear in the International Journal of Algebra and Computation : : :A computation in A is a �nite path in the labelled graph A and thus the label of acomputation is the concatenation (or product) of the labels of the edges. A computationis said to be successful if its origin is in I and its end is in T . The subset of A� consistingof labels of successful computations of A is called the set (or language) recognized by A.A subset of A� is said to be rational10 if it is recognized by a �nite automaton over A.This de�nition of automata as labelled graphs extends readily to automata over anymonoid M . We shall consider here automata over the monoid A��B� which are calledtwo-tape automata : a two-tape automaton A = (Q;A��B�; E; I; T ) is a directed graphwhose edges are labelled by elements of A��B�. The automaton is �nite if the set of edgesE is �nite (and thus Q is �nite), and this will always be the case in this paper. In theliterature two-tape automata are also often called non-deterministic generalized sequentialmachines or transducers (see [3]). The set of labels of successful computations of A |the behaviour of A | is then a subset of A��B�, i.e., the graph of a relation from A�into B�. If it is the behavior of such an automaton, a relation is is said to be computableby a �nite two-tape automaton | or, often, rational. In spite of its conciseness, we donot use the latter word, for it causes an unnecessary interrogation to the mathematicallyinclined reader, especially when it comes to functions. When the relation computed byA is a function, we also say that A realizes this function, and we sometimes denote thisfunction by A (in Section 5 and 7).A letter-to-letter two-tape automaton is a two-tape automaton whose edges are labelledin A�B. A letter-to-letter two-tape automaton can thus be viewed as an automaton overinput alphabet A�B. The composition of two functions realized by letter-to-letter two-tapeautomata is obviously realized by a letter-to-letter two-tape automaton (cf. [6, Sec. IX.7]and [10] for more results on those functions).Let A be a letter-to-letter two-tape automaton over A��B� . The automaton overA obtained by taking the projection on A� of the label of every edge of A is called theunderlying input automaton of A. A letter-to-letter two-tape automaton is said to be (left)sequential if its underlying input automaton is deterministic with every state being �nal.A sequential two-tape automaton is often de�ned and denoted in the following way (cf.[3, Sec. IV.2]): A = (Q;A;B; �; �; i), where i 2 Q is the unique initial state, � : Q�A! Qis the transition function of the underlying input automaton, and � : Q�A ! B� isthe output function. Then, the set of edges of A, seen as a two-tape automaton, isE = f(p; (a; �(p; a)); �(p; a)) j p 2 Q; a 2 Ag.Let us end this paragraph with two brief words about in�nite words and context-freelanguages.If s is a word of A�, s! denotes the in�nite word obtained by inde�nitely concatenat-10Often regular in the literature. As said above, we follow [18] and [6] whose terminology �ts well apaper dedicated to M. P. Sch�utzenberger.Corrected �nal version 10 February 9, 1998



: : : in an issue dedicated to Marcel-Paul Sch�utzenbergering s. An in�nite computation of an automaton A on A, A = (Q;A;E; I; T ), is an in�nitepath in the labelled graph A. The computation is successful if its origin is in I and ifit goes in�nitely often through T . This de�nition of success is usually known as \B}uchiacceptance". The de�nitions extend, more or less directly, to relations on in�nite words,directly in the case of relations realized by letter-to-letter two-tape automata since theyare automata over the alphabet of pairs of letters (see [10]).We shall not make use of context-free languages for more than their mere de�nitionand for that purpose we refer the reader to [3] ot to [15]. Let us just mention that alinear context-free language is a language generated by a context-free grammar whoseproductions have a right-hand side with at most one occurence of a non-terminal symbol.3.2 Representation of numbersTwo generalizations of representation of numbers in integer base are considered here:general numeration systems for integers and non-integral real bases. All the alphabets weconsider are �nite. By analogy with the classical decimal or binary systems, we shall say\digit" for a symbol belonging to an alphabet of (possibly negative) integers.3.2.1 Representation of integers in a numeration system ULet U = (un)n�0 be a strictly increasing sequence of integers with u0 = 1. A representationin the system U | or a U -representation | of a (positive) integer N is a �nite sequenceof integers (dn)0�n�k(N) such that N = k(N)Xn=0 dnunfor a convenient index k(N) � 0. The sequence (dn)0�n�k(N) will be denoted by the worddk(N) � � �d0, since numbers are written from left to right, most signi�cant digit �rst.Among all possible U -representations of a given integer N , one is distinguished andcalled the normal U -representation of N : it is the one given by the classical \greedyalgorithm", which as well turns out to be the greatest for the lexicographic ordering, whenan adequate number of 0's is added on the left of representations of N so as to make themall of the same length. The normal U -representation of N is denoted by hNiU . Underthe hypothesis that the ratio un+1=un is bounded as n goes to in�nity, the digits of thenormal U -representation of any integer N are bounded and are all contained in a minimalalphabet AU associated with U .Let B be a �nite alphabet of (possibly negative) digits11; any �nite sequence of digits,11There will be alphabets of various kind in the course of the paper. With the hope it will help thereading, we have sticked to the following conventions. Regardless of superscript or subscript, A will denotecanonical alphabets, D alphabets of positive digits, B or C alphabets of possibly negative digits.Corrected �nal version 11 February 9, 1998



To appear in the International Journal of Algebra and Computation : : :or word in B�, is given a numerical value by the function �U : B� ! N which is de�ned by�U(w) = kXn=0 dnun where w = dk � � �d0 .Two words v and w of B� are said to be equivalent if they have the same numericalvalue, i.e., if �U(u) = �U (v). The function that maps any word w of B� onto the normalU -representation of the integer �U(w) | if �U (w) is positive | is called the normalizationand is denoted by �U;B (since it formally depends on U and B):�U;B : B� �! A�U .3.2.2 Representation of real numbers in base �Let now � be a real number larger than 1. A representation in base � | or a �-representation | of a real number x is an in�nite sequence (xn)�1�n�k(x) of integerssuch that x = k(x)Xn=�1 xn�nfor a convenient index k(x) in Z. It is natural to write the sequence (xn)�1�n�k(x) inthe form xk(x) � � �x0.x�1x�2 � � � , when k(x) is � 0, and 0.00 � � �0xk(x)xk(x)�1 � � � , with theadequate number of leading zeroes, when k(x) < 0, as one writes of a classical decimalexpansion.As above, the greatest in the lexicographic ordering of all �-representations of a givenpositive real number x is distinguished as the normal �-representation of x, usually calledthe �-expansion of x. The �-expansion of a real x can be computed by the following greedyalgorithm (see [19]):Denote by bxc and by fxg the integer part and the fractional part of a num-ber x. There exists k 2 Zsuch that �k � x < �k+1. Let xk = bx=�kc, andrk = fx=�kg. Then for k > i � �1, put xi = b�ri+1c, and ri = f�ri+1g.We get an expansion x = xk�k + xk�1�k�1 + � � � . If k < 0 (i.e., x < 1), we putx0 = x�1 = � � � = xk+1 = 0. The �-expansion of x is denoted by hxi�. It follows from thealgorithm that every digit xi of the �-expansion of a number x is smaller than �, i.e., isan element of the set A� = f0; : : : ; b�cg ,called the canonical alphabet for � .1212This holds indeed when � is not an integer; when � is an integer, A� = f0; � � � ; �� 1g | but this lattercase will never occur here.Corrected �nal version 12 February 9, 1998



: : : in an issue dedicated to Marcel-Paul Sch�utzenbergerAn expansion ending with in�nitely many zeroes is said to be �nite, and the trailingzeroes are omitted.By convention (see [19], [17]) | and slight abuse |, we shall call �-expansion of 1 ,and denote it by d(1; �), the largest �-representation of 1 in the lexicographic orderingwhich is smaller than \1." i.e., the largest sequence of integers (tn)n�1 such that1 =Xn�1 tn��n .Let us introduce another de�nition: for every k in Z, the k-th initial section of Zisthe set of all integers smaller than or equal to k. The set of all initial sections of Z isdenoted by Zw. Let B be any �nite alphabet of (possibly negative) digits. The set ofsequences (xn)�1�n�k with xi in B is thus denoted by BZw. It is a natural convention toconsider that any �nite sequence (ym)l�m�k of elements in B is also an in�nite sequence(ym)�1�m�k of BZw with ym = 0 for all m < l.Any element of BZw is given a numerical value by the function �� : BZw �! R whichis de�ned by ��(s) = �1Xn=k sn�n where s = (sn)�1�n�k .Two in�nite words s and y of BZw are said to be equivalent if they have the samenumerical value. The function that maps any element s of BZw onto the �-expansion ofthe real ��(s) | if ��(s) � 0 | is called the normalization and is denoted by ��;B :��;B : BZw �! AZw� .3.3 Pisot numbersA polynomial P (X) = anXn+ � � �+a0 in Z[X ] is said to be monic if an = 1. An algebraicinteger is a zero of a monic polynomial in Z[X] which can be supposed irreducible; itsalgebraic conjugates are the other zeroes of this polynomial. A zero � of P (X) = 0 issaid to be dominant when every other zero is strictly smaller than � in modulus. A Pisotnumber is an algebraic integer such that all its algebraic conjugates have modulus smallerthan 1 (it is thus larger than 1).An algebraic integer is said to be a unit if the constant term a0 of its minimal poly-nomial P (X) = Xn + an�1Xn�1 + � � �+ a0 is equal to �1. The minimal polynomial of aquadratic Pisot unit � is thus of the form :P (X) = X2 � rX � "with either r � 1 and " = +1, or r � 3 and " = �1, cases which will be referred to asCase 1 and Case 2 respectively throughout the paper.Corrected �nal version 13 February 9, 1998



To appear in the International Journal of Algebra and Computation : : :3.3.1 Representation of integers in base �When � is not an integer, the �-expansion of a positive integer is, in general, an in�nitesequence over the alphabet A� . It turns out, however, that for certain Pisot numbers �,the �-expansion of every integer is �nite. As stated by the following, this is the case forthe quadratic Pisot numbers on which we shall concentrate in the sequel of this paper.Proposition 1 [12]If � is a quadratic Pisot number, then every integer has a �nite �-expansion.3.3.2 Linear numeration systems associated to Pisot numbersA very fundamental property of Pisot numbers (as far as �-expansions are concerned) isgiven by the following:Theorem 1 [4]If � is a Pisot number, then d(1; �), the �-expansion of 1, is eventually periodic.Indeed, this property makes it possible to canonically associate a linear recurrentsequence U� with every Pisot number �. This system U� is characterized by the factthat normal U�-representations and �-expansions are de�ned by the same set of forbiddenwords (they de�ne indeed the same dynamical system). Two cases have to be considered,according to whether d(1; �) is �nite or in�nite. We give here the construction of thesequence U� for the case of quadratic Pisot units we shall be studying. The general caseis analoguous.Definition 1 [5]Case 1. (" = +1, r � 1 ; i.e., � is the dominant root of X2 � rX � 1 = 0 .) ThenA� = f0; � � � ; rg and d(1; �) = r 1 .The linear recurrent sequence U� = (uk)k�0 associated with � is de�ned byuk+2 = ruk+1 + uk; k � 0 and u0 = 1; u1 = r + 1 .Case 2. (" = �1, r � 3 ; i.e., � is the dominant root of X2 � rX + 1 = 0 .) ThenA� = f0; � � � ; r�1g and d(1; �) = r�1 (r�2)! .The linear recurrent sequence U� = (uk)k�0 associated with � is de�ned byuk+2 = ruk+1 � uk; k � 0 and u0 = 1; u1 = r .In both cases, the sequence U�, together with the alphabet A� , de�ne the linear nu-meration system associated with �.Corrected �nal version 14 February 9, 1998



: : : in an issue dedicated to Marcel-Paul Sch�utzenbergerA brief word on what is known, in general, on the �-expansions and on the represen-tations in the associated system U� . In Case 1, an in�nite sequence (resp. a �nite word)over A� is a �-expansion (resp. is a U�-representation) if and only if this sequence andall the shifted ones are lexicographically smaller than (r0)!. The associated dynamicalsystem is a subshift of �nite type. Similarly in Case 2, an in�nite sequence (resp. a �niteword) over A� is a �-expansion (resp. is a U�-representation) if and only if this sequenceand all the shifted ones are lexicographically smaller than d(1; �) = (r � 1)(r � 2)!. Theassociated dynamical system is a so�c subshift (see [17] and [5]).3.3.3 Normalization in base �The fundamental property that relates representation of numbers in a Pisot base andautomata theory is given by the following:Proposition 2 [9] If � is a Pisot number, then for every �nite alphabet B, normal-ization on BN in base � is a function computable by a letter-to-letter �nite two-tapeautomaton.Let us make three comments. This statement is the one that requires the de�nition offunctions on in�nite words. In the course of the paper, the normalization will be appliedon �nite words only. This is the reason why we did not �nd necessary to give more detailson this de�nition in Section 3.1 .In [9], Proposition 2 is proved in the case where every element of B is non-negative.The proof extends readily to alphabets containing both positive and negative digits. As amatter of fact, the converse of this result holds as well (see [2]), but this will not be usedhere.Normalization on BZw is slightly di�erent from normalization on BN, because of thepresence of negative digits. We shall deal with this problem at Section 5.3.4 Main resultAfter all these reminders we still have to introduce one more new operation on �-repre-sentations (already sketched in the introduction), in order to state the main result.3.4.1 Folded �-representationLet B be an arbitrary alphabet of digits containing 0, and let B� = fab j a; b 2 Bg be thealphabet of pairs of elements of B, conveniently written one above the other, and called\double-digits". The mirror image of a word v is denoted by vt. Any element w of B��Corrected �nal version 15 February 9, 1998



To appear in the International Journal of Algebra and Computation : : :can be written as w = uv , where u; v 2 B� and juj = jvj. The upper part of w will bedenoted by  �w = u, and the lower part of w by �!w = vt. For instance, if A = f0; 1g thenA� = f00; 01; 10; 11g. Let w = 11 00 00 11 00 10 ; then  �w = 100101 and �!w = 001001.Let s = f .g, with f; g 2 B�; by completing the shorter of f and g with enough 0's(either at the left for f , or at the right for g), one can assume that jf j = jgj. Such an swill be called a balanced (�-)representation. The folding operation � maps any balancedrepresentation s = f .g onto the element �(s) = fgt of B�� . Conversely, the inverse of �,��1, called the unfolding operation, maps every element w = uv of B�� onto the balancedrepresentation ��1(w) = ��1(uv ) = u.vt. Thus  ����(f .g) = f , ���!�(f .g) = g, and ��1(w) = �w .�!w .The numerical value function �� extends to folded representations : if w is a word onB�� , then, by de�nition ��(w) = ��( �w .�!w ).With these de�nitions and notations, a classical result in formal language theory (cf.[3, Prop. V.6.5], [20]) that we have already quoted in the introduction can be stated asfollows.Proposition 3 Let B be an arbitrary alphabet and let B� be the alphabet of \double-digits". Let K be a rational set of B�� . Then ��1(K) is a linear context-free language of(B [ f.g)�.3.4.2 The resultTheorem 2 Let � be a quadratic Pisot unit and let D be an arbitrary �nite alphabetof non-negative digits. The function ��;D that maps any word w on D� onto the folded �-expansion of �U�(w), the integer represented by w in the linear numeration system (U� ; D),is computable by a letter-to-letter two-tape automaton.Since the image of D� by a function computable by a letter-to-letter two-tape automa-ton is a rational language, it then follows immediately from Theorem 2 and Proposition 3that we have:Corollary 4 Let � be a quadratic Pisot unit. The set of folded �-expansions of allintegers is a rational language. The set of �-expansions of all integers is a linear context-freelanguage.Corrected �nal version 16 February 9, 1998



: : : in an issue dedicated to Marcel-Paul Sch�utzenberger4 Where the �-expansion of the elements of the linear recurrent se-quence U� is computed, which leads to the reduction of the problemto a smaller set of words and, at the same time, puts the readeron the track of a �nite two-tape automaton.From now on, � is a quadratic Pisot unit, the dominant zero of P (X) = X2� rX � "; andU� = (un)n2N is the linear recurrent sequence associated to � as above. The result reliesindeed on the very regular expression of the elements of U� in terms of the powers of �, asstated in the following :Proposition 5 Case 1. For every k in N,u2k = �2k + (r� 1)�2k�2 + �2k�4 + � � �+ (r � 1)��2k+2 + ��2k= 0@ X0�j�k �2k�4j1A+0@(r� 1) X1�j�k �2k+2�4j1A , andu2k+1 = �2k+1 + (r� 1)�2k�1 + �2k�3 + � � �+ (r � 1)��2k�1 + ��2k�2= 0@ X0�j�k �2k+1�4j1A+ ��2k�2 +0@(r� 1) X0�j�k �2k�1�4j1A .Case 2. For every k in N,uk = �k + �k�2 + � � �+ ��k = X0�j�k �k�2j .Proof. Case 1. For every j in Z, the equality�j+2 = r�j+1 + �j (1)holds, and, as stated in De�nition 1, the sequence U� = (uk)k�0 is de�ned byuk+2 = ruk+1 + uk ; k � 0 and u0 = 1; u1 = r + 1 .Equation 1 gives (for j = �2 and j = �1) 1 = r��1 + ��2 and r = �� ��1 from whichone gets u1 = r + 1 = � � ��1 + r��1 + ��2 = � + (r� 1)��1 + ��2 (2)Together with u0 = �0 , this shows the property for k = 0 .Corrected �nal version 17 February 9, 1998



To appear in the International Journal of Algebra and Computation : : :By induction, let us suppose that the statement holds for u2k and u2k+1 . Thenu2k+2 = ru2k+1 + u2k= r ��2k+1 + (r � 1)�2k�1 + �2k�3 + � � �+ ��2k+1 + (r � 1)��2k�1 + ��2k�2�+ �2k + (r � 1)�2k�2 + �2k�4 + � � �+ (r� 1)��2k+2 + ��2k= r�2k+1 + (r � 1)r�2k�1 + r�2k�3 + � � �+ r��2k+1 + (r� 1)r��2k�1 + r��2k�2+ �2k + (r � 1)�2k�2 + �2k�4 + � � �+ (r� 1)��2k+2 + ��2kGrouping together terms of the form r�j�1 + �j�2, for j ranging from �2k + 2 to 2k + 2yieldsu2k+2 = �2k+2 + (r� 1)�2k + �2k�2 + � � �+ ��2k+2 + (r� 1)r��2k�1 + r��2k�2and thusu2k+2 = �2k+2 + (r� 1)�2k + �2k�2 + � � �+ ��2k+2 + (r� 1)��2k�1 + ��2k�2since(r� 1)r��2k�1 + r��2k�2 = (r � 1)�r��2k�1 + ��2k�2�+ ��2k�2 = (r � 1)��2k + ��2k�2The statement holds for u2k+2. The computation of u2k+3 is then possible (and similar):u2k+3 = ru2k+2 + u2k+1= r��2k+2 + (r� 1)�2k + �2k�2 + � � �+ (r � 1)��2k + ��2k�2�+ �2k+1 + (r � 1)�2k�1 + �2k�3 + � � �+ (r � 1)��2k�1 + ��2k�2= r�2k+2 + (r � 1)r�2k + r�2k�2 + � � � (r� 1)r��2k + r��2k�2+ �2k+1 + (r � 1)�2k�1 + �2k�3 + � � �+ (r � 1)��2k�1 + ��2k�2Grouping together terms of the form r�j�1 + �j�2, for j ranging from �2k � 1 to 2k + 3,yieldsu2k+3 = �2k+3 + (r � 1)�2k+1 + �2k�1 + � � � (r� 1)��2k+1 + (r+ 1)��2k�2and thusu2k+3 = �2k+3 + (r � 1)�2k+1 + �2k�1 + � � � (r� 1)��2k+1 + ��2k�1 + (r � 1)��2k�3 + ��2k�4since(r+1)��2k�2 = ��2k�1+(r�1)��2k�3+��2k�4 by multiplication of (2) by ��2k�2 .The statement holds for u2k+3.Corrected �nal version 18 February 9, 1998



: : : in an issue dedicated to Marcel-Paul Sch�utzenbergerCase 2. For every j in Z, the equation�j+2 = r�j+1 � �j (3)holds, and, as stated in De�nition 1, the sequence U� = (uk)k�0 is de�ned byuk+2 = ruk+1 � uk ; k � 0 and u0 = 1; u1 = r .Equation 3 (for j = �1) gives r = � + ��1 , (4)which shows, together with u0 = �0 , the property for k = 0 and k = 1 .The induction step is similar to (and easier than) the one for Case 1. Suppose thatthe statement holds for uk and uk+1. Thenuk+2 = ruk+1 � uk= r��k+1 + �k�1 + � � �+ ��k+1 + ��k�1�� �k � �k�2 � � � � � ��k= r�k+1 + r�k�1 + � � �+ r��k+1 + r��k�1� �k � �k�2 � � � � � ��kGrouping together terms of the form r�j+1 � �j , for j ranging from �k to k yieldsuk+2 = �k+2 + �k + � � �+ ��k+2 + r��k�1= �k+2 + �k + � � �+ ��k+2 + ��k + ��k�2since r��k�1 = ��k + ��k�2 by multiplication of (4) by ��k�1 .The statement holds for uk+2.In the case where � is equal to the golden mean ' , Proposition 5 takes an evensimpler form for the Fibonacci numbers (for which, to our surprise, we have not found anyreference):Corollary 6 For every k in N,F2k = '2k + '2k�4 + � � �+ '�2k�4 + '�2k = X0�j�k '2k�4j ,and F2k+1 = '2k+1 + '2k�3 + � � �+ '�2k+1 = 0@ X0�j�k '2k+1�4j1A+ '�2k�2 .Corrected �nal version 19 February 9, 1998



To appear in the International Journal of Algebra and Computation : : :Proposition 5 can be rewritten in terms of the �-expansions of the elements of U� :Proposition 5 Case 1. For every k in N,hu4ki� = 1 ( 0 r�1 0 1 )k.( 0 r�1 0 1 )khu4k+1i� = 1 0 ( r�1 0 1 0 )k.( r�1 0 1 0 )kr�11hu4k+2i� = 1 0 r�1 ( 0 1 0 r�1 )k.( 0 1 0 r�1 )k0 1hu4k+3i� = ( 1 0 r�1 0 )( 1 0 r�1 0 )k.( 1 0 r�1 0 )k 1 0 r�1 1Case 2. For every k in N,hu2ki� = 1 (0 1)k.(0 1)k hu2k+1i� = (1 0)k+1.(1 0)k+1Proposition 5 can be rewritten again in terms of the folded �-expansions of the elementsof U� :Proposition 5 Case 1. For every k in N,�(hu4ki�) = ( 00 00 00 10 )( 01 r�10 0r�1 10 )k �(hu4k+2i�) = ( 00 10 01 r�10 )( 0r�1 10 01 r�10 )k�(hu4k+1i�) = ( 00 00 11 0r�1 )( r�10 01 10 0r�1 )k �(hu4k+3i�) = ( 11 0r�1 r�10 01 )( 10 0r�1 r�10 01 )kCase 2. For every k in N,�(hu4ki�) = ( 00 00 00 10 )( 01 10 01 10 )k �(hu4k+2i�) = ( 00 10 01 10 )( 01 10 01 10 )k�(hu4k+1i�) = ( 00 00 01 10 )( 10 01 10 01 )k �(hu4k+3i�) = ( 10 01 10 01 )( 10 01 10 01 )kThis series of equations strongly suggests writing words of A�� | and, for coherence,writing words on any alphabet of digits D as well | as the concatenation (or product) ofblocks of length 4, the words having been �rst padded on the left by the adequate numberof 0's to make the length a multiple of 4 . It is then convenient to have alphabets of blocks.For the sequel of the paper, let X = fz; a; b; c; dgbe the alphabet of basic blocks, withz = 0 0 0 0 ; a = 0 0 0 1 ; b = 0 0 1 0 ; c = 0 1 0 0 and d = 1 0 0 0 .For instance, the normal U�-representation of the numbers un,huniU� = 10n ,Corrected �nal version 20 February 9, 1998



: : : in an issue dedicated to Marcel-Paul Sch�utzenbergercan be written as words on the block alphabet X :hu4kiU� = azk ; hu4k+1iU� = bzk ; hu4k+2iU� = czk and hu4k+3iU� = dzk .Relations and functions de�ned on words of D�, such as the numerical value �� oras the mapping onto the folded �-expansion ��;D, as well as the de�nition of letter-to-letter two-tape automaton, naturally extend to words of X�. With these conventions,Proposition 5 may be rewritten (for the last time):Proposition 5 Case 1. For every k in N,��;D(azk) = ( 00 00 00 10 )( 01 r�10 0r�1 10 )k ��;D(czk) = ( 00 10 01 r�10 )( 0r�1 10 01 r�10 )k��;D(bzk) = ( 00 00 11 0r�1 )( r�10 01 10 0r�1 )k ��;D(dzk) = ( 11 0r�1 r�10 01 )( 10 0r�1 r�10 01 )kCase 2. For every k in N,��;D(azk) = ( 00 00 00 10 )( 01 10 01 10 )k ��;D(czk) = ( 00 10 01 10 )( 01 10 01 10 )k��;D(bzk) = ( 00 00 01 10 )( 10 01 10 01 )k ��;D(dzk) = ( 10 01 10 01 )( 10 01 10 01 )kHence the restriction of ��;D to the subset of words Xz� is clearly realized by a letter-to-letter two-tape automaton, the one given in Figure 3.
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0Figure 3: An automaton realizing the restriction of ��;D to z�Xz� .In the case where � is the golden mean ', the automaton of Figure 3 corresponds to the�rst row and the diagonal of Table 2 that describes the automaton T' in the introduction.The core of the paper | developed in sections 5 and 6 | consists in showing that thisrestriction of ��;D extends to all words of X�, that is, more precisely and with the currentnotation:Corrected �nal version 21 February 9, 1998



To appear in the International Journal of Algebra and Computation : : :Theorem 3 There exist an alphabet of digits B� and a letter-to-letter two-tape au-tomaton T�, with output alphabet B��, that maps any word f of X� onto a folded �-representation of �U�(f), the integer represented by f in the numeration system U� .5 Where it is shown how Theorem 3 implies the main result. Forthat purpose, we make the most of the properties of letter-to-lettertwo-tape automata, by means of a new operation on words: thedigit-addition.Let f = fn � � �f0 and g = gn � � �g0 be two words of equal length on any alphabet ofdigits B. The digit-addition of f and g is the word f � g = (fn + gn) � � �(f0 + g0) overthe new alphabet of digits B0 = B � B obtained by adding pairs of elements of B. Thisde�nition naturally extends to words over alphabets of blocks of digits of �xed length, aswell as to words over alphabets B� of pairs of digits.Example 1 : With the notation above we have:ac� da = 1 0 0 1 0 1 0 1and 00 00 00 10 11 0�1 00 00 � 11 00 00 01 10 00 10 00 = 11 00 00 11 21 0�1 10 00 . 2Let D � f0; 1; : : : ; mg be an arbitrary �nite alphabet of non-negative digits withgreatest element m. The following then clearly holds.Fact 1 Any word of D�, the length of which is a multiple of 4, can be obtained by thedigit-addition of at most 4m words of X�.Example 2 : With the notation above we have:3 0 2 1 2 1 1 3 = da� da� dd� ba� ac� bd� zb . 2Another obvious fact is that if f and f 0, respectively g and g0, are equivalent �-representations, then f � g and f 0 � g0 are equivalent �-representations. This propertyextends to mappings that preserve the numerical value, with a little preparation.A function (or a relation) � : B� �! A� from an alphabet of digits onto another oneis said to be conservative if any word of B� is mapped onto an equivalent word (onto aset of equivalent words) of A�. A two-tape automaton is said to be conservative as well ifthe relation it realizes is conservative. The following property is then a simple exercise inautomata theory.Corrected �nal version 22 February 9, 1998



: : : in an issue dedicated to Marcel-Paul Sch�utzenbergerProposition 7 Let A and B be two conservative letter-to-letter two-tape automata.There exists a (conservative letter-to-letter) two-tape automaton, denoted by A�B, suchthat, for every f , g, f 0 and g0 with f 0 2 A(f) and g0 2 B(g), we have f 0�g0 2 A� B(f�g),and conversely, if h0 2 A� B(h) then there exist f , f 0, g, g0 such that f 0 2 A(f), g0 2 B(g),h = f � g, and h0 = f 0 � g0.Proof. [Idea]. Let us �rst remark that it is always possible to assume that a relation  realized by a (conservative) letter-to-letter two-tape automaton has the property that iff 0 is in  (f) then 0kf 0 2  (0kf) for any integer k. In such an automaton, called a paddingautomaton, every initial state bears a loop with label (0; 0).Let A = (Q;B�A;E; I; T ) and B = (R;B�A; F; J; U) be two conservative paddingletter-to-letter two-tape automata. The automaton C = A � B is de�ned as follows:C = (Q�R; (B� B)� (A�A); H; I�J; T�U)the edges which are made by the \addition" of the edges of A with those of B :H = f((p; r); (x; y); (q; s)) j (p; (i; j); q) 2 E; (r; (k; l); s) 2 F and x = i+ k; y = j + lg:It is clear that any two successful computations of A and B, that can be supposed to beof the same length since A and B are padding automata, can be \added" edge by edge togive a successful computation of A�B. Conversely, any (successful) computation of A�Bcan be \decomposed" | in possibly several di�erent ways | into a pair of (successful)computations of A and B .The next result deals with the \transfer" of transformations of �-representations totransformations of folded �-representations.Proposition 8 Let  : BZw �! BZw be a relation realized by a letter-to-letter �nitetwo-tape automaton. Then the relation  � : B�� �! B�� de�ned by  � = � � � ��1 is alsorealized by a letter-to-letter �nite two-tape automaton.The statement makes use of the convention we mentioned in Section 3.2.2 : if w 2 B��then ��1(w) is a �nite sequence considered as an element of BZw. It is also understoodthat the relation  has the property that an in�nite sequence the elements of which areall equal to 0 from a certain rank on is mapped onto sequences with the same property.Then  (��1((w)) is indeed a �nite representation, that can be balanced and then folded.Proof. [Sketch]. The relation  is realized by an automaton A = (Q;B�B;E; I; T).Two automata A1 = (Q;B��B�; E1; I1; T1) and A2 = (Q;B��B�; E2; I2; T2) are thenbuilt in the following way: for every edge (p; (i; x); q) in E and every j and k in B, let(p; ((ij); (xk)); q) be an edge in E1 and let (q; ((ji); (kx)); p) be an edge in E2. Up to someCorrected �nal version 23 February 9, 1998



To appear in the International Journal of Algebra and Computation : : :adequate tuning of I1, I2, T1, T2 (that depends indeed on the way the radix point istreated by  ), it is then easy to check that  � is equal to the composition of the relationrealized by A1 with the relation realized by A2.Proof of Theorem 2. Let m be the greatest element of the digit alphabet D. Let T�be the two-tape automaton the existence of which is given by Theorem 3 and let N� bethe \sum" | in the sense of Proposition 7 | of 4m copies of T� . Let f be a word in D�;it is, in several ways, the digit-sum of at most 4m words of X�. The image of f by N�is a set of folded �-representations of �U�(f) written on the pairs of digits of C� = 4mB�(which stands for B� �B� � � � � �B� , 4m times).Let �� be the normalization in base � on CN� . By Proposition 2, �� is realized by aletter-to-letter �nite two-tape automaton. By a simple shift (to the right) of the radixpoint, this �� transfers into a quasi -normalization �0� from CZw� ontoAZw� that is realized bythe same letter-to-letter �nite two-tape automaton as �� . It is not quite a normalizationanymore because the output may begin with a sequence of leading zeros | this mayhappen because C� contains negative digits. By Proposition 8, �0�� = � ��0� ���1 is realizedby a letter-to-letter �nite two-tape automaton.Now, ��;D is the composition of N�, �0��, and possibly the function � that erases theleading zeros and which is obviously realized by a �nite two-tape automaton. Hence ��;Dis realized by a �nite two-tape automaton and we are almost done, but for the fact that,since � is not \length-preserving", we have not yet proved that ��;D is realized by a letter-to-letter �nite two-tape automaton. It would be tedious to prove it directly, i.e., by statingproperties of the actual output of N� , so we rather prove that last step by an \external"argument.Lemma 9 For any f in D�, the di�erence between the lengthes of f and ��;D(f) isbounded (independently of f).Proof. Let f be a word of length k+1 that does not begin with a 0, and let N = �U�(f).Then uk � N � m(uk + � � �+ u0). Let � be the algebraic conjugate of �. It is known thatfor every n � 0, un = ��n + ��n, where � and � are real constants.For Case 1, � = ���1. Since � + � = u0 = 1, and �� � ���1 = u1 = r + 1, an easycomputation shows that � = �2+��2+1 > 1 and � < 0. Thenm(uk + � � �+ u0) < m�(�k � 1)=(�� 1) +mj�j(1+ ��1 + ��2 + ��3 + � � �)< m��k=(� � 1) +m(�� 1)�=(� � 1)< m�(�k + �)=(� � 1) � m��k+1=(� � 1) .For Case 2, � = ��1. From � + � = 1, and �� + ���1 = u1 = r, it follows that� = �2�2�1 > 1 and � < 0. Thenm(uk + � � �+ u0) < m�(�k � 1)=(� � 1) +m��=(� � 1) < m��k=(� � 1) .Corrected �nal version 24 February 9, 1998



: : : in an issue dedicated to Marcel-Paul Sch�utzenbergerThus, in both cases, N < m��k+1=(� � 1). It follows that N < �k+p holds, withp = blog�(m��=(� � 1))c + 2. And then, recalling that �k < uN � N , it holds :jf j � 1 � j��;D(f)j � jf j+ p .It is then a known result (cf. [7], [10, Cor. 2.5]), that a relation \with bounded lengthdi�erence" that is realized by a �nite two-tape automaton is realized by a letter-to-letter�nite two-tape automaton. And the proof of Theorem 2 | assuming Theorem 3 | isthus complete.The results established in this section call for some comments.Remark 1 Proposition 8 no longer holds if  is realized by a two-tape automatonwhich is not assumed to be letter-to-letter. This is the step in the proof that makesit necessary to specify throughout the paper that the relations we are dealing with areactually realized by letter-to-letter two-tape automata.Remark 2 The construction involved in the proof of Theorem 2 is far from beingoptimal (in the sense of the number of states) for the building of N� from T� . The precisestudy of the complexity of the construction remains to be done.Remark 3 Proposition 7, stated here for ancillary purpose, also yields simpli�ed proofsfor already known results in the domain of numeration systems and automata theory.Although it does not pertain to the rest of the paper, let us state, for later reference, astriking application (cf. [13]).Proposition 10 Let U be a linear numeration system and let AU = f0; 1; � � � ; mg bethe canonical alphabet. Let us assume that the characteristic polynomial of U has a domi-nant zero larger than 1. The normalization �U;D over any alphabet of non-negative digits Dis realized by a letter-to-letter two-tape automaton if and only if the normalization �U;A0over A0 = f0; 1; � � � ; m+ 1g is realized by a letter-to-letter two-tape automaton.Proof. First, if the normalization �U;D is realized by a letter-to-letter two-tape automa-ton then, for every subalphabet C � D, �U;C is realized by a letter-to-letter two-tapeautomaton as well. This gives the necessary part of the statement as well as the assurancethat it is su�cient to consider alphabet of digits that are intervals of the integers.Conversely, let N be the letter-to-letter two-tape automaton that realizes �U;A0 and letIk be the (1-state letter-to-letter) two-tape automaton that realizes the identity mappingon the words on f0; � � � ; kg. Then N � Ik maps any word on f0; � � � ; m+ k + 1g onto anequivalent one on f0; � � � ; m+ kg. The normalization on the alphabet f0; � � � ; m+ k + 1gis obtained by the composition of N � Ik, N � Ik�1, : : : , N � I1, and N and the resultfollows.Corrected �nal version 25 February 9, 1998



To appear in the International Journal of Algebra and Computation : : :A result analogous to Proposition 10 holds for normalization in base � (when � is thedominant zero of an irreducible polynomial).6 Where a �nite Abelian group is discovered and then computed toserve as the underlying input automaton of T� .Let us come back to Proposition 5 and to the \obvious" two-tape automaton T 0� it suggestsfor the computation of a folded equivalent �-expansion of words of the form xzk , x 2 X .In T 0� , the reading of the letter a induces a transition from the initial state to a certainstate, say â . In state â , the reading of letter z (= 0 0 0 0 ) causes T 0�i) to stay in â ;ii) to output the \letter" ( 01 r�10 0r�1 10 ) [if we are in Case 1; the letter 01 10 01 10 if in Case 2].If we thus keep reading z, T 0� stays in â and keeps outputting ( 01 r�10 0r�1 10 ) (resp. 01 10 01 10 ).Proof of Theorem 3 amounts to building a two-tape automaton T� that extends (thede�nition domain of) T 0� to all words of X� . We shall assume that two properties |that are met by T 0� | hold in T� :(H1) T� is (left) sequential;(H2) in every state ŝ of T� , the reading of z causes T� to stay in state ŝ .Thus (H1) leads to use notation of [3] that we have recalled in Section 3 : T� = (Q;X;B; �; �; i),� is the transition function and � is the output function of T� . (H2) then reads:(H2) in every state ŝ of T� , �(ŝ; z) = ŝ .It turns out that these two hypotheses can be met but also lead naturally to a two-tapeautomaton T� that solves the problem | and that is remarkably simple. Let us exploreT� \outside" T 0� and consider the reading of a word w of the formw = abzk .The reading of a puts T� in state â , then the reading of b puts it in a certain state, say ŝ.Let us try to compute �(ŝ; z) and let us remark for that purpose that w can be written asw = azzk � zbzk (5)from which follows that �(ŝ; z) has to be the sum of �(â; z) and �(b̂; z) .Let us be more speci�c (we suppose that we are in \Case 1" for the next paragraph).Proposition 5 yields:hazzki� = ( 0 0 0 1 )( 0 r�1 0 1 )( 0 r�1 0 1 )k.( 0 r�1 0 1 )k( 0 r�1 0 1 )( 0 0 0 0 )hzbzki� = ( 0 0 0 0 )( 0 0 1 0 )( r�1 0 1 0 )k.( r�1 0 1 0 )k( r�1 1 0 0 )( 0 0 0 0 )Corrected �nal version 26 February 9, 1998



: : : in an issue dedicated to Marcel-Paul Sch�utzenbergerand thus, by addition,habzki� = ( 0 0 0 1 )( 0 r�1 1 1 )( r�1 r�1 1 1 )k.( r�1 r�1 1 1 )( r�1 r 0 1 )k( 0 0 0 0 )(6)which implies, (going back to the folded �-representations)�(ŝ; z) = ( r�11 r�11 1r�1 1r�1 ) .It seems then adequate to identifyâ to 0 r�1 0 1 ; b̂ to r�1 0 1 0 ; and ŝ to r�1 r�1 1 1 .The idea behind the building of the underlying input automaton of T� is to maintain thisidenti�cation between the states and the elements ofZ4 , the reading of a letter ofX beingequivalent to an addition inZ4 . The successive additions would yield an in�nite number ofstates if it was not taken into account that expressions such as in (6) are �-representationsand that two �-representations are equivalent if they give the same numerical value. Thisequivalence, transfered on the factors of length 4 gives the following equalities13 :1 �r �" 0 = �r �" 0 1 = �" 0 1 �r = 0 1 �r �" = 0 0 0 0Let us denote by � the congruence of Z4 generated by these equalities.Hypotheses (H1) and (H2) have thus led us to choose as underlying input automatonof T� the submonoid14 G� of Z4=� generated by â , b̂ , ĉ and d̂ , the transition functionbeing de�ned by the canonical morphism � : X� �! G� (�(a) = â , etc.). We computeG� in the remainder of this section and we complete the description of T� in the nextsection.In order to give precise and complete statements, we have to specify the case we are in.Case 1. (" = +1, r � 1). � is the zero larger than 1 of P (X) = X2 � rX � 1. Thediscriminant of P (X) is � = r2 + 4.Proposition 11(i) if r is odd, then G� 'Z=�Z;(ii) if r is even, anda) if r = 4m, then G� 'Z=(12�)Z;b) if r = 4m+ 2, then G� 'Z=(14�)Z�Z=2Z.Case 2. (" = �1, r � 3). � is the zero larger than 1 of P (X) = X2 � rX + 1. Thediscriminant of P (X) is � = r2 � 4.13With the convention that if n is an integer, �n denotes �n, as already used in the introduction.14We do not know yet that it is a subgroup.Corrected �nal version 27 February 9, 1998



To appear in the International Journal of Algebra and Computation : : :Proposition 12(i) if r is odd, then G� 'Z=�Z;(ii) if r is even, then G� 'Z=(12�)Z�Z=2Z.Proof of Proposition 11. By de�nition, � is generated by the following relations:1 �r �1 0 = 0 0 0 0 (7)�r �1 0 1 = 0 0 0 0 (8)�1 0 1 �r = 0 0 0 0 (9)0 1 �r �1 = 0 0 0 0 (10)which imply: 0 �r 0 �r = 0 0 0 0 (11)�r 0 �r 0 = 0 0 0 0 (12)The four generators of G� areâ = 0 r�1 0 1 ; b̂ = r�1 0 1 0 ; ĉ = 0 1 0 r�1 ; and d̂ = 1 0 r�1 0 .Thus â+ ĉ = 0 r 0 r = 0 0 0 0 and b̂+ d̂ = r 0 r 0 = 0 0 0 0 , (13)and G� is a subgroup, quotient ofZ2, with generators â and b̂ . We have now to distinguishbetween the cases where r is odd or even.i) r is odd.Claim 1 râ� 2b̂ = 0 0 0 0 (14)Proof. Let r = 2n+ 1. It comesrâ� 2b̂ = 2(r�1) r(r�1) 2 r= 4n 2rn 2 r= 2n 0 2n+ 2 r by (7) , 2n times,= 2n+ 1 0 2n+ 1 0 by (9) ,= 0 0 0 0 by (12) .Corrected �nal version 28 February 9, 1998



: : : in an issue dedicated to Marcel-Paul Sch�utzenbergerThe circular permutation on elements of Z4 , applied to (14) , givesrb̂� 2ĉ = 0 0 0 0which, by (13) , reads rb̂+ 2â = 0 0 0 0 (15)It is an easy exercise to show the following.Lemma 13 Let x and y be two generators of Z2. The quotient of Z2 by the relationpx+ qy = 0 is isomorphic to Z�Z=dZ, where d is the gcd of p and q. If u is a generatorof Zand t is a generator of Z=dZ, a possible isomorphism is de�ned by x 7! (�(q=d)u; 0)and y 7! ((p=d)u; t).Since r and 2 are relatively prime,Z2=[râ� 2b̂ = 0] 'Zwith the isomorphism de�ned by â 7! 2u and b̂ 7! ru . From (15) it follows that(r2 + 4)u = 0 and thus G� 'Z=�Z .ii) r = 2n is even.Claim 2 (n+ 1)â+ (n� 1)b̂ = 0 0 0 0 (16)Proof.(n+ 1)â+ (n� 1)b̂ = (n�1)(r�1) (n+1)(r�1) n� 1 n + 1= r(n�1)+1 n� 1 �1 n + 1 by (7) , n times= r(n� 1) n� 1 0 n � 1 by (9)= 0 0 0 0 by (8) , n � 1 timesThe circular permutation on elements of Z4 , applied to (16) , gives(n+ 1)b̂+ (n� 1)ĉ = 0 0 0 0which, by (13) , reads (n+ 1)b̂� (n� 1)â = 0 0 0 0 (17)Corrected �nal version 29 February 9, 1998



To appear in the International Journal of Algebra and Computation : : :Two cases are to be considered, according to whether r is equal to 0 or to 2 modulo 4 .a) r = 2n = 4m. Equations (16) and (17) become(2m+ 1)â+ (2m� 1)b̂ = 0 0 0 0 (18)(2m+ 1)b̂� (2m� 1)â = 0 0 0 0 (19)As 2m+ 1 and 2m� 1 are relatively prime,Z2=[(2m+ 1)â+ (2m� 1)b̂ = 0] 'Zwith the isomorphism de�ned by â 7! �(2m � 1)u and b̂ 7! (2m + 1)u . From (19) itfollows that �(2m+ 1)2 + (2m� 1)2� u = (12�)u = 0and thus G� 'Z=(12�)Z .b) r = 2n = 4m+ 2. Equations (16) and (17) become(2m+ 2)â+ 2mb̂ = 0 0 0 0 (20)(2m+ 2)b̂� 2mâ = 0 0 0 0 (21)As 2m+ 2 and 2m have gcd 2,Z2=[(2m+ 2)â+ 2mb̂ = 0] 'Z�Z=2Zwith the isomorphism de�ned by â 7! (�mu; 0) and b̂ 7! ((m + 1)u; 1) . From (21) itfollows that ((2m+ 2)(m+ 1)u; 0)+ �2m2u; 0� = (0; 0)i.e., (4m2 + 4m+ 2)u = (14�)u = 0 ,and thus G� 'Z=(14�)Z�Z=2Z .Corrected �nal version 30 February 9, 1998



: : : in an issue dedicated to Marcel-Paul Sch�utzenbergerProof of Proposition 12. In this case, � is generated by the following relations:1 �r 1 0 = 0 0 0 0 (22)�r 1 0 1 = 0 0 0 0 (23)1 0 1 �r = 0 0 0 0 (24)0 1 �r 1 = 0 0 0 0 (25)The generators of G� areâ = 0 1 0 1 and b̂ = 1 0 1 0and the equalities ĉ = â and d̂ = b̂ hold: G� is a quotient of Z2.Claim 3 râ� 2b̂ = 0 0 0 0 (26)Proof. râ� 2b̂ = �2 r �2 r= �1 0 �1 r by (22)= 0 0 0 0 by (24)By circular permutation: rb̂� 2â = 0 0 0 0 . (27)We have to distinguish again between the cases where r is odd or even.i) r is odd. Since r and 2 are relatively prime,Z2=[râ� 2b̂ = 0] 'Zwith the isomorphism de�ned by â 7! 2u and b̂ 7! ru . From (27) it follows that(r2 + 4)u = 0 and thus G� 'Z=�Z .ii) r = 2n is even. Then Z2=[râ� 2b̂ = 0] 'Z�Z=2Zwith the isomorphism de�ned by â 7! (u; 0) and b̂ 7! (nu; 1) . From (27) it follows that(rnu; 0)� (2u; 0) = (0; 0) i.e., (2n2 � 2)u = (12�)u = 0and thus G� 'Z=(12�)Z�Z=2Z .Corrected �nal version 31 February 9, 1998



To appear in the International Journal of Algebra and Computation : : :Remark 4 The above construction can be given an interpretation that brings it closerto the area of �-expansions.i) Let ŝ be a state of T� ; we have identi�ed ŝ to an element of Z4 , denoted ŝ as well,such that �(ŝ; z) = �(ŝ.ŝ)If, as in state ŝ , one keeps reading z, T� keeps outputting �(ŝ; z) . One thus could say thatŝ \potentially contains" the word ŝk.ŝk for any k and it would have been as legitimate toidentify the state ŝ with the bi-in�nite word! ŝ.ŝ! (�)which is periodic (of period 4) up to the radix point. The circular permutation on wordsof length 4 corresponds to the shift on bi-in�nite words.In this setting, Z4 is isomorphic to the set Y of periodic bi-in�nite words on Zofperiod 4.ii) It is not only the group G� that is �nite but the whole group Y=� a description ofwhich can be given by the de�nition of a normal form of its elements.Let K� be a set of \reduced words", the exact description of which depends upon which\case" we consider:Case 1. Let � be the root greater than 1 of X2 � rX � 1 = 0, with r � 1. Then K� isthe set of words of A4� with the property that they, and all their conjugates, are strictlysmaller, in the lexicographical ordering, than r0r0.Case 2. Let � be the root greater than 1 of X2 � rX + 1 = 0, with r � 3. Then K� isthe set of words of A4� with the property that they, and all their conjugates, are di�erentfrom (r� 2)(r� 2)(r� 2)(r� 2) and strictly smaller, in the lexicographical ordering, than(r � 1)(r� 2)(r� 2)(r� 2).Proposition 14Every class of Y modulo � contains exactly one element represented by a word of K�.iii) Although it is not possible to give a numerical value to bi-in�nite words such as(�), � corresponds to a \numerical value equivalence" and Proposition 14 happens to bethe exact counterpart of a result of Parry characterizing the �-expansions of real numbers([17]). Proposition 14 is completely independent from the rest of the paper : Proposition 11and Proposition 12 prove that G� is �nite and that is enough for the construction of T�.Its proof is purely combinatorial and a bit lengthy. For these reasons, we have decided topublish it elsewhere ([11]).Corrected �nal version 32 February 9, 1998



: : : in an issue dedicated to Marcel-Paul Sch�utzenberger7 Where the description of T� is completed.As announced, T� is a sequential (letter-to-letter) two-tape automaton and will be denotedas such: T� = (G�; X; B�; ��; ��; 0)To lighten the notation, and if there is no ambiguity, we write � and � instead of �� and�� respectively.The group G� is:i) the subgroup generated by the images â , b̂ , ĉ , and d̂ of X ,ii) in the quotient of Z4 by � .By i), the canonical morphism from X� into G� is surjective and, for coherence, everyelement G� is denoted as f̂ , where f is an element of X�, and it holds:8f; g 2 X� cfg = f̂ + ĝThe identity element of G� is denoted by 0 and d1X� = ẑ = 0 .The transition function � is the (right) action of X� overG� (de�ned by the canonicalmorphism): 8ĝ 2 G� ; 8f 2 X� �(ĝ; f) = ĝ + f̂By ii), every element ĝ of G� can be identi�ed with an element of Z4 , a �xed repre-sentative of its class modulo � , chosen15 once for all and also denoted by ĝ .Example 3 : " = +1, r = 3, � = 3+p134 is the dominant root of X2 � 3X � 1 = 0.G� ' Z=13Zand â = 0 2 0 1 . A set of representatives16 of G� in Z4 and the action of Xon G� is exhibited in Figure 4 . 2With these notation, the following lemma is a consequence of Propositions 11 and 12and their proof.Lemma 15 For any f , g, and h in X� such thatĥ = ĝ + f̂in G� , there exists an element u in Z4 such thatĥ = ĝ � f̂ � uin Z4 , which is a linear combination of the left-hand side of the de�ning relations of� (equations (7) to (10) | Case 1 | or (22) to (25) | Case 2).15Proposition 14 tells what such a choice can be, but it is obviously immaterial to the proof.16Chosen according to Proposition 14.Corrected �nal version 33 February 9, 1998



To appear in the International Journal of Algebra and Computation : : :
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3000Figure 4: The action of X on G� : the only transitions represented are those labelled byâ = 0 2 0 1 (bold arrows), and by b̂ = 2 0 1 0 (dashed arrows).Exemple 3 (continued) : Let ĝ = 1 1 2 2 and â = 0 2 0 1 . Then1 1 2 2 + 0 2 0 1 = 1 3 2 3= 2 0 1 3 by (7)= 1 0 2 0 = cga by (9)Thus let v = 1 �3�1 0 � �1 0 1 �3 = 0 �30 �3and the equation cga = ĝ � â� vholds. 2As we have seen in Section 4, Proposition 5 de�nes �(0; x) for every x in X and inSection 6 we have de�ned �(ĝ; z) to be�(ĝ; z) = �(ĝ.ĝ)for every ĝ in G� .Exemple 3 (continued) :��;X(azk) = ( 00 00 00 10 )( 01 r�10 0r�1 10 )k ; ��(0; a) = 00 00 00 10 ; ��(â; z) = 01 r�10 0r�1 10 2Corrected �nal version 34 February 9, 1998



: : : in an issue dedicated to Marcel-Paul Sch�utzenbergerThe output function is then given by the following:Lemma 16 For every ĝ in G� and every x in X there exists a double-digit word oflength 4, �(ĝ; x) (on a certain alphabet B�), with the property that, for every integer k,the equation ��(�(ĝ; x)�(ĥ; z)k) = ��(�(ĝ; z)k+1) + ��(�(0; x)�(x̂; z)k) (28)holds, with ĥ = �(ĝ; x) .Proof. Let us �rst rewrite (28) for unfolded �-representations:��( �����(ĝ; x)ĥk.ĥk����!�(ĝ; x)) = ��(ĝk+1.ĝk+1) + ��( �����(0; x)x̂k.x̂k����!�(0; x)) (29)The essence of the proof is to show that the word�(ĝ; x) = �( �����(ĝ; x).����!�(ĝ; x))in (28) is independent of k.Let us now consider the analogous of the de�ning relations for � but \expanded tothe order k" on both sides of the radix point and \completed" on both sides to have fullwords 1 �r �" 0 as factors: ( 0 0 0 0 )( 1�r �" 0 )k.( 1 �r �" 0 )k( 0 0 0 0 ) (7) k( 0 0 0 1 )(�r �" 0 1 )k.( �r �" 0 1 )k( �r �" 0 0 ) (8) k( 0 0 1 �r)( �" 0 1 �r )k.( �" 0 1 �r )k( �" 0 0 0 ) (9) k( 0 0 0 0 )( 0 1 �r �" )k.( 0 1 �r �" )k( 0 0 0 0 ) (10) kFor any k, the numerical value �� of any of these words is 0 .Let u = u(ĝ; x) be the element of Z4 such thatĥ = ĝ � x̂� u .As stated in Lemma 15, u is a linear combination of the de�ning relations of � . Thesame linear combination of the words (7) k to (10) k gives a wordu0uk.uku00with numerical value 0 .Let us set  �����(ĝ; x) = �����(0; x)� ĝ � u0 and ����!�(ĝ; x) = ����!�(0; x)� ĝ � u00and the veri�cation of (29) is straightforward.Corrected �nal version 35 February 9, 1998



To appear in the International Journal of Algebra and Computation : : :Exemple 3 (continued) : In this example, (7) k and (9) k read( 0 0 0 0 )( 1 �2�1 0 )k.( 1 �2�1 0 )k( 0 0 0 0 ) (7) k( 0 0 1 �2)( �10 1 �2)k.( �1 0 1 �2)k( �10 0 0 ) (9) kand thus v0vk.vkv00 = ( 0 0 1 �2)( 0 �20 �2 )k.( 0 �20 �2 )k( �10 0 0 )which yields  ���������������( 1 1 2 2 ; 0 2 0 1 ) = 0 0 0 1 � 1 1 2 2 � 0 0 1 �2 = 1 1 3 0�������������!��( 1 1 2 2 ; 0 2 0 1 ) = 0 0 0 0 � 1 1 2 2 � �1 0 0 0 = 0 1 2 2that is ��( 1 1 2 2 ; 0 2 0 1 ) = 12 12 31 00 2The alphabet B� is the set of all double-digits that appear in such computation of�(ĝ; x) when ĝ ranges over G� and x overX . We are now in a position to give an explicitstatement for Theorem 3:Theorem 3 Let T� = (G�; X; B�; �; �; 0) be the sequential letter-to-letter two-tape au-tomaton de�ned by the functions � and � as above. The two-tape automaton T� mapsevery word of X� onto a folded equivalent �-representation , that is8f 2 X� ��(T�(f)) = �U (f) .Proof. By induction on jf j, we prove a more general relation :8f 2 X� ; 8k 2 N ��(T�(fzk)) = �U (fzk) . (30)By construction of T� , it holds8f 2 X� ; 8k 2 N T�(fzk)) = T�(f)�(f̂k.f̂k) , (31)and, also by construction, Proposition 5 yields (30) for jf j = 1.We need two more pieces of notation: let Z = 00 00 00 00 = �(0; z) be the block of four nulldouble-digits and let us denote by T�(ĥ; f) the output of T� when reading the word f fromthe state ĥ taken as initial state. It then comes:8x 2 X ; �U(fxzk) = �U(fzk+1) + �U(xzk) by induction hypothesis ,= ��(T�(fzk+1)) + �U (xzk) by construction and Proposition 5 ,= ��(T�(f)�(f̂ ; zk+1)) + ��(�(0; x)�(x̂; zk))= ��(T�(f)Zk+1) + ��(�(f̂ ; zk+1)) + ��(�(0; x)�(x̂; zk)) by (28) ,= ��(T�(f)Zk+1) + ��(�(f̂ ; x)�(cfx; zk))= ��(T�(f)Zk+1) + ��(T�(f̂ ; xzk))= ��(T�(f)T�(f̂ ; xzk)) = ��(T�(fxzk)) .Corrected �nal version 36 February 9, 1998
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