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Abstract. We study expansions in non-integer negative base −β in-
troduced by Ito and Sadahiro [7]. Using countable automata associated
with (−β)-expansions, we characterize the case where the (−β)-shift is
a system of finite type. We prove that, if β is a Pisot number, then the
(−β)-shift is a sofic system. In that case, addition (and more generally
normalization on any alphabet) is realizable by a finite transducer.

1 Introduction

Expansions in integer negative base −b, where b > 2, seem to have been intro-
duced by Grünwald in [6], and rediscovered by several authors, see the historical
comments given by Knuth [8]. The choice of a negative base −b and of the al-
phabet {0, . . . , b− 1} is interesting, because it provides a signless representation
for every number (positive or negative). In this case it is easy to distinguish the
sequences representing a positive integer from the ones representing a negative
one: denoting (w.)−b :=

∑k

i=0 wk(−b)k for any w = wk · · ·w0 in{0, . . . , b − 1}∗

with no leading 0’s, we have N = {(w.)−b | |w| is odd}. The classical monotonic-
ity between the lexicographical ordering on words and the represented numer-
ical values does not hold anymore in negative base, for instance 3 = (111.)−2,
4 = (100.)−2 and 111 >lex 100. Nevertheless it is possible to restore such a
correspondence by introducing an appropriate ordering on words, in the sequel
denoted by ≺, and called the alternate order.

Representations in negative base also appear in some complex base number
systems, for instance base β = 2i where β2 = −4 (see [5] for a study of their
properties from an automata theoretic point of view). Thus, beyond the interest
in the problem in itself, the authors also wish the study of negative bases to be
an useful preliminar step to better understanding the complex case.

Ito and Sadahiro recently introduced expansions in non-integer negative base
−β in [7]. They have given a characterization of admissible sequences, and shown
that the (−β)-shift is sofic if and only if the (−β)-expansion of the number − β

β+1
is eventually periodic.

In this paper we pursue their work. The purpose of this contribution is to
show that many properties of the positive base (integer or not) numeration
systems extend to the negative base case, the main difference being the sets of
numbers that are representable in the two different cases. The results could seem



not surprising, but this study put into light the important role played by the
order on words: the lexicographic order for the positive bases, the alternate order
for the negative bases.

We start by a general result which is not related to numeration systems but
to the alternate order, and which is of interest in itself. We define a symbolic
dynamical system associated with a given infinite word s satisfying some prop-
erties with respect to the alternate order on infinite words. We design an infinite
countable automaton recognizing it. We then are able to characterize the case
when the symbolic dynamical system is sofic (resp. of finite type). Using this
general construction we can prove that the (−β)-shift is a symbolic dynamical
system of finite type if and only if the (−β)-expansion of − β

β+1 is purely periodic.

We also show that the entropy of the (−β)-shift is equal to log β.
We then focus on the case where β is a Pisot number, that is to say, an

algebraic integer greater than 1 such that the modulus of its Galois conjugates
is less than 1. The natural integers and the Golden Mean are Pisot numbers. We
extend all the results known to hold true in the Pisot case for β-expansions to
the (−β)-expansions. In particular we prove that, if β is a Pisot number, then
every number from Q(β) has an eventually periodic (−β)-expansion, and thus
that the (−β)-shift is a sofic system.

When β is a Pisot number, it is known that addition in base β — and more
generally normalization in base β on an arbitrary alphabet — is realizable by a
finite transducer [4]. We show that this is still the case in base −β.

2 Definitions and preliminaries

2.1 Words and automata

An alphabet is a totally ordered set. In this paper the alphabets are always finite.
A finite sequence of elements of an alphabet A is called a word, and the set of
words on A is the free monoid A∗. The empty word is denoted by ε. The set of
infinite (resp. bi-infinite) words on A is denoted by AN (resp. AZ). Let v be a
word of A∗, denote by vn the concatenation of v to itself n times, and by vω the
infinite concatenation vvv · · · . A word of the form uvω is said to be eventually

periodic. A (purely) periodic word is an eventually periodic word of the form vω.
A finite word v is a factor of a (finite, infinite or bi-infinite) word x if there

exists u and w such that x = uvw. When u is the empty word, v is a prefix of
x. The prefix v is strict if v 6= x. When w is empty, v is said to be a suffix of x.

We recall some definitions on automata, see [2] and [13] for instance. An
automaton over A, A = (Q, A, E, I, T ), is a directed graph labelled by elements
of A. The set of vertices, traditionally called states, is denoted by Q, I ⊂ Q is
the set of initial states, T ⊂ Q is the set of terminal states and E ⊂ Q×A×Q is
the set of labelled edges. If (p, a, q) ∈ E, we write p

a
→ q. The automaton is finite

if Q is finite. The automaton A is deterministic if E is the graph of a (partial)
function from Q×A into Q, and if there is a unique initial state. A subset H of
A∗ is said to be recognizable by a finite automaton, or regular, if there exists a



finite automaton A such that H is equal to the set of labels of paths starting in
an initial state and ending in a terminal state.

Recall that two words u and v are said to be right congruent modulo H if,
for every w, uw is in H if and only if vw is in H . It is well known that H is
recognizable by a finite automaton if and only if the congruence modulo H has
finite index.

Let A and A′ be two alphabets. A transducer is an automaton T = (Q, A∗ ×
A′∗, E, I, T ) where the edges of E are labelled by couples in A∗×A′∗. It is said to
be finite if the set Q of states and the set E of edges are finite. If (p, (u, v), q) ∈

E, we write p
u|v
−→ q. The input automaton (resp. output automaton) of such

a transducer is obtained by taking the projection of edges on the first (resp.
second) component. A transducer is said to be sequential if its input automaton
is deterministic.

The same notions can be defined for automata and transducer processing
words from right to left : they are called right automata or transducers.

2.2 Symbolic dynamics

Let us recall some definitions on symbolic dynamical systems or subshifts (see [10,
Chapter 1] or [9]). The set AZ is endowed with the lexicographic order, denoted
<lex, the product topology, and the shift σ, defined by σ((xi)i∈Z) = (xi+1)i∈Z.
A set S ⊆ AZ is a symbolic dynamical system, or subshift, if it is shift-invariant
and closed for the product topology on AZ. A bi-infinite word z avoids a set of
word X ⊂ A∗ if no factor of z is in X . The set of all words which avoid X is
denoted SX . A set S ⊆ AZ is a subshift if and only if S is of the form SX for
some X .

The same notion can be defined for a one-sided subshift of AN.
Let F (S) be the set of factors of elements of S, let I(S) = A+ \ F (S) be the

set of words avoided by S, and let X(S) be the set of elements of I(S) which
have no proper factor in I(S). The subshift S is sofic if and only if F (S) is
recognizable by a finite automaton, or equivalently if X(S) is recognizable by a
finite automaton. The subshift S is of finite type if S = SX for some finite set
X , or equivalently if X(S) is finite.

The topological entropy of a subshift S is

h(S) = lim
n→∞

1

n
log(Bn(S))

where Bn(S) is the number of elements of F (S) of length n. When S is sofic,
the entropy of S is equal to the logarithm of the spectral radius of the adjacency
matrix of the finite automaton recognizing F (S).

2.3 Numeration systems

The reader is referred to [10, Chapter 7] for a detailed presentation on these
topics. Representations of real numbers in a non-integer base β were introduced



by Rényi [12] under the name of β-expansions. Let x be a real number in the
interval [0, 1]. A representation in base β (or a β-representation) of x is an infinite
word (xi)i>1 such that

x =
∑

i>1

xiβ
−i.

A particular β-representation — called the β-expansion — can be computed by
the “greedy algorithm” : denote by ⌊y⌋, ⌈y⌉ and {y} the lower integer part, the
upper integer part and the fractional part of a number y. Set r0 = x and let
for i > 1, xi = ⌊βri−1⌋, ri = {βri−1}. Then x =

∑
i>1 xiβ

−i. The digits xi are
elements of the canonical alphabet Aβ = {0, . . . , ⌈β⌉ − 1}.

The β-expansion of x ∈ [0, 1] will be denoted by dβ(x) = (xi)i>1. If x > 1,
there exists some k > 1 such that x/βk belongs to [0, 1). If dβ(x/βk) = (yi)i>1

then by shifting x = (y1 · · · yk.yk+1yk+2 · · · )β .
An equivalent definition is obtained by using the β-transformation of the unit

interval which is the mapping

Tβ : x 7→ βx − ⌊βx⌋.

Then dβ(x) = (xi)i>1 if and only if xi = ⌊βT i−1
β (x)⌋.

If a representation ends in infinitely many zeros, like v0ω, the ending zeros
are omitted and the representation is said to be finite.

In the case where the β-expansion of 1 is finite, there is a special represen-
tation playing an important role. Let dβ(1) = (ti)i>1 and set d

∗
β(1) = dβ(1) if

dβ(1) is infinite and d
∗
β(1) = (t1 · · · tm−1(tm − 1))ω if dβ(1) = t1 · · · tm−1tm is

finite.
Denote by Dβ the set of β-expansions of numbers of [0, 1). It is a shift-

invariant subset of AN

β . The β-shift Sβ is the closure of Dβ and it is a subshift

of AZ

β . When β is an integer, Sβ is the full β-shift AZ

β .

Theorem 1 (Parry[11]). Let β > 1 be a real number. A word (wi)i>1 belongs

to Dβ if and only if for all n > 1

wnwn+1 · · · <lex d
∗
β(1).

A word (wi)i∈Z belongs to Sβ if and only if for all n

wnwn+1 · · · 6lex d
∗
β(1).

The following results are well-known (see [10, Chapt. 7]).

Theorem 2. 1. The β-shift is sofic if and only if dβ(1) is eventually periodic.

2. The β-shift is of finite type if and only if dβ(1) is finite.

It is known that the entropy of the β-shift is equal to log β.

If β is a Pisot number, then every element of Q(β) ∩ [0, 1] has an eventually
periodic β-expansion, and the β-shift Sβ is a sofic system [1, 14].



Let C be an arbitrary finite alphabet of integer digits. The normalization

function in base β on C
νβ,C : CN → AN

β

is the partial function which maps an infinite word y = (yi)i>1 over C, such
that 0 6 y =

∑
i>1 yiβ

−i 6 1, onto the β-expansion of y. It is known [4] that,
when β is a Pisot number, normalization is computable by a finite transducer on
any alphabet C. Note that addition is a particular case of normalization, with
C = {0, . . . , 2(⌈β⌉ − 1)}.

3 Symbolic dynamical systems and the alternate order

Define the alternate order ≺ on infinite words or finite words with same length
on an alphabet A:

x1x2x3 · · · ≺ y1y2y3 · · ·

if and only if there exists k > 1 such that

xi = yi for 1 6 i < k and (−1)k(xk − yk) < 0.

This order was implicitely defined in [6].
Let A be a finite alphabet, and let s = s1s2 · · · be a word in AN such that

s1 = maxA and for each n > 1, s � snsn+1 · · · . Let

S = {w = (wi)i∈Z ∈ AZ | ∀n, s � wnwn+1 · · · }.

We construct a countable infinite automaton AS as follows (see Fig.1, where
[a, b] denotes {a, a+1, . . . , b} if a 6 b, ε else. It is assumed in Fig. 1 that s1 > sj

for j > 2.) The set of states is N. For each state i > 0, there is an edge i
si+1

−→ i+1.
Thus the state i is the name corresponding to the path labelled s1 · · · si. If i is
even, then for each a such that 0 6 a 6 si+1 − 1, there is an edge i

a
−→ j, where

j is such that s1 · · · sj is the suffix of maximal length of s1 · · · sia. If i is odd,

then for each b such that si+1 + 1 6 b 6 s1 − 1, there is an edge i
b

−→ j where j
is maximal such that s1 · · · sj is a suffix of s1 · · · sib; and if si+1 < s1 there is one

edge i
s1−→ 1. By contruction, the deterministic automaton AS recognizes exactly

the words w such that every suffix of w is � s and the result below follows.

0 1 2 3
s1 s2 s3

[0, s1 − 1] s1

[s2 + 1, s1 − 1]

[0, s3 − 1]

s1

[s4 + 1, s1 − 1]

s4

Fig. 1: The automaton AS



Proposition 1. The subshift S = {w = (wi)i∈Z ∈ AZ | ∀n, s � wnwn+1 · · · } is

recognizable by the countable infinite automaton AS.

Proposition 2. The subshift S = {w = (wi)i∈Z ∈ AZ | ∀n, s � wnwn+1 · · · } is

sofic if and only if s is eventually periodic.

Proof. The subshift S is sofic if and only if the set of its finite factors F (S)
is recognizable by a finite automaton. Given a word u of A∗, denote by [u]
the right class of u modulo F (S). Then in the automaton AS , for each state
i > 1, i = [s1 · · · si], and 0 = [ε]. Suppose that s is eventually periodic,
s = s1 · · · sm(sm+1 · · · sm+p)

ω, with m and p minimal. Thus, for each k > 0
and each 0 6 i 6 p − 1, sm+pk+i = sm+i.
Case 1: p is even. Then m + i = [s1 · · · sm+i] = [s1 · · · sm+pk+i] for every k > 0
and 0 6 i 6 p − 1. Then the set of states of AS is {0, 1, . . . , m + p − 1}.
Case 2: p is odd. Then m + i = [s1 · · · sm+i] = [s1 · · · sm+2pk+i] for every k > 0
and 0 6 i 6 2p − 1. The set of states of AS is {0, 1, . . . , m + 2p − 1}.
Conversely, suppose that s is not eventually periodic. Then there exists an in-
finite sequence of indices i1 < i2 < · · · such that the sequences sik

sik+1 · · ·
are all different for all k > 1. Take any pair (ij , iℓ), j, ℓ > 1. If ij and iℓ do
not have the same parity, then s1 · · · sij

and s1 · · · siℓ
are not right congruent

modulo F (S). If ij and iℓ have the same parity, there exists q > 0 such that
sij

· · · sij+q−1 = siℓ
· · · siℓ+q−1 = v and, for instance, (−1)ij+q(sij+q −siℓ+q) > 0

(with the convention that, if q = 0 then v = ε). Then s1 · · · sij−1vsij+q ∈ F (S),
s1 · · · siℓ−1vsiℓ+q ∈ F (S), but s1 · · · sij−1vsiℓ+q does not belong to F (S). Hence
s1 · · · sij

and s1 · · · siℓ
are not right congruent modulo F (S), so the number of

right congruence classes is infinite and F (S) is thus not recognizable by a finite
automaton. �

Proposition 3. The subshift S = {w = (wi)i∈Z ∈ AZ | ∀n, s � wnwn+1 · · · } is

a subshift of finite type if and only if s is purely periodic.

Proof. Suppose that s = (s1 · · · sp)
ω. Consider the finite set X = {s1 · · · sn−1b |

b ∈ A, (−1)n(b − sn) < 0, 1 6 n 6 p}. We show that S = SX . If w
is in S, then w avoids X , and conversely. Now, suppose that S is of finite
type. It is thus sofic, and by Proposition 2 s is eventually periodic. If it is not
purely periodic, then s = s1 · · · sm(sm+1 · · · sm+p)

ω, with m and p minimal, and
s1 · · · sm 6= ε. Let I = {s1 · · · sn−1b | b ∈ A, (−1)n(b − sn) < 0, 1 6 n 6 m} ∪
{s1 · · · sm(sm+1 · · · sm+p)

2k sm+1 · · · sm+n−1b | b ∈ A, k > 0, (−1)m+2kp+n(b −
sm+n) < 0, 1 6 n 6 2p}. Then I ⊂ A+ \ F (S). First, suppose there exists
1 6 j 6 p such that (−1)j(sj − sm+j) < 0 and s1 · · · sj−1 = sm+1 · · · sm+j−1.
For k > 0 fixed, let w(2k) = s1 · · · sm(sm+1 · · · sm+p)

2ks1 · · · sj ∈ I. We have
s1 · · · sm(sm+1 · · · sm+p)

2ksm+1 · · · sm+j−1 ∈ F (S). On the other hand, for n >

2, sn · · · sm(sm+1 · · · sm+p)
2k is ≻ than the prefix of s of same length, thus

sn · · · sm(sm+1 · · · sm+p)
2ks1 · · · sj ∈ F (S). Hence any strict factor of w(2k) is

in F (S). Therefore for any k > 0, w(2k) ∈ X(S), and X(S) is thus infinite: S
is not of finite type. Now, if such a j does not exist, then for every 1 6 j 6 p,
sj = sm+j, and s = (s1 · · · sm)ω is purely periodic. �



Remark 1. Let s′ = s′1s
′
2 · · · be a word in AN such that s′1 = min A and, for each

n > 1, s′ns′n+1 · · · � s′. Let S′ = {w = (wi)i∈Z ∈ AZ | ∀n, wnwn+1 · · · � s′}. The
statements in Propositions 1, 2 and 3 are also valid for the subshift S′ (with the
automaton AS′ constructed accordingly).

4 Negative real base

4.1 The (−β)-shift

Ito and Sadahiro [7] introduced a greedy algorithm to represent any real number
in real base −β, β > 1, and with digits in A−β = {0, 1, . . . , ⌊β⌋}. Remark that,
when β is not an integer, A−β = Aβ .

A transformation on I−β =
[
− β

β+1 , 1
β+1

)
is defined as follows:

T−β(x) = −βx − ⌊−βx +
β

β + 1
⌋.

For every real number x ∈ I−β denote d−β(x) the (−β)-expansion of x.

Then d−β(x) = (xi)i>1 if and only if xi = ⌊−βT i−1
−β (x) + β

β+1⌋, and x =∑
i>1 xi(−β)−i. When this last equality holds, we may also write:

x = (.x1x2 · · · )−β .

Since for every x ∈ R\I−β there exists an integer k > 1 such that x/(−β)k ∈ I−β ,
the sequence d−β(x/(−β)k) = (yi)i>1 satisfies x = (y1 · · · yk.yk+1yk+2 · · · )−β .
Thus, allowing an opportune shift on the digits, every real number has a (−β)-
expansion.

We show that the alternate order ≺ on (−β)-expansions gives the numerical
order.

Proposition 4. Let x and y be in I−β. Then

x < y ⇐⇒ d−β(x) ≺ d−β(y).

Proof. Suppose that d−β(x) ≺ d−β(y). Then there exists k > 1 such that xi = yi

for 1 6 i < k and (−1)k(xk − yk) < 0. Suppose that k is even, k = 2q. Then
x2q 6 y2q−1. Thus x−y 6 −β−2q +

∑
i>2q+1 xi(−β)−i−

∑
i>2q+1 yi(−β)−i < 0,

since
∑

i>1 x2q+i(−β)−i and
∑

i>1 y2q+i(−β)−i are in I−β . The case k = 2q + 1
is similar. The converse is immediate. �

Example 1. In base −2, 3 = (111.)−2, 4 = (100.)−2 and 111 ≺ 100.

A word (xi)i>1 is said to be (−β)-admissible if there exists a real number
x ∈ I−β such that d−β(x) = (xi)i>1. The (−β)-shift S−β is the closure of the
set of (−β)-admissible words, and it is a subshift of AZ

β .

Define the sequence d
∗
−β( 1

β+1) as follows:



– if d−β(− β

β+1) = d1d2 · · · is not a periodic sequence with odd period,

d
∗
−β(

1

β + 1
) = d−β(

1

β + 1
) = 0d1d2 · · ·

– otherwise if d−β(− β
β+1 ) = (d1 · · ·d2p+1)

ω,

d
∗
−β(

1

β + 1
) = (0d1 · · ·d2p(d2p+1 − 1))ω .

Theorem 3 (Ito-Sadahiro [7]). A word (wi)i>1 is (−β)-admissible if and only

if for each n > 1

d−β(−
β

β + 1
) � wnwn+1 · · · ≺ d

∗
−β(

1

β + 1
).

A word (wi)i∈Z is an element of the (−β)-shift if and only if for each n

d−β(−
β

β + 1
) � wnwn+1 · · · � d

∗
−β(

1

β + 1
).

Theorem 3 can be restated as follows.

Lemma 1. Let d−β(− β

β+1 ) = d1d2 · · · and let

S = {(wi)i∈Z ∈ AZ

β | ∀n, d1d2 · · · � wnwn+1 · · · }.

If d−β(− β

β+1) is not a periodic sequence with odd period, then S−β = S.

If d−β(− β

β+1 ) is a periodic sequence of odd period, d−β(− β

β+1 ) = (d1 · · ·d2p+1)
ω,

then S−β = S ∩ S′ where

S′ = {(wi)i∈Z ∈ AZ

β | ∀n, wnwn+1 · · · � (0d1 · · · d2p(d2p+1 − 1))ω}.

Theorem 4. The (−β)-shift is a system of finite type if and only if d−β(− β
β+1 )

is purely periodic.

Proof. If d−β(− β

β+1) is purely periodic with an even period, the result follows

from Theorem 3, Lemma 1 and Proposition 3. If d−β(− β

β+1 ) is purely periodic
with an odd period, the result follows from Theorem 3, Lemma 1, Proposition 3,
Remark 1, and the fact that the intersection of two finite sets is finite. �

By Theorem 3, Lemma 1, Proposition 2, Remark 1, and the fact that the
intersection of two regular sets is again regular the following result follows.

Theorem 5 (Ito-Sadahiro [7]). The (−β)-shift is a sofic system if and only

if d−β(− β

β+1 ) is eventually periodic.



1

0

0

0

0

1

Fig. 2: Finite automata for the G-shift (left) and for the (−G)-shift (right)

Example 2. Let G = 1+
√

5
2 ; then d−G(− G

G+1) = 10ω, and the (−G)-shift is a
sofic system which is not of finite type.

Let β = G2 = 3+
√

5
2 . Then d−β(− β

β+1 ) = (21)ω and the (−β)-shift is of finite

type: the set of minimal forbidden factors is X(S−β) = {20}.

Example 3. The automaton in Fig. 2 (right) recognizing the (−G)-shift is ob-
tained by minimizing the result of the construction of Proposition 1. Remark
that it is the automaton which recognizes the celebrated even shift (see [9]).

This example suggests that the entropy of the −β-shift is the same as the entropy
of the β-shift. Using results from Fotiades and Boudourides [3], we can prove
the following result.

Proposition 5. The entropy of the (−β)-shift is equal to log β.

4.2 The Pisot case

We first prove that the classical result saying that if β is a Pisot number, then
every element of Q(β)∩ [0, 1] has an eventually periodic β-expansion is still valid
for the base −β.

Theorem 6. If β is a Pisot number, then every element of Q(β) ∩ I−β has an

eventually periodic (−β)-expansion.

Proof. Let Mβ(X) = Xd − a1X
d−1 − · · · − ad be the minimal polynomial of β

and denote by β = β1, . . . , βd the conjugates of β. Let x be arbitrarily fixed in
Q(β) ∩ I−β . Since Q(β) = Q(−β), x can be expressed as x = q−1

∑d−1
i=0 pi(−β)i

with q and pi in Z, q > 0 as small as possible in order to have uniqueness.
Let (xi)i>1 be the (−β)-expansion of x, and write

rn = r(1)
n = r(1)

n (x) =
xn+1

−β
+

xn+2

(−β)2
+ · · · = (−β)n

(
x −

n∑

k=1

xk(−β)−k

)
.

Since rn = T n
−β(x) belongs to I−β then |rn| 6

β

β+1 < 1. For 2 6 j 6 d, let

r(j)
n = r(j)

n (x) = (−βj)
n

(
q−1

d−1∑

i=0

pi(−βj)
i −

n∑

k=1

xk(−βj)
−k

)
.

Let η = max{|βj| | 2 6 j 6 d}: since β is a Pisot number, η < 1. Since xk 6 ⌊β⌋
we get

|r(j)
n | 6 q−1

d−1∑

i=0

|pi|η
n+i + ⌊β⌋

n−1∑

k=0

ηk



and since η < 1, max16j6d{supn{|r
(j)
n |}} < ∞.

We need a technical result. Set Rn = (r
(1)
n , . . . , r

(d)
n ) and let B the matrix

B = ((−βj)
−i)16i,j6d.

Lemma 2. Let x = q−1
∑d−1

i=0 pi(−β)i. For every n > 0 there exists a unique

d-uple Zn = (z
(1)
n , . . . , z

(d)
n ) in Zd such that Rn = q−1ZnB.

Proof. By induction on n. First, r1 = −βx − x1, thus

r1 = q−1

(
d−1∑

i=0

pi(−β)i+1 − qx1

)
= q−1

(
z
(1)
1

−β
+ · · · +

z
(d)
1

(−β)d

)

using the fact that (−β)d = −a1(−β)d−1 + a2(−β)d−2 + · · · + (−1)dad. Now,
rn+1 = −βrn − xn+1, hence

rn+1 = q−1

(
z(1)

n +
z
(2)
1

−β
+ · · · +

z
(d)
n

(−β)d−1
− qxn+1

)
= q−1

(
z
(1)
n+1

−β
+ · · · +

z
(d)
n+1

(−β)d

)

since z
(1)
n − qxn+1 ∈ Z. Thus for every n there exists (z

(1)
n , . . . , z

(d)
n ) in Zd such

that

rn = q−1
d∑

k=1

z(k)
n (−β)−k.

Since the latter equation has integral coefficients and is satisfied by −β, it is also
satisfied by −βj, 2 6 j 6 d, and

r(j)
n = (−βj)

n

(
q−1

d−1∑

i=0

p̄i(−βj)
i −

n∑

k=1

xk(−βj)
−k

)
= q−1

d∑

k=1

z(k)
n (−βj)

−k.

�

We go back to the proof of Theorem 6. Let Vn = qRn. The (Vn)n>1 have bounded

norm, since max16j6d{supn{|r
(j)
n |}} < ∞. As the matrix B is invertible, for

every n > 1,

‖Zn‖ = ‖(z(1)
n , . . . , z(d)

n )‖ = max{|z(j)
n | : 1 6 j 6 d} < ∞

so there exist p and m > 1 such that Zm+p = Zp, hence rm+p = rp and the
(−β)-expansion of x is eventually periodic. �

As a corollary we get the following result.

Theorem 7. If β is a Pisot number then the (−β)-shift is a sofic system.



The normalization in base −β is the function which maps any (−β)-represen-
tation on an alphabet C of digits of a given number of I−β onto the admissible
(−β)-expansion of that number.

Let C = {−c, . . . , c}, where c > ⌊β⌋ is an integer. Denote

Z−β(2c) =
{
(zi)i>0 ∈ {−2c, . . . , 2c}N

∣∣∣
∑

i>0

zi(−β)−i = 0
}

.

The set Z−β(2c) is recognized by a countable infinite automaton A−β(2c):
the set of states Q(2c) consists of all s ∈ Z[β] ∩ [− 2c

β−1 , 2c
β−1 ]. Transitions are of

the form s
e
→ s′ with e ∈ {−c, . . . , c} such that s′ = −βs + e. The state 0 is

initial; every state is terminal.
Let Mβ(X) be the minimal polynomial of β, and denote by β = β1, . . . ,

βd the conjugates of β. We define a norm on the discrete lattice of rank d,
Z[X ]/(Mβ), as

||P (X)|| = max
16i6d

|P (βi)|.

Proposition 6. If β is a Pisot number then the automaton A−β(2c) is finite

for every c > ⌊β⌋.

Proof. Every state s in Q(2c) is associated with the label of the shortest path
f0f1 · · · fn from 0 to s in the automaton. Thus s = f0(−β)n + f1(−β)n−1 +
· · · + fn = P (β), with P (X) in Z[X ]/(Mβ). Since f0f1 · · · fn is a prefix of a
word of Z−β(2c), there exists fn+1fn+2 · · · such that (fi)i>0 is in Z−β(2c). Thus
s = |P (β)| < 2c

β−1 . For every conjugate βi, 2 6 i 6 d, |βi| < 1, and |P (βi)| <
2c

1−|βi| . Thus every state of Q(2c) is bounded in norm, and so there is only a

finite number of them. �

The redundancy transducer R−β(c) is similar to A−β(2c). Each transition

s
e
→ s′ of A−β(2c) is replaced in R−β(c) by a set of transitions s

a|b
−→ s′, with

a, b ∈ {−c, . . . , c} and a − b = e. Thus one obtains the following proposition.

Proposition 7. The redundancy transducer R−β(c) recognizes the set

{
(x1x2 · · · , y1y2 · · · ) ∈ CN × CN

∣∣ ∑

i>1

xi(−β)−i =
∑

i>1

yi(−β)−i
}
.

If β is a Pisot number, then R−β(c) is finite.

Theorem 8. If β is a Pisot number, then normalization in base −β on any

alphabet C is realizable by a finite transducer.

Proof. The normalization is obtained by keeping in R−β(c) only the outputs
y that are (−β)-admissible. By Theorem 7 the set of admissible words is rec-
ognizable by a finite automaton D−β. The finite transducer N−β(c) doing the
normalization is obtained by making the intersection of the output automaton
of R−β(c) with D−β . �



Proposition 8. If β is a Pisot number, then the conversion from base −β to

base β is realizable by a finite transducer. The result is β-admissible.

Proof. Let x ∈ I−β , x > 0, such that d−β(x) = x1x2x3 · · · . Denote ā the signit

digit (−a). Then x1x2x3 · · · is a β-representation of x on the alphabet Ã−β =
{−⌊β⌋, . . . , ⌊β⌋}. Thus the conversion is equivalent to the normalization in base

β on the alphabet Ã−β , and when β is a Pisot number, it is realizable by a finite
transducer by [4]. �

Remark 2. In the case where the base is a negative integer, conversion from base
b to base −b is realizable by a finite right sequential transducer. In a forthcoming
paper we show that conversion from base β to base −β — with the result in
non-admissible form — is realizable by a finite left sequential transducer when
β is a Pisot number.
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