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2.1 Introduction

Numbers do exist — independently of the way we represent them, of the
way we write them. And there are many ways to write them: integers as a
finite sequence of digits once a base is fixed, rational numbers as a pair of
integers or as an eventually periodic infinite sequence of digits, or reals as
an infinite sequence of digits but also as a continued fraction, just to quote
a few. Operations on numbers are defined — independently of the way they
are computed. But when they are computed, they amount to be algorithms
that work on the representations of numbers.

Fig. 2.1. Numbers do exist, a Greek view: π
4

= C
P

= D
S

. Numbers are then ratio
between measures (C = length of the circle, P = perimeter of the square, D =
surface of the disk, S = surface of the square).

In this chapter, numbers will be represented by their expansion in a base,
or more generally, with respect to a basis, hence by words over an alphabet
of digits. The algorithms we shall consider are those that can be performed
by finite state machines, that is, by the simplest machines one can think of.
Natural questions then arise immediately. First, whether or not the whole
set of expansions of all the positive integers, or the integers, or the real
numbers (within an interval) is itself a set of finite, or infinite, words that
is recognised by finite automata. Second, which operations on numbers can
thus be defined by means of finite automata? how is this related to the
chosen base? how, in a given base, may the choice of digits influence the
way the operations can be computed? These are some of the questions
that will be asked and, hopefully and to a certain extent, answered in this
chapter.

It is not only these questions, repeated in every section, that will give this
chapter its unity but also the methods with which we shall try to answer
them. In every numeration system, defined by a base or a basis, we first
consider a trivial infinite automaton — the evaluator, whose states are the
values of the words it reads — from which we define immediately the zero
automaton which recognises the words written on a signed digit alphabet
and having value 0. From the zero automaton we then derive transduc-
ers, called digit-conversion transducers, that relate words with same values
but written differently on the same or distinct alphabets of digits and,
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6 Ch. Frougny, J. Sakarovitch

from these, transducers for the normalisation, the addition, etc. Whether
all these latter transducers are finite or not depends on whether the zero
automaton is finite or not and this question is analysed and solved by com-
binatorial and algebraic methods which depend on the base.

We begin with the classical — one could even say basic — case where
the base is a positive integer. It will give us the opportunity to state a
number of elementary properties which we nevertheless prove in detail for
they will appear again in the other forthcoming parts. The zero automaton
is easily seen to be finite, and thus so are finite the adder and the various
normalisers. The same zero automaton is the socle on which we build the
local adder for the Avizienis system, and the normaliser for the non-adjacent
forms which yield representations of minimal weight.

The first and main non-classical case that will retain our attention is the
one of numeration systems often called non-standard : a non-integer real β
is chosen as a base and the (real) numbers are written in this base; a rather
common example is when β is equal to the Golden Ratio ϕ. Such systems
are also often called beta-numeration in the literature. In contrast with
the integer-base case, numbers may have several distinct representations,
even on the canonical alphabet, and the expansion of every number is com-
puted by a greedy algorithm which produces the digits from left to right,
that is, most significant digit first. The arithmetic properties of β, that is,
which kind of algebraic integer it is, are put into correspondance with the
properties of the system such as for instance the rationality† of the set of
expansions. The main result in that direction is that the zero automaton
is finite if, and only if, β is a Pisot number (Theorem 2.3.31).

Another property that is studied is the possibility of defining from β a
sequence of integers that will be taken as a basis and that will thus yields
a numeration system (for the positive integers), in the very same way as
the Fibonacci numeration system is associated with the Golden Ratio. Al-
though restricted to the integers, these systems happen to be more difficult
to study than those defined by a real base, and the characterisation of those
for which the set of expansions is rational is more intricate (Theorem 2.3.57).

Section 2.4 is devoted to canonical numeration systems in algebraic num-
ber fields. In these systems, every integer has a unique finite expansion,
which is not computed by a greedy algorithm but by a right-to-left algo-
rithm, that is, by an algorithm which computes the least significant digit
first. The main open problem in this area is indeed to characterise such
canonical numeration systems. A beautiful result is the characterisation

† We use ‘rational set’ as a synonym of ‘regular set’, see Section ?? and Section 2.6.1.
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Number representation and finite automata 7

of Gaussian integers as a base of canonical numeration systems (Theo-
rem 2.4.12).

The third and last kind of numeration systems which we consider is the
one of systems with a base that is not an algebraic integer but a rational
number. First the non-negative integers are given an expansion which is
computed from right to left, as in the case of canonical numeration sytems.
The set of all expansions is not a rational language anymore; it is a very
intriguing set of words indeed, a situation which does not prevent the zero
automaton to be still finite, and so is the digit-converter from any alpha-
bet to the canonical one. The expansions of real numbers are not really
‘computed’ but defined a priori from the expansions of the integers. The
matter of the statement is thus reversed and what is to be proved is not
that we can compute the expansion of the real numbers but that every real
number is given a representation (at least one) by this set brought from
‘outside’ (Theorem 2.5.23). This topic has been explored by the authors in
a recent paper (Akiyama, Frougny, and Sakarovitch 2008) and is wide open
to further research.

In Section 2.6 (before the Notes section) we have gathered definitions†
and properties of finite automata and transducers that are not specific to
the results on numeration systems but relevant to more or less classical
parts of automata theory, and currently used in this chapter.

From this presentation, it appears that we are interested in the way
numbers are written rather than in the definition of set of numbers via finite
automata. And yet the latter has been the first encounter between finite
automata theory and number representation, namely, Cobham’s Theorem
(we mention it only as it stands in the background of the proof that the
map betwen the representations of numbers in different bases cannot be
realised by finite automata). Speaking of this theorem, it is interesting to
quote this seminal paper (Cobham 1969):

This adds further evidence [. . . ] that, insofar as the recognition of set of numbers
goes, finite automata are weak, and somewhat unnatural.

We think, and we hope the reader will be convinced, that the matter de-
veloped in this chapter supports the view that finite automata are on the
contrary a natural and powerful concept for studying numeration systems.

† Notions defined in that Section 2.6 are shown slanted in the text.
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8 Ch. Frougny, J. Sakarovitch

2.2 Representation in integer base

We first recall how numbers, integers or real numbers, may be represented
in an integer base, like 2 or 10, that is, in the way that everyone does, in
the everyday life. The statements and proofs in these first two subsections
are thus simple and well-known, when not even trivial. We nevertheless
write them explicitely for they allow to see how the several generalisations
to come in the sections below differ from, and are similar to, the basic case
of integer base numeration systems.

Let p be a fixed integer greater than 1, which we call the base (in our
running examples, we choose p = 2, or p = 3 when 2 differs from the
general case). The canonical alphabet of digits Ap associated with p is
Ap = {0, 1, . . . , p− 1} . The integer p together with Ap defines the base p
numeration system.

Note that Ap is naturally (and totally) ordered and thus Ap
∗ is naturally

(and totally) ordered by the lexicographic and by the radix orders.

2.2.1 Representation of integers

The choice of the base p implicitly gives every word of Ap
∗ an integer value,

via the evaluation map πp: for every word w of Ap
∗, we have

w = ak ak−1 · · · a1 a0 �−→ πp (w) =
k∑

i=0

aip
i .

This definition of πp implies that numbers are written with the most sig-
nificant digit on the left.†

Lemma 2.2.1 The map πp is injective on Ap
k, for every integer k.

Proof Let u = ak−1ak−2 · · · a0 and v = bk−1bk−2 · · · b0 be two distinct
words of Ap

∗ of length k such that πp (u) = πp (v) . Hence

k−1∑
i=0

ai p
i −

k−1∑
i=0

bi p
i = 0 and therefore P (X) =

k−1∑
i=0

(ai − bi)X i

is a polynomial in Z[X ] vanishing at X = p . By Gauss Lemma on prim-
itive polynomials, P (X) is divisible by the minimal polynomial X − p .
Contradiction, since |a0 − b0| is strictly smaller than p.

† A convention which certainly is the most common one, even in languages writ-
ten from right to left, but not universal, in particular among computer scientists
(see (Cohen 1981) on the endianness problem).

Chapter 2, to appear in Combinatorics, Automata and Number Theory



Number representation and finite automata 9

The map πp is not injective on the whole Ap
∗ since πp

(
0hu

)
= πp (u)

holds for any u in Ap
∗ and any integer h. On the other hand, Lemma 2.2.1

implies that this is the only possibility and we have:

πp (u) = πp (v) and |u| > |v| =⇒ u = 0h v with h = |u| − |v| .

Conversely, every integer N in N can be given a representation as a word
in Ap

∗ which, thanks to the foregoing, is unique under the condition it does
not begin with a zero. This representation can be computed in two different
ways, which we call, for further references, the greedy algorithm — which
computes the digits from left to right, that is, most significant digit first —
and the division algorithm — which computes the (same) digits from right
to left, that is, least significant digit first.

The greedy algorithm. Let N be any positive integer. There exists a
unique k such that pk ≤ N < pk+1 . We write Nk = N and, for every i,
from i = k to i = 0,

ai =
⌊
Ni

pi

⌋
and Ni−1 = Ni − ai p

i .

Then, ai is in Ap, ak is different from 0 and Ni < pi . It holds:

N =
k∑

i=0

ai p
i = πp (ak · · · a0) .

The division algorithm. Let N be any positive integer. Write N0 =
N and, for i � 0, write

Ni = pNi+1 + bi (2.1)

where bi is the remainder of the division of Ni by p, and thus belongs to Ap.
Since Ni+1 is strictly smaller than Ni, the division (2.1) can be repeated
only a finite number of times, until eventually N� �= 0 and N�+1 = 0 for
some � (and thus b� �= 0). The sequence of successive divisions (2.1) for
i = 0 to i = � produces the digits b0, b1, . . . , b�, and it holds:

N =
�∑

i=0

bi p
i = πp (b� · · · b0) .

The integer N can also be written as

N = ((· · · (b� p+ b�−1) · · · )p+ b1)p+ b0 ,

that is, as the evaluation of a polynomial by a Horner scheme. By
Lemma 2.2.1, k = � and ak · · ·a0 = b� · · · b0 . We have thus proved the
following.

Not to be circulated c©Cambridge University Press 2010



10 Ch. Frougny, J. Sakarovitch

Theorem 2.2.2 Every non-negative integer N has a unique representation
in base p which does not begin with a zero. It is called the p-expansion of N
and denoted by 〈N〉p.

Note that the representation of 0 is the empty word ε. It also follows
that the set of p-expansions is the rational language

Lp = {〈N〉p | N ∈ N} = Ap
∗ \ 0Ap

∗ = {Ap \ {0}}Ap
∗ ∪ {ε} .

The map πp is not only a bijection between Lp and N but also a morphism
of ordered sets (when Lp is ordered by the trace of the radix order ≺
on Ap

∗).

Proposition 2.2.3 For all n and m in N, 〈n〉p ≺ 〈m〉p holds if, and only
if, n < m .

Remark 2.2.4 It also follows from Proposition 2.2.3 that for any two
words v and w of Ap

∗ and of the same length, v ≺ w if, and only if,
πp (v) < πp (w) .

A first finite transducer: the divider by q. Let q be a fixed positive
integer and let [q] = {0, . . . , q−1} be the set of remainders modulo q. For
every integers s and a, the Euclidean division by q yields unique integers b
and r such that

ps+ a = q b+ r . (2.2)

If s is in [q] and a is in Ap, then b is in Ap — and by definition r is in [q].
Equation (2.2) thus defines a transducer:

Qp,q = ( [q], Ap, Ap, E, {0}, [q] ) with E = {
(
s, (a, b), r

)
| ps+ a = q b+ r} .

The transducer Qp,q is sequential. (Indeed, Qp,q is co-sequential as well if p
and q are co-prime.) Figure 2.2 shows Q2,5.

0 2 1 3 4
1 |1

1 |0
1 |0

1 |1

1 |10 |0
0 |0 0 |10 |1

0 |0

Fig. 2.2. The divider Q2,5.

The realisation of division by finite automata (together with arithmetic
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operations modulo q) is exactly what is behind computation rules such as
the casting out nines or divisibility criteria such as the divisibility by 11 (a
number is divisible by 11 if, and only if, the sum of digits of odd rank is
equal to the sum of digits of even rank). That such criterium exists in every
base for any fixed divisor was already observed by Pascal (cf. (Pascal 1963,
pp. 84–89), see also (Sakarovitch 2003, Prologue)).

2.2.2 The evaluator and the converters

Finite automata really come into play with number representation when we
allow ourselves to use sets of digits larger than the canonical alphabet. Let p
be the base fixed as before but the digits be a priori any integer, positive or
negative. Consider then the (doubly infinite) automaton Zp whose states
are the integers, that is, Z, which reads (from left to right) the numbers
(thus written on the ‘alphabet’ Z), and which runs in such a way that,
at every step of the reading, the reached state indicates the value of the
portion of the number read so far. The initial state of Zp is thus 0 and its
transitions are of the form:

∀s, t, a ∈ Z s
a−−→
Zp

t if, and only if, t = ps+ a , (2.3)

from which we get the expected behaviour:

∀w ∈ Z∗ 0 w−−→
Zp

πp (w) .

It follows from (2.3) that Zp is both deterministic and co-deterministic. It
is logical to call Zp the evaluator.

In fact, we shall consider only finite parts of Zp. First, we restrict our
alphabet to be a finite symmetrical partBd of Z: Bd = {−d, . . . , d} where d
is a positive integer, d ≥ p− 1 and thus Ap ⊂ Bd . Second, we choose 0 as
a unique final state and we get an automaton Zp,d = ( Z, Bd, E, {0}, {0} )
where the transitions in E are those defined by (2.3). This automaton
accepts thus the writings of 0 (in base p and on the alphabet Bd) and we
call it a zero automaton. It is still infinite but we have the following.

Proposition 2.2.5 The trim part of Zp,d is finite and its set of states
is H = {−h, . . . , h} where h is the largest integer (strictly) smaller
than d/(p− 1).

Proof As Bd contains Ap and is symmetrical, every z in Z is accessible
in Zp,d.

Not to be circulated c©Cambridge University Press 2010



12 Ch. Frougny, J. Sakarovitch

If m is a positive integer larger than, or equal to, d/(p − 1), the ‘small-
est’ reachable state from m is mp − d, which is also larger than, or equal
to, d/(p − 1): m is not co-accessible in Zp,d and the same is true if m is
smaller than, or equal to, −d/(p− 1).

If m is a positive integer smaller than d/(p − 1), then the integer k =

m(p−1)+1 is smaller than, or equal to, d, and m
k−−→ (m−1) is a transition

in Zp,d. (A signed digit −k is denoted by k.) Hence, by induction, a path
from m to 0 in Zp,d. The same is true if m is a negative integer strictly
larger than −d/(p− 1).

Figure 2.3 shows Z2,2. By definition, the trim part of Zp,d is the strongly
connected component of 0. From now on, and unless otherwise stated,
we let Zp,d denote the automaton reduced to its trim part only. The au-
tomaton Zp,d is not so much interesting in itself but as the core of the
construction of a series of transducers that transform representations of a
number into others and that we call by the generic name of digit-conversion
transducers, or converters for short.

4̄ 3̄ 2̄ 1̄ 0 1 2 3 4

2 1 0 1̄ 2̄

2̄1̄012

2 1 0

2

2̄1̄0

2̄

2 1 0 1̄ 2̄

Fig. 2.3. A finite view on Z2,2. The part which is not co-accessible is shown in
grey and dashed.

2.2.2.1 The converters and the normalisers

We need some more elementary notation and definitions. From any two
alphabets of integers C and A, we build the alphabet C +A (resp. C −A)
of all sums (resp. differences):

C +A = {z | ∃c ∈ C, ∃a ∈ A z = c+ a} ,
C −A = {z | ∃c ∈ C, ∃a ∈ A z = c− a} .

Let u = ck−1ck−2 · · · c0 and v = ak−1ak−2 · · · a0 be two words of length k
of C∗ and A∗ respectively. The digitwise addition of u and v is the word
u ⊕ v = sk−1sk−2 · · · s0 of (C + A)∗ such that si = ci + ai (resp. the
digitwise subtraction is the word u� v = dk−1dk−2 · · ·d0 of (C −A)∗ such
that di = ci − ai), for every i, 0 ≤ i < k. If u and v have not the same
length, the shortest is silently padded on the left by 0’s and both u ⊕ v

Chapter 2, to appear in Combinatorics, Automata and Number Theory



Number representation and finite automata 13

and u� v are thus defined for all pairs of words. In any case, the following
obviously holds:

πp (u⊕ v) = πp (u) + πp (v) and πp (u� v) = πp (u)− πp (v) .

Let Bd = {−d, . . . , d} be the (smallest) symmetrical part of Z that
contains C − A: d = max{|c− a| | c ∈ C, a ∈ A} . From Zp,d =
(H,Bd, E, {0}, {0} ) , we then define a letter-to-letter (left) transducer
Cp(C×A) = (H,C,A, F, {0}, {0} ) , whose transitions are defined by

s
c|a−−−−−−→

Cp(C×A)
t if, and only if, s

c−a−−−−→
Zp,d

t , (2.4)

for every s and t in H , c in C, and a in A, that is, if, and only if,

ps+ c = t+ a . (2.5)

Both (2.4) and (2.5) show that a given transition in Zp,d may give rise to
no or several transitions (or to a transition with several labels) in Cp(C×A).
This transducer relates every u in C∗ with all words in A∗ with the same
length and same value in base p, as stated by the following.

Proposition 2.2.6 Let Cp(C ×A) be the digit-conversion transducer in
base p for the alphabets C and A. For all u in C∗ and all v in A∗,

(u, v) ∈ |||Cp(C×A)||| if, and only if, πp (u) = πp (v) and |u| = |v| .

Proof If (u, v) is in |||Cp(C×A)|||, then |u| = |v| as Cp(C×A) is letter-to-
letter and, on the other hand, the successful computation labeled by (u, v)
in Cp(C×A) maps onto a successful computation labeled by u � v in Zp,d

and thus πp (u� v) = 0, that is, πp (u) = πp (v).
Conversely, if u = ck−1ck−2 · · · c0 and v = ak−1ak−2 · · ·a0 are in C∗

and A∗ respectively, u� v is in Bd
∗ and if πp (u) = πp (v), then u� v is the

label of a successful computation of Zp,d, every transition (s, di, t) of which
is the image of a transition (s, ci, ai, t) in Cp(C×A). These transitions form
a successful computation whose label is (u, v).

If A = Ap, Cp(C×Ap) is input co-deterministic, or co-sequential, since
ps+ c = t+ a and ps′ + c = t+ a′ would imply p (s− s′) = a− a′ , and
then s = s′ as both a and a′ are in Ap. Every word u in C∗, padded on the
left by the number of 0’s necessary to give it the length of 〈πp (u)〉p is thus
the input of a unique successful computation in Cp(C×Ap) whose output is
the unique p-expansion of πp (u).

This is the reason why Cp(C×Ap) is rather called normaliser (in base p
and for the alphabet C), denoted by Np(C), and more often described

Not to be circulated c©Cambridge University Press 2010



14 Ch. Frougny, J. Sakarovitch

by its transpose, a letter-to-letter right transducer, which is thus input
deterministic, or sequential. In order to keep (2.5) valid, we also change
the sign of the states in the transpose. Finally, every state is given a final

function which outputs the p-expansion of the value of the state: it is
equivalent to reaching the state 0 by reading enough leading 0’s on the
input. In conclusion, we have shown the following.

Theorem 2.2.7 Normalisation in base p for any input alphabet of digits
is realised by a finite letter-to-letter sequential right transducer.

Figure 2.4 shows N2(C2) and its transpose, where C2 = A2 + A2 =
{0, 1, 2} is the alphabet on which are written words obtained by digitwise
addition of two binary expansions of integers: N2(C2) realises the addition
in base 2.

1̄ 0 1

2 |0 1 |0 , 2 |1

0 |1

1 |0 , 2 |1 0 |0 , 1 |1 0 |1

(a) The transducer N2(C2),

1 0

2 |0

0 |1

1 |0 , 2 |1 0 |0 , 1 |1

(b) its trim transpose,

1 0

|1

2 |0

0 |1

1 |0 , 2 |1 0 |0 , 1 |1

(c) with final function.

Fig. 2.4. A normaliser in base 2.

2.2.2.2 The signed-digit representation

The zero automaton uses negative digits as well as positive ones; we can
make use of these digits not only as computational means but for the rep-
resentation of numbers as well.

Let us first remark that if an alphabet of integers A contains a complete
set of representatives of Z/pZ, all of which are smaller than p in modulus,
then the division algorithm (2.1) may be run with digits taken in A instead
of Ap in such a way that it terminates, which proves that every positive
integer has a p-representation as a word in A∗, that is, πp : A∗ → N is
surjective. On the other hand, πp is injective if, and only if, there is at most
one digit in A for every representatives of Z/pZ. Both conditions are met
if p = 2q + 1 is odd and A is the symmetric alphabet Bq = {−q, . . . , q} .
The first case, p = 3 and A = {−1, 0, 1} , yields a beautiful numeration
system, celebrated in (Knuth 1998). But now we are more interested in
systems were numbers may have indeed several representations. In what
follows, we choose A to be a symmetric alphabet Bh:

Bh = {−h, . . . , h} with h ≥
⌊
p+ 1

2

⌋
.

Chapter 2, to appear in Combinatorics, Automata and Number Theory



Number representation and finite automata 15

As Bh is symmetrical, every integer, positive and negative, has a p-
representation as a word in Bh

∗. Equation (2.3) and the construction of Zp

immediately yield the following.

Proposition 2.2.8 In base p, and with the symmetric digit alphabet Bh,
the sign of a number is always given by (the sign of) its left-most digit if,
and only if, h is less than p.

More important, πp : Bh
∗ → Z is not only surjective, but also not in-

jective. The converter Cp(Bh×Bh) maps every word in Bh
∗ to all words

of Bh
∗ that have the same value (modulo some possible padding on the left

by 0’s): we call it the redundancy transducer (in base p on the alphabet Bh)
and denote it by Rp(Bh). If h =

⌊
p+1
2

⌋
, it follows from Proposition 2.2.5

that Rp(Bh) has 3 states. Figure 2.5 shows R2(B1) and R3(B2).

1̄ 0 1

1 | 1̄ 0 | 1̄ , 1 |0

1̄ |11̄ |0 , 0 |1

0 | 1̄ , 1 |0 0 |0 , 1 |1 , 1̄ | 1̄ 1̄ |0 , 0 |1

(a) The transducer R2(B1).

1̄ 0 1

2̄ |0 , 1̄ |1 , 0 |2
2̄ | 2̄ , 1̄ | 1̄

0 |0 , 1 |1 , 2 |2 0 | 2̄ , 1 | 1̄ , 2 |0

2 | 1̄ , 1 | 2̄
2̄ | 1̄ , 1̄ |0
0 |1 , 1 |2

1̄ |2 , 2̄ |11̄ | 2̄ , 0 | 1̄
1 |0 , 2 |1

2 | 2̄

2̄ |2

(b) The transducer R3(B2).

Fig. 2.5. Two redundancy transducers.

This symmetric representation of numbers is an old folklore.† It has
been given a renewed interest in computer arithmetic for the redundancy
in the representations allows to improve the way operations are performed,
as we shall see now. The following is to be found in (Avizienis 1961) for
bases larger than 2, in (Chow and Robertson 1978) for the binary case —
although the original statements and proofs are not formulated in terms of
automata.

Theorem 2.2.9 In base p ≥ 3 with the symmetric digit alphabet Bh, where
h =

⌊
p
2

⌋
+1 , the addition may be realised by a 1-local letter-to-letter trans-

ducer, and by a 2-local one if p = 2 and h = 1.

Note that a ‘1-local letter-to-letter transducer’ is by definition a ‘sequen-
tial letter-to-letter transducer’, that a ‘2-local letter-to-letter transducer’ is

† It was known (at least) as early as Cauchy who advocated such system for p = 10
and h = 5 with the argument that it makes the learning of addition and multiplication
easier: the size of the tables is rougly divided by 4 (see (Cauchy 1840)).
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16 Ch. Frougny, J. Sakarovitch

equivalent to a ‘sequential transducer’ but not necessarily to a ‘sequential
letter-to-letter transducer’ (cf. Section 2.6).

Proof We assume first that p ≥ 3; the cases of odd p = 2q + 1 and of
even p = 2q will induce slight variations in the definitions but the core will
be the same. In both cases, h = q + 1. The alphabet for digitwise addition
is B2h with 2h = p+ 1 if p is odd, 2h = p+ 2 if p is even. Let

Vp =

{
{−(h− 1), . . . , h− 1} if p is odd,

{−(h− 2), . . . , h− 1} if p is even.

In both cases, CardVp = p and is a set of representatives of Z/pZ. Not only
we have Vp ⊂ Bh, but for any s in Vp, s+ 1 and s− 1 belong to Bh as well
(this is the condition which is not verified when p = 2).

Let Vp be the subautomaton of Zp, with Vp as set of states, 0 as initial
state, and every state is final. We turn Vp into a transducer Wp with input
alphabet B2h. Every transition

s
d−−→
Vp

t = ps+ d gives

s
t|ps−−−→
Wp

t and also s
t+p|p(s+1)−−−−−−−−→

Wp

t or s
t−p|p(s−1)−−−−−−−−→

Wp

t ,

or both, according to whether t+p, t−p, or both, are in B2h. By construc-
tion, the input automaton of Wp is
(i) deterministic,
(ii) complete (over the alphabet B2h), and
(iii) 1-local (that is, the end of a transition is determined by the label).
Since t = ps+d,Wp is a converter and if (u, v) is the label of a computation
of Wp which (begins in 0 and) ends in t, then

πp (u) = πp (v) + t .

Let now Wp
′ be the transducer obtained from Wp by replacing every tran-

sition

s
m|pn−−−−→
Wp

t by s
m|n−−−−→
Wp

′
t ,

and by setting the final function T as T (t) = t for every t in Vp. By
construction, and the above remark, the output alphabet of Wp

′ is Bh.
If (u, v′) is the label of a computation of Wp

′ which (begins in 0 and) ends
in t, then

πp (u) = p πp (v′) + t = πp (v′ t) .

As v′ t is the output of Wp
′ for the input u, Wp

′ answers the question.
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For p = 2, the foregoing construction, starting from V2 = {0, 1} , works
perfectly well, but for the fact that W2

′ contains one, and only one, transi-
tion whose output is not in B1:

1
2|2−−−→
W2

′
0 .

The same construction is then carried out again, but starting from V2 =
{1̄, 0} , which yields a transducer W2

′ which contains one, and only one,
transition whose output is not in B1:

1̄
2̄|2̄−−−→
W2

′
0 .

The composition W2
′′ = W2

′ ◦ W2
′ is a 2-local letter-to-letter sequential

transducer in which no transition has an output outside B1 since no tran-
sition in W2

′ has a transition with output 2̄ and no transition in W2
′ with

input 2 has an output outside B1: W2
′′ answers the question.

Figure 2.6 shows W3
′ and W2

′′.

1̄ 0 1

| 1̄ |0 |1

3̄ | 2̄ , 0 | 1̄ , 3 |0 2̄ | 1̄ , 1 |0 , 4 |1

3̄ |0 , 0 |1
3 |2

4̄ | 1̄ , 1̄ |0
2 |1

4̄ | 2̄ , 1̄ | 1̄ , 2 |0 3̄ | 1̄ , 0 |0 , 3 |1 2̄ |0 , 1 |1 , 4 |2

2̄ | 2̄ , 1 | 1̄ , 4 |0

4̄ |0 , 1̄ |1 , 2 |2

(a) The transducer W3
′.

00 1̄1

01

1̄0

|00
|01̄

|11̄

| 1̄0

0 |0 1 |0

2 |0 , 2̄ |0

1 |0

2 |1 , 2̄ |0

0 | 1̄

2 |0 , 2̄ | 1̄

1 |0

1̄ | 1̄

1 |1

1̄ | 1̄

0 |0

1̄ |0

2 |1 , 2̄ |0

1 | 1̄

0 |1

(b) The transducer W2
′′.

Fig. 2.6. Two local adders.

Remark 2.2.10 The same construction as the one for p = 2 can be carried
out for any even p = 2q and would yield a 2-local automaton for the
addition if the numbers are written on the smaller alphabet Bh with h = q.

2.2.2.3 The minimal weight representation

Multiplication by a fixed integer obviously falls in the case of normalisa-
tion but, in contrast with addition, multiplication (between two numbers)
cannot be realised by a finite automaton. However, redundant alphabets
and redundancy transducers are not irrelevant to the subject for they allow
useful preprocessing to efficient multiplication algorithms.
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Let A be a digit alphabet and u = uk uk−1 · · ·u1u0 be in A∗ with the ui

in A. The weight of u is the absolute sum of digits ‖u‖ =
∑k

i=0 |ui| . The
Hamming weight of u is the number of non-zero digits in u. Of course,
when A ⊆ {−1, 0, 1}, the two definitions coincide; as, for sake of simplicity,
we consider here this case only, we do not introduce another notation and
speak simply of ‘weight’.

The multiplication of two numbers represented by u and v respectively
amounts to a series of addition of u with shifted copies of u itself, as many
times as there are non-zero digits in v: the smaller the weight of v, the more
efficient the multiplication by πp (v). Hence the interest for representation
of minimal weight. The following statement and proof is an ‘automata
translation’ of a classical description of (binary) representations of minimal
weight as ‘non-adjacent form’ due to Booth (Booth 1951) and Reitwies-
ner (Reitwiesner 1960).

Theorem 2.2.11 The computation of a 2-representation of minimal weight
over the alphabet B1 = {−1, 0, 1} from the 2-expansion of an integer x is
realised by a finite sequential right transducer. The result is a representation
with no adjacent non-zero digits.

Remark 2.2.12 The study of minimal weight representations goes on with
the computation of the mean weight (that gives an evaluation of the ben-
efits of the construction). These minimal weight representations have also
applications to cryptography. See also Section ??.

2.2.3 Representation of reals

Real numbers from the interval [0, 1) are traditionally represented as infinite
sequences of digits (infinite on the right), that is, by elements of Ap

N. By
convention, and although N contains 0, we consider, in this context and for
sake of simplicity of the writing, that an element u of Ap

N is a sequence of
digits whose indices begin with 1: u = (ui)i≥1 where every ui is in Ap.

The set Ap
N is naturally a topological space equipped with the (total)

lexicographic order : for u and v in Ap
N, u < v if, and only if, if w = u ∧ v

is the longest common prefix to u and v, then u = wau′ and v = wbv′

with a and b in Ap and a < b. With our convention, the evaluation map,
still denoted by πp, gives every word u of Ap

N a real value:

u = u1 u2 · · · �−→ πp (u) =
∞∑

i=1

ui p
−i .

When finite and infinite words are mixed in the same context, the latter are
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prefixed with the radix point inside the function πp. For instance, it holds:

∀u = (ui)i≥1 ∈ Ap
N πp (.u) = lim

n→+∞
1
pn

πp (u1 u2 · · ·un) , (2.6)

∀u ∈ Ap
N , ∀w ∈ Ap

∗ πp (.wu) =
1
p|w| (πp (w) + πp (.u)) . (2.7)

Proposition 2.2.13 The map πp : Ap
N → [0, 1] is a continuous and order-

preserving function. Moreover, for u and v in Ap
N, u < v, and w = u ∧ v ,

πp (u) = πp (v) if, and only if, u = wa (p−1)ω and v = w (a+1)0ω .

Proof Let us first make the obvious remark — which will be used silently
in the sequel — that if u and v are such that for every i, ui ≤ vi and if
there exists at least one j such that uj �= vj , then πp (u) < πp (v).

Next, the not less obvious identity
+∞∑
i=1

(p− 1)p−i = (p− 1)

(
1
p

1− 1
p

)
= 1 (2.8)

implies in particular that πp

(
Ap

N

)
⊆ [0, 1] .

The set Ap
N is a metric space with d (u, v) = 2−|u∧v| if u �= v

(and d (u, u) = 0 of course). Then, again by (2.8), |πp (u)− πp (v)| ≤
2p−(|u∧v|−1) and πp is Lipschitz, hence continuous.

Let then u and v be in Ap
N, u < v, and let k be the smallest index such

that uk �= vk, that is, uk ≤ vk − 1. Let

u′ = u1u2 · · ·uk−1uk p−1p−1 · · · and v′ = v1 v2 · · ·uk−1 (uk + 1)00 · · ·

By the foregoing, πp (u′) = πp (v′) and, if u �= u′, then πp (u) < πp (u′), and
if v �= v′, then πp (v′) < πp (v), which shows that πp is order-preserving.

Let x be a non-negative real number. If x ≥ 1, a first way for represent-
ing x is to treat its integral part �x� and its fractional part {x} separately, to
compute 〈�x�〉p as we have done in the previous section, to compute 〈{x}〉p
as we shall see below, and to combine them with the radix point:

〈x〉p = 〈�x�〉p.〈{x}〉p .

Another way is to determine the (unique) integer k such that pk−1 ≤
x < pk first, to consider the real y =

x

pk
which belongs to [0, 1), to com-

pute 〈y〉p = u1u2 · · · and to recover the representation of x by setting the
radix point at the right place: 〈x〉p = u1u2 · · ·uk.uk+1uk+2 · · · . We shall
obviously take the second option, and from now on consider real numbers
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from [0, 1) only. Given such an x in [0, 1) which is then likely to have a p-
representation which is an infinite sequence on the right, there is no hope to
have an algorithm which computes the digits from right to left, and we are
left with the right algorithm which computes the digits from left to right.

The greedy algorithm. Let x be in [0, 1). Write z0 = x and, for
every i ≥ 1, let

ui = �pzi−1� and zi = {pzi−1} . (2.9)

Every ui is in Ap, and it holds

z0 = u1 p
−1 + z1 p

−1 = u1 p
−1 + u2 p

−2 + z2 p
−2 = · · · =

+∞∑
i=1

ui p
−i , (2.10)

that is, the infinite word u = (ui)i≥1 in Ap
N is a p-representation of x. It

is the p-expansion of x, denoted by 〈x〉p or dp (x) (when a more functional
notation is needed). The computation described by (2.9) is refered to as
the greedy algorithm.

By convention (and by abuse), we say that a p-representation u is finite
if it ends with the infinite word 0ω: u = w 0ω with w in Ap

∗ (and indeed
the finite word w is sufficient to compute πp (u)). An x in [0, 1) is said to
be p-decimal if x has a finite p-representation, that is, if, and only if, x is
an integer divided by a (sufficiently large) power of p.

Corollary 2.2.14 The map πp : Ap
N → [0, 1] is a surjective function.

An x in [0, 1) has more than one p-representation in Ap
N if, and only if,

it is p-decimal, in which case it has only two of them, and its p-expansion
is the finite one, which is larger in the lexicographic order than the other
infinite one.

It also follows that the set of p-expansions is the rational language (of
infinite words):

Dp = {〈x〉p | x ∈ [0, 1)} = Ap
N \ Ap

∗ (p−1)ω .

Figure 2.7 shows a finite Büchi automaton which recognises D2.

1

0

0 1

Fig. 2.7. A finite Büchi automaton for the language of 2-expansions D2.
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A first finite transducer over infinite words: the divider by q.
Let us consider the transducer Qp,q of Section 2.2.1 again (q is a fixed

integer and [q] the set of remainders modulo q):

Qp,q = ( [q], Ap, Ap, E, {0}, [q] ) with E = {
(
s, (a, b), r

)
| ps+ a = q b+ r} ,

where a and b are in Ap and s and r in [q] (see Figure 2.2). We are now
interested in the infinite computation of Qp,q.

Let u be the p-expansion of an x in [0, 1), let c be the computation ofQp,q

with input u (it exists as Qp,q is input-complete and is unique as Qp,q is
input-deterministic), and let v be the output of c, in Ap

N. Let r0 = 0 and
for every i ≥ 1 it holds:

pri−1 + ui = q vi + ri .

Equation (2.10) then becomes

x = u1 p
−1 + z1 p

−1 = q v1 p
−1 + p−1 (r1 + z1) = · · · = q

+∞∑
i=1

vi p
−i ,

that is, πp (u) = q πp (v) . And Qp,q realises the division by the integer q
over the p-representations of the reals of [0, 1).

As a rational number is the quotient of an integer by another integer, and
since Qp,q is input-deterministic, a computation whose input is ultimately a
sequence of 0’s ends in a circuit, therefore the description of the division as
a finite sequential transducer is a proof of the following classical statement.

Proposition 2.2.15 The p-expansion of a rational number r/q, in any
integer base p, is eventually periodic (of period less than q).

The zero (Büchi) automaton and (Büchi) converters

The ‘zero-automaton’ for real number representations is basically the
same as the one we have built for the representations of the integers, that
is, it is based upon the automaton Zp (cf. Section 2.2.2). As above, let
Bd = {−d, . . . , d} be a finite symmetrical part of Z with d ≥ p− 1 .

Proposition 2.2.16 An infinite word u in Bd
N has value 0 in base p if, and

only if, it is accepted by the Büchi automaton Z ′
p,d = (H ′, Bd, E, {0}, H ′ )

with H ′ = {−h′, . . . , h′} where h′ is the largest integer smaller than, or
equal to, d/(p− 1).

Proof By the definition of Z ′
p,d, every infinite word u that labels an infinite

computation in Z ′
p,d is accepted by Z ′

p,d. For every (finite) prefix w of u,
|πp (w)| ≤ h′ and then, by (2.6), πp (.u) = 0 .
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Conversely, let u in Bd
N which does not label a computation in Z ′

p,d, that
is, there exists a prefix w of u such that

0 w−−→
Zp

t = πp (w) with t > d/(p− 1) .

We have, on the one hand, πp (.u) ≥ πp

(
.wd

ω) and, on the other hand,

πp

(
.wd

ω) =
1
p|w|

(
t− d

p− 1

)
> 0 .

(The case t < −d/(p− 1) is identical.)

The proof also yields the characterisation of Z ′
p,d as the (full) Z ′

p,d re-
stricted to its (non-trivial) strongly connected components. Figure 2.8 shows
Z ′

2,1 and Z ′
2,2.

1̄ 0 1

1

1̄

1 0 1̄

(a) The automaton Z′
2,1.

2̄ 1̄ 0 1 2

2 1 0

2̄1̄0

2

2̄

2 1 0 1̄ 2̄

(b) The automaton Z′
2,2.

Fig. 2.8. Two ‘zero automata’ for binary representations of reals.

From the zero automaton for real representations, one derives converters
and normalisers, as in the case of the representations of integers, but for the
point that not every word in Ap

N is a p-expansion and that there exists thus
a distinction between a converter to the canonical alphabet and a normaliser
to the same alphabet. For instance, Figure 2.9 shows these converter and
normaliser from and to the canonical alphabet, in the binary case.

1̄ 0 1

1 |0

0 |1

1 |0 0 |0 , 1 |1 0 |1

(a) The automaton C2(A2×A2).

0 |0

1 |1

1 |0

0 |1
1 |1

0 |0

1 |0

0 |10 |1
1 |0

(b) The automaton N2(A2).

Fig. 2.9. The converter and normaliser over the canonical alphabet for binary
representations of reals.
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2.2.4 Base changing

As soon as we want to compare the representation of integers in different
bases, finite automata show a kind of weakness, that is, no finite transducers
exist in general which transform the p-expansion of an integer N into its
q-expansion. This follows in fact from the fundamental theorem, due to
Alan Cobham, which we refered to in the introduction and which has been
presented in Chapter ?? (see Theorem ??).

This deep result obviously implies, and stays behind, the fact that no
finite transducer T may relate the expansions of integers in base p and
in base q, for multiplicatively independent p and q. For, if there was one
such T , the image of the p-expansions of a p-recognisable set X by T would
be a rational set of Aq

∗ and X would thus be q-recognisable as well. It is
not necessary however to establish Cobham’s Theorem in order to prove
the non-existence of such a transducer T . For the latter, it is sufficient
for instance to prove that the set of powers of 2 is not 3-recognisable — a
simple, and classical, exercise (see (Eilenberg 1974)).

On the other hand, every integer in {0, 1, . . . , pk − 1} has a p-
representation which is a word of Ap

∗ of length k (by padding on the left
with enough 0’s) and this defines a morphism τ from Apk

∗ to Ap
∗ such that

πp

(
τ
(
〈N〉pk

))
= N for every N in N. Using inversion and composition

of finite transducers, we then get the following.

Proposition 2.2.17 If p and q are two multiplicatively dependent positive
integers, then there exists a finite transducer from Ap

∗ to Aq
∗ which maps

the p-expansion of every positive integer onto its q-expansion.

Corollary 2.2.18 If p and q are two multiplicatively dependent positive
integers, then the p-recognisable sets and q-recognisable sets of positive in-
tegers coincide.

2.3 Representation in real base

This section is about the so-called beta-expansions where the base is a real
number β > 1. By a greedy algorithm producing the most significant digit
first, every positive real number is given a β-expansion, which is an infinite
word on a canonical alphabet of integer digits. The main difference with the
case where β is an integer is that a number may have several representations
on the canonical alphabet, the greedy expansion being the greatest in the
lexicographic order.

The set of greedy β-expansions forms a symbolic dynamical system, the β-
shift, and we start this chapter by establishing some properties of symbolic
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dynamical systems defined by means of the lexicographic order, and not
related to numeration systems. From this, we derive some properties of
the β-shift. We then describe several properties of β-expansions in the
important case where β is a Pisot number.

Instead of taking a base, which is a number, it is also possible to take a
basis, that is, a sequence of integers, like the sequence of Fibonacci numbers.
This allows to represent any non-negative integer. We study these systems
more particularly when the basis is a linear recurrent sequence and investi-
gate the conditions under which the set of greedy expansions is recognisable
by a finite automaton.

We also consider the problem of changing the basis and describe cases
where the conversion between the expansions in the two numeration systems
is realisable by a finite transducer.

2.3.1 Symbolic dynamical systems

Definitions for symbolic dynamical systems have been given in Chapter ??;
we briefly recall some of them as we adopt slightly different notation (see
also (Lothaire 2002, Chapter 1)). Let A be a finite alphabet. A word s in
AN avoids a set X ⊂ A+ if no factor of s is in X . Denote S(X) the set of
words of AN which avoid X .

A (one-sided) symbolic dynamical system, or subshift , is a subset of AN of
the form S(X) for some X ⊂ A+. Equivalently, it is a closed shift-invariant
subset of AN. In this chapter, the shift on AN is denoted σ, and is implicit
in all our notations.

A subshift S of AN is of finite type if S = S(X) for a finite set X ⊂ A+.
A subshift S of AN is sofic if S = S(X) for a rational set X ⊂ A+, or,
equivalently, if L(S) is rational.

A subshift S of AN is coded if there exists a prefix code Y ⊂ A∗ such that
S = Y ω, or, equivalently, if the language of S is equal to the set of factors
of Y ∗, that is, L(S) = F (Y ∗), (Blanchard and Hansel 1986).

In the remaining of this section, A is a totally ordered alphabet.

Definition 2.3.1 A word v in AN is said to be a lexicographically shift
maximal word (lsm-word for short) if it is larger than, or equal to, any of
its shifted images: for every k ≥ 0, σk(v) ≤ v .

Definition 2.3.2 Let v = (vi)i≥1 in AN. We denote by

(i) v[n] the prefix of length n of v: v[n] = v1v2 · · · vn . By convention,
v[0] = ε .
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(ii) Sv = {u ∈ AN | ∀k ≥ 0, σk(u) ≤ v} , the set of words in AN, all the
shifted images of which are smaller than, or equal to, v.

(iii) Dv = {u ∈ AN | ∀k ≥ 0, σk(u) < v} , the set of words in AN, all the
shifted images of which are smaller than v.

(iv) Yv = {v[n]a ∈ A∗ | ∀n ≥ 0, ∀a ∈ A, a < vn+1} .

Proposition 2.3.3 If v in AN is an lsm-word, then Sv is a subshift coded
by Yv.

Proof From their definition follows that Sv is shift-invariant and closed and
that Yv is a prefix code. Let w be in L(Sv); then w ≤ v[n] with n = |w|.
Either w = v[n] and thus a prefix of a word in Yv or w < v[n] and thus
of the form w = v1 · · · vn1−1a1w1, with a1 < vn1 and w1 ≤ v1 · · · v|w1|,
that is w = y1w1 with y1 in Yv and w1 in L(Sv). Iterating this process,
we see that w belongs to F (Y ∗

v ). Conversely, let w = (wn)n≥1 = y1y2 · · ·
be in Y ω

v , with yi in Yv. Then w < v. For each k, wkwk+1 · · · begins
with a word of the form vjk

vjk+1 · · · vjk+r−1ajk+r with ajk+r < vjk+r, thus
wkwk+1 · · · < vjk

vjk+1 · · · ≤ v, and thus w is in Sv.

Proposition 2.3.4 Let v be an lsm-word in AN. Then, the following con-
ditions are equivalent:
(i) the subshift Sv is recognised by a finite Büchi automaton, and thus, is

sofic;
(ii) the set Dv is recognised by a finite Büchi automaton;
(iii) the word v is eventually periodic.

Proof [Sketch] Let Sv be the (infinite) automaton whose states are the v[n]

for all n in N, and whose transitions are v[n]
vn+1−−−−→ v[n+1] and v[n]

a−−→ v[0]
for every a < vn+1. All states are final and v[0] is initial. This automaton Sv

recognises Pref(Y ∗
v ), which is equal to F (Y ∗

v ). As a Büchi automaton, Sv

recognises Sv.
Let Dv be the automaton obtained from Sv by taking v[0] as unique final

state. As a Büchi automaton, Dv recognises Dv (cf. Figure 2.10).
Now, the automata Sv and Dv have both finite minimal quotients, S′

v and
D′

v respectively, if, and only if, v is eventually periodic. These automata S′
v

and D′
v recognise the same sets of finite words and the same sets of infinite

words as Sv and Dv respectively.

Remark 2.3.5 In the case where v is eventually periodic but not purely
periodic, the minimal quotients S′

v and D′
v have the same underlying graph,
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ε 3 32 321 w[4] w[5] w[6] w[7]

0, 1, 2

3 2

0, 1

1

0

3

0, 1, 2

2

0, 1

1

0

3

0, 1, 2 0, 1

Fig. 2.10. The infinite automaton Dw, for w = (321)ω .

and D′
v can also be obtained from S′

v by taking the image of v[0] as unique
final state, see Figure 2.11.

In the case where v is purely periodic, of the form (v1v2 · · · vp)ω, the
situation is slightly different and S′

v and D′
v have not the same underlying

graph. However, D′
v can also be obtained from S′

v by performing an in-
splitting of the image of v[0] and by keeping as a unique final state the one
that does not belong to the loop labelled by v1 · · · vp, see Figure 2.12.

ε 3 32

0, 1, 2

3 2

0, 1 1

0

(a) S′
v

ε 3 32

0, 1, 2

3 2

0, 1 1

0

(b) D′
v

Fig. 2.11. Finite automata for Sv and Dv, v = 3(21)ω .

ε 3 32

0, 1, 2

3 2

0, 1

0, 1

(a) S′
w

ε 3 32 321

0, 1, 2

3 2

0, 1

1

0
3

0, 1, 2

(b) The minimal (finite) quotient D′
w

Fig. 2.12. Finite automata for Sw and Dw , w = (321)ω .

Proposition 2.3.6 Let v be an lsm-word in AN. Then, the subshift Sv is
of finite type if, and only if, v is purely periodic.

Proof Suppose that v = (v1v2 · · · vp)ω and consider the set

X ′
v = {v[n]b ∈ A∗ | 0 ≤ n ≤ p− 1, ∀b ∈ A, b > vn+1} .

It is easy to check that Sv = S(X ′
v) . The converse follows from the fact

that v is a lsm-word.
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2.3.2 Real base

In this section we consider a base β which is a real number > 1. The
reader can consult (Lothaire 2002, Chapter 7) for the proof of some results
presented below, and other related results.

Any number x in the interval [0, 1) has a so-called greedy β-expansion
given by a greedy algorithm (Rényi 1957): let r0 = x, and, for j ≥ 1, let
xj = �βrj−1� and rj = {βrj−1}. Then x =

∑∞
j=1 xjβ

−j , where the xj ’s
are integer digits in the alphabet Aβ = {0, 1, . . . , �β� − 1}. The greedy β-
expansion of x is denoted by dβ(x). We also write x = .x1x2 · · · . The same
expansion can be obtained by the β-transformation on [0, 1): let τβ(x) =
{βx}. Then, for j ≥ 1, xj = �βτ j−1

β (x)�.
Note that, when β is an integer, we recover the classical expansion of any

x in [0, 1) defined in Section 2.2.
The same algorithm can be applied to x = 1, and we obtain the so-called

β-expansion of 1, dβ(1). Note that, if β is not an integer, then dβ(1) is an
infinite word on Aβ , but if β is an integer then dβ(1) = β0ω.

If x > 1, there exists k ≥ 0 such that x/βk belongs to the interval [0, 1).
If dβ(x/βk) = .x1x2 · · · , then x = x1 · · ·xk.xk+1xk+2 · · · . The greedy β-
expansion of x is also denoted 〈x〉β . The following lemma is an immediate
consequence of the greedy algorithm.

Lemma 2.3.7 An infinite sequence of non-negative integers (xi)i≥1 is the
greedy β-expansion of a real number x of [0, 1) (resp. of 1) if, and only if,
for every i ≥ 1 (resp. i ≥ 2), xiβ

−i + xi+1β
−i−1 + · · · < β−i+1.

As in the usual numeration systems, the order between real numbers is
given by the lexicographic order on greedy β-expansions.

Proposition 2.3.8 Let x and y be two real numbers from [0, 1). Then
x < y if, and only if, dβ(x) < dβ(y).

Proof Let dβ(x) = (xi)i≥1 and let dβ(y) = (yi)i≥1, and suppose that
dβ(x) < dβ(y). There exists k ≥ 1 such that xk < yk and x1 · · ·xk−1 =
y1 · · · yk−1. Hence x ≤ y1β

−1+· · ·+yk−1β
−k+1+(yk−1)β−k+xk+1β

−k−1+
xk+2β

−k−2 + · · · < y since xk+1β
−k−1 + xk+2β

−k−2 + · · · < β−k by
Lemma 2.3.7. The converse is immediate.

A number may have several different writings in base β, which we call
β-representations. The greedy β-expansion is characterised by the following
property.

Proposition 2.3.9 The greedy β-expansion of a real number x of [0, 1) is
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the greatest of all the β-representations of x with respect to the lexicographic
order.

Example 2.3.10 Let ϕ be the Golden Ratio 1+
√

5
2 . The greedy ϕ-

expansion of x = 3−
√

5 is equal to 10010ω. Different ϕ-representations of
x are 01110ω, or 100(01)ω for instance.

If a representation ends in infinitely many zeros, like u0ω, the trailing
zeros are omitted and the representation is said to be finite.

The greedy β-expansion of x ∈ [0, 1] is finite if, and only if, τ i
β(x) = 0 for

some i, and it is eventually periodic if, and only if, the set {τ i
β(x) | i ≥ 1}

is finite.

2.3.2.1 The β-shift

Denote by Dβ the set of greedy β-expansions of numbers of [0, 1). It is a
shift-invariant subset of Aβ

N. The β-shift Sβ is the closure of Dβ . Note that
Dβ and Sβ have the same set of finite factors. When β is an integer, Sβ is
the full β-shift Aβ

N.
A finite (resp. infinite) word is said to be β-admissible if it is a factor of

an element of Dβ (resp. an element of Dβ).
The greedy β-expansion of 1 plays a special role in this theory. Let

dβ(1) = (tn)n≥1 be the greedy β-expansion of 1. We define also the quasi-
greedy expansion d∗

β
(1) of 1 by: if dβ(1) = t1 · · · tm is finite, then d∗

β
(1) =

(t1 · · · tm−1(tm − 1))ω , d∗
β
(1) = dβ(1) otherwise.

Theorem 2.3.11 (Parry 1960) Let β > 1 be a real number, and let s be
an infinite sequence of non-negative integers. The sequence s belongs to Dβ

if and only if for all k ≥ 0

σk(s) < d∗
β
(1)

and s belongs to Sβ if, and only if, for all k ≥ 0

σk(s) ≤ d∗
β
(1).

Definition 2.3.12 A number β such that dβ(1) is eventually periodic is
called a Parry number . If dβ(1) is finite then β is called a simple Parry
number.

Example 2.3.13 1. Let ϕ be the Golden Ratio 1+
√

5
2 . The expansion of 1

is finite, equal to 11.
2. Let θ = 3+

√
5

2 . The expansion of 1 is eventually periodic, equal to
dθ(1) = 21ω.
3. Let β = 3

2 . Then dβ(1) = 101000001 · · · is aperiodic.
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Remark 2.3.14 Note that the greedy β-expansion of 1 is never purely
periodic.

As a corollary of Theorem 2.3.11 follows that d∗
β
(1) is an lsm-word

and Sβ = Sd∗
β
(1) with the notation of Definition 2.3.2. By Proposi-

tions 2.3.3, 2.3.4 and 2.3.6 follow then the well-known properties of the
β-shift (established in (Ito and Takahashi 1974), (Bertrand-Mathis 1986),
(Blanchard 1989)).

Theorem 2.3.15 The β-shift Sβ is a coded symbolic dynamical system
which is

(i) sofic if, and only if, dβ(1) is eventually periodic, i.e., β is a Parry
number

(ii) of finite type if, and only if, dβ(1) is finite, i.e., β is a simple Parry
number.

Remark 2.3.16 Since a sofic symbolic dynamical system is of finite type
if, and only if, it can be recognised by a local automaton, see (Béal 1993),
it follows that, when β is a simple Parry number the automaton recognising
the β-shift can be chosen to be local.

Example 2.3.17 1. Let ϕ be the Golden Ratio 1+
√

5
2 . The automaton of

Figure 2.14 (a) below recognising Sϕ is local, because every admissible word
with last letter 0 (resp. 1) arrives in state 0 (resp. 1).
2. Let θ = 3+

√
5

2 . Then dθ(1) = 21ω. The automaton of Figure 2.13
recognising Sθ is not local, since there are two different loops labelled by 1.

2

0

0, 1 1

Fig. 2.13. Finite automaton for the θ-shift, θ = 3+
√

5
2

.

The following result is a reformulation of Proposition 2.3.4.

Proposition 2.3.18 The set Dβ is recognisable by a finite Büchi automa-
ton if, and only if, dβ(1) is eventually periodic.

Example 2.3.19 Since dϕ(1) = 11, the ϕ-shift is a system of finite type,
recognised by the finite automaton of Figure 2.14 (a). The set Dϕ is recog-
nised by the finite Büchi automaton of Figure 2.14 (b).
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0 1

1

0

0

(a) Sϕ for Sϕ.

0 1 2

1

1

0

0

0

(b) Dϕ for Dϕ.

Fig. 2.14. Finite automata for Sϕ and Dϕ, ϕ = 1+
√

5
2

.

There is an important case where the β-expansion of 1 is eventually pe-
riodic. A Pisot number is an algebraic integer greater than 1 such that all
its Galois conjugates have modulus less than one. The natural integers and
the Golden Ratio are Pisot numbers.

Theorem 2.3.20 (Schmidt 1980) If β is a Pisot number, then every
number of Q(β) ∩ [0, 1] has an eventually periodic β-expansion.

As a consequence we obtain the important result, see also
(Bertrand 1977).

Theorem 2.3.21 If β is a Pisot number, then the β-shift is a sofic system.

The topological entropy of a subshift S ⊆ AN is defined as

h(S) = lim
n→∞

1
n

log(Ln(S))

where Ln(S) denotes the number of factors of length n in S. One proof of
the following well-known result using the fact that the β-shift is a coded
system can be found in (Lothaire 2002, Chapter 1).

Proposition 2.3.22 The topological entropy of the β-shift is equal to log β.

2.3.2.2 The (F) Property

If β is an integer, then every positive integer has a finite β-expansion, but
this is not true in general when β is not an integer. However, it is easy to see
that for the Golden Ratio ϕ, every positive integer has a finite expansion,
for instance, 〈2〉ϕ = 10.01.

More generally, it is interesting to find numbers having this property. We
recall some definitions and results from (Frougny and Solomyak 1992).
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Definition 2.3.23 A number β is said to satisfy the (F) Property if every
element of Z[β−1] ∩ [0, 1) has a finite greedy β-expansion.
A number β is said to satisfy the (PF) Property if every element of N[β−1]∩
[0, 1) has a finite greedy β-expansion.

Proposition 2.3.24 If β satisfies the (F) Property then β is a Pisot num-
ber. Moreover, the following are equivalent:
• β satisfies the (F) Property
• β satisfies the (PF) Property and dβ(1) is finite.

There are Pisot numbers β with dβ(1) finite that do not satisfy the (F)
Property, for instance the Pisot number with minimal polynomial X4 −
2X3 −X − 1. Here dβ(1) = 2011 and 〈3〉β = 10.111(00012)ω.

The problem of characterising Pisot numbers satisfying the (F) Property
is still open. Up to now, the only families satisfying this property are the
following ones.

Theorem 2.3.25 Let β > 1 be a root of a polynomial in Z[X ] of the form
M(X) = Xg−b1Xg−1−b2Xg−2−· · ·−bg. If one of the following properties
holds, then β satisfies the (F) Property:
(i) b1 ≥ b2 ≥ · · · ≥ bg > 0,
(ii) bi ≥ 0 for 1 ≤ i ≤ g and b1 >

∑g
i=2 bi.

Part (i) is from (Frougny and Solomyak 1992) and Part (ii) from
(Hollander 1996).

Cubic Pisot units satisfying (F) are characterised by the following.

Theorem 2.3.26 (Akiyama 2000) A cubic Pisot unit β satisfies the
(F) Property if, and only if, it is a root of the polynomial M(X) =
X3 − aX2 − bX − 1 of Z[X ] with a ≥ 0 and −1 ≤ b ≤ a+ 1.

A family of Pisot numbers satisfying (PF) is the following one.

Theorem 2.3.27 Let β be such that dβ(1) = t1t2 · · · tm(tm+1)ω with t1 ≥
t2 ≥ · · · ≥ tm > tm+1 > 0. Then β is a Pisot number which satisfies the
(PF) Property.

Corollary 2.3.28 Every quadratic Pisot number satisfies the (PF) Prop-
erty.

Example 2.3.29 The number θ = 3+
√

5
2 , with dθ = 21ω satisfies the

(PF) Property, but not the (F) Property, since 〈θ − 1〉θ = 1.1ω.
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2.3.2.3 Digit-set conversion and normalisation

Let C be an arbitrary alphabet of digits. The normalisation νβ,C in base
β on C is the partial function which maps any β-representation on C of a
given number of [0, 1) onto the greedy β-expansion of that number:

νβ,C : CN → Aβ
N (ci)i≥1 �→ dβ(

∑
i≥1

ciβ
−i) .

The function νβ,C is partial since as C may contain negative digits, a word
of C∗ may represent a negative number, which has no β-expansion. Note
that, as for the integer bases, addition and multiplication by a positive inte-
ger constant K are particular instances of normalisation. Addition consists
in normalising on the alphabet {0, . . . , 2(�β� − 1)}, and multiplication by
K on the alphabet {0, . . . ,K(�β� − 1)}.

We first adapt the notions of zero automaton and digit-conversion trans-
ducers given in Section 2.2.3 for integer base to the non-integer base β.

Zero automaton The evaluator Zβ in base β is defined as in integer
base but for the set of states which is Z[β]. The initial state is 0 and the
transitions are of the form:

∀s, t ∈ Z[β] ∀a ∈ Z s
a−−→
Zβ

t if, and only if, t = β s+ a . (2.11)

Let Bd = {−d, . . . , d} where d is a positive integer, d ≥ �β� .

Proposition 2.3.30 An infinite word z in Bd
N has value 0 in base β if, and

only if, it is accepted by the Büchi automaton Zβ,d = (Qd, Bd, E, {0}, Qd )
where the transitions in E are those defined by (2.11) and Qd = Z[β] ∩
[− d

β−1 ,
d

β−1 ].

Proof By the definition of Zβ,d, every infinite word z that labels an infinite
computation in Zβ,d is accepted by Zβ,d. For every n ≥ 1, |πp (z1 · · · zn)| ≤

d
β−1 and then πβ (.z) = limn→+∞ 1

βn πp (z1 z2 · · · zn) = 0 .

Conversely, let z in Bd
N which does not label a computation in Zβ,d, that

is, there exists a prefix w of z such that

0 w−−→
Zβ,d

t with t > d/(β − 1) .

We have

πp (.z) ≥ πp

(
.wdω) =

1
β|w|

(
t− d

β − 1

)
> 0 .

(The case t < −d/(β − 1) is identical.)
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This automaton is called the zero automaton in base β over the alphabetBd.
It is not finite in general. Our aim is now to prove the following result.

Theorem 2.3.31 The following conditions are equivalent:
(i) the zero automaton Zβ,d is finite for every d ≥ �β�
(ii) the zero automaton Zβ,d is finite for one d ≥ �β�+ 1
(iii) β is a Pisot number.

The proof relies on the following statements.

Lemma 2.3.32 If Zβ,d is finite, then β is an algebraic integer.

Proof Let dβ(1) = (ti)i≥1. Then (−1)t1t2 · · · is the label of a path in
Zβ,d, and there exist n and p such that the states πβ((−1)t1t2 · · · tn) and
πβ((−1)t1t2 · · · tn · · · tn+p) are the same.

We now suppose that β is an algebraic integer with minimal polynomial
Mβ of degree g. Denote β1 = β, β2, . . . , βg the roots of Mβ. On the discrete
lattice of rank g, Z[X ]/(Mβ) � Z[β], a norm is defined as

||P (X)|| = max
1≤i≤g

|P (βi)|. (2.12)

Proposition 2.3.33 If β is a Pisot number, then Zβ,d is finite for every
d ≥ �β�.

Proof Every state s in Qd is associated with the label of the shortest path
z1z2 · · · zn from 0 to s in the automaton. Thus s = s(β) = z1β

n−1+ · · ·+zn,
with s(X) in Z[X ]/(Mβ) and |s| = |s(β)| ≤ d

β−1 . For every conjugate βi

with |βi| < 1, we have |s(βi)| ≤ d
1−|βi| . Since β is Pisot, this is true for

2 ≤ i ≤ g. Thus every state of Qd is bounded in norm, and so there is only
a finite number of them.

Example 2.3.34 The zero automaton on {−1, 0, 1} for ϕ = 1+
√

5
2 is drawn

in Figure 2.15.

Part (i) implies (iii) of Theorem 2.3.31 is proved in
(Berend and Frougny 1994).

Proposition 2.3.35 If the zero automaton Zβ,d is finite for every d ≥ �β�,
then β is a Pisot number.

The core of Proposition 2.3.35 consists in using, with techniques of com-
plex analysis, the following lemma for every integer d.
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0 1

ϕ−ϕ

ϕ − 1−1−ϕ + 1
1

00

1̄1̄1

0

1 1̄

00

1̄1

Fig. 2.15. Finite zero automaton Zϕ,1, ϕ = 1+
√

5
2

.

Lemma 2.3.36 If the automaton Zβ,d is finite, then for every conjugate
βi with |βi| > 1, if s = s(β) belongs to Qd then |s(βi)| ≤ d

|βi|−1 .

Proof Let z1z2 · · · be the label of a path recognised by Zβ,d with origin 0.
Since Qd is finite there exist n and p such that s = s(β) = z1β

n−1 + · · ·+
zn = z1β

n+p−1 + · · · + zn+p. Thus for every conjugate βi with |βi| > 1,
z1β

n−1
i + · · · + zn = z1β

n+p−1
i + · · · + zn+p = βp

i (z1βn−1
i + · · · + zn) +

zn+1β
p−1
i + · · ·+ zn+p, thus

|z1βn−1
i + · · ·+ zn| ≤

d

|βi|p − 1
|βi|p − 1
|βi| − 1

=
d

|βi| − 1
.

Example 2.3.37 Take β the root > 1 of the polynomial X4 − 2X3 −
2X2 − 2. Then dβ(1) = 2202 and β is a simple Parry number, but it is not
a Pisot number, since there is another root α ≈ −1.134186. By a direct
computation it can be shown that the path of label 1̄2211̄12̄201 in Zβ,2 with
origin 0 leads to a state s = s(β) such that s(α) > 2/(|α|−1). Lemma 2.3.36
implies that, for every d ≥ 2, the set of words of Bd

N having value 0 is not
recognisable by a finite automaton.

Normalisation Take two alphabets of integers C and A. Let d =
max(|c − a|) for c in C and a in A, and let Bd = {−d, . . . , d} as above.
As in Section 2.2.2.1, one constructs from the zero automaton Zβ,d a digit-
conversion transducer or converter Cβ(C×A). The transitions are defined
by

s
c|a−−−→

Cβ(C×A)
t if, and only if, s

c−a−−−−→
Zβ,d

t .

Thus one obtains the following proposition.
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Proposition 2.3.38 The converter Cβ(C×A) recognises the set{
(x, y) ∈ CN ×AN

∣∣ πβ (x) = πβ (y)
}
.

If β is a Pisot number, then Cβ(C×A) is finite.

Theorem 2.3.39 (Frougny 1992) If β is a Pisot number, then normal-
isation in base β on any alphabet C is realisable by a finite letter-to-letter
transducer.

Proof Since β is a Pisot number the automaton Dβ recognising Dβ is finite
by Proposition 2.3.18. The normaliserNβ(C) is obtained as the composition
of Cβ(C×Aβ) with the transducer which realises the intersection with Dβ .

It is easy to check that for any fixed digit alphabet C, normalisation in
base β on C is a bounded-length discrepancy function (see Section 2.6.3). It
follows then, that if normalisation in base β on an alphabet C is realisable
by a finite transducer, it is realisable by a finite letter-to-letter transducer,
and then that the zero automaton Zβ,d is finite for d = max(|c − a|), for c
in C and a in Aβ .

The following result allows to prove that (ii) implies (i) in Theorem 2.3.31.

Proposition 2.3.40 (Frougny and Sakarovitch 1999) If normalisa-
tion in base β on the alphabet A′

β
= {0, . . . , �β�, �β� + 1} is realisable by

a finite transducer, then normalisation in base β is realisable by a finite
transducer on any alphabet.

In view of Example 2.3.37, we set the following conjecture.

Conjecture 2.3.41 If the zero automaton Zβ,d is finite for d = �β� then
β is a Pisot number.

2.3.3 U-systems

We now consider another generalisation of the integer base numeration sys-
tems which only allows to represent natural integers. The base is replaced
by a basis which is an infinite sequence of positive integers (also called scale)
and which plays the role of the sequence of the powers of the integer base.
The classical example is the Fibonacci numeration system. These systems
have been first defined and studied in full generality in (Fraenkel 1985).

We shall see that, under mild and natural hypotheses, the basis is associ-
ated with a real number β, as the Fibonacci numeration system is associated
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with the Golden Ratio. Then, many of the properties established for nu-
meration in base β transfer to the U -system, but the situation is far more
intricate. In fact, even in the simple case where the β is an integer, the
language of the numeration system may or may not be a rational language
according to the initial conditions (see Example 2.3.58).

2.3.3.1 Rationality of U -expansions

A basis is a strictly increasing sequence of integers U = (un)n≥0 with u0 = 1.
A representation in the system U — or a U -representation — of a non-
negative integer N is a finite sequence of integers (di)k≥i≥0 such that

N =
k∑

i=0

diui.

Such a representation will be written dk · · ·d0, most significant digit first.
Among all possible U -representations of a given non-negative integer N ,

one is distinguished and called the U -expansion of N . It is also called the
greedy U -representation, since it can be obtained by the following greedy
algorithm: given integers m and p let us denote by q(m, p) and r(m, p)
the quotient and the remainder of the Euclidean division of m by p. Let
k ≥ 0 such that uk ≤ N < uk+1 and let dk = q(N, uk) and rk = r(N, uk),
and, for i = k − 1, . . . , 0, di = q(ri+1, ui) and ri = r(ri+1, ui). Then
N = dkuk + · · ·+ d0u0. The U -expansion of N is denoted by 〈N〉U .

By convention the U -expansion of 0 is the empty word ε. Under the
hypothesis that the ratio un+1/un is bounded by a constant as n tends to
infinity, the digits of the U -expansion of any positive integer N are bounded
and contained in a canonical finite alphabet AU associated with U .

Example 2.3.42 Let F = (Fn)n≥0 be the sequence of Fibonacci numbers,
F = {1, 2, 3, 5, . . .}. The canonical alphabet is equal to {0, 1}. The F -
expansion of the number 11 is 10100, another F -representation is 10011.

The U -expansions are characterised by the following.

Lemma 2.3.43 The word dk · · · d0, where each di, for k ≥ i ≥ 0, is a non-
negative integer and dk �= 0, is the U -expansion of some positive integer if,
and only if, for each i, diui + · · ·+ d0u0 < ui+1.

Proposition 2.3.44 The U -expansion of an integer is the greatest in the
radix order of all the U -representations of that integer.

Proof Let v = dk · · · d0 be the greedy U -representation of N , and let w =
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wj · · ·w0 be another representation. Since uk ≤ N < uk+1, then k ≥ j. If
k > j, then v � w. If k = j, suppose v ≺ w. Thus there exist i, k ≥ i ≥ 0,
such that di < wi and dk · · · di+1 = wk · · ·wi+1. Hence diui + · · ·+ d0u0 =
wiui + · · ·+w0u0, but diui + · · ·+d0u0 ≤ (wi−1)ui +di−1ui−1 + · · ·+d0u0,
so ui +wi−1ui−1 + · · ·+w0u0 ≤ di−1ui−1 + · · ·+d0u0 < ui since v is greedy,
a contradiction.

As for the beta-expansions, the order between integers is given by the
radix order on their U -expansions.

Proposition 2.3.45 Let M and N be two positive integers. Then M < N

if, and only if, 〈M〉U ≺ 〈N〉U .

The set of U -expansions of all the non-negative integers is denoted
by L(U).

Example 2.3.46 Let F be the sequence of Fibonacci numbers. Then L(F )
is the set of words without the factor 11, and not beginning with a 0:

L(F ) = 1{0, 1}∗ \ {0, 1}∗11{0, 1}∗ ∪ {ε}.

When the sequence U satisfies a linear recurrence with integral coeffi-
cients, that is, when U is a linear recurrent sequence, we say that U defines
a linear numeration system or that U is a linear recurrent basis.

Proposition 2.3.47 (Shallit 1994) Let U be a basis. If L(U) is a ratio-
nal language, then U is a linear recurrent sequence.

Proof (Loraud 1995) Let �n (resp. kn) be the number of words of length n
in L(U) (resp. in 0∗L(U)). Since a word in L(U) does not begin with
a 0, we have kn = �0 + �1 + · · · + �n for every n and then kn = un by
Lemma 2.3.43. If L(U) is a rational language, so is 0∗L(U) and U = (un)n≥0

is a linear recurrent sequence, a classical result in automata theory (see
Theorem 2.6.2).

The results on β-expansions transfer to the U -expansions when U satisfies
some conditions. The results below were established in (Hollander 1998).
A linear recurrent basis U = (un)n≥0 is said to satisfy the dominant root
condition if limn→∞ un+1/un = β for some β > 1.

Lemma 2.3.48 Let U be a linear recurrent basis, with characteristic poly-
nomial CU (X). Assume that CU (X) has a unique root β, possibly with
multiplicity, of maximum modulus, and assume that β is real. Then U

satisfies the dominant root condition for β.
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For a language L, we denote by Maxlg (L) the set of words of L which
have no greater word of the same length in L in the radix order. It is known
that if L is rational, so is Maxlg (L) (Proposition 2.6.4). The following is
also a classical result of automata theory (see Proposition 2.6.3).

Lemma 2.3.49 Let M be a language which contains exactly one word of
every length. If M is rational, then there exist an integer p, a finite family
of words xi, yi, and zi, with |yi| = p, and a finite set of words M0 such that

M =
i=p⋃
i=1

xiy
∗
i zi ∪M0 (2.13)

where the union is disjoint.

For every n in N, let mn be the word of length n of L(U) which is max-
imum in the radix order : mn = 〈un − 1〉U , and Maxlg (L(U)) = ∪n≥0mn.
Note that the empty word ε = m0 belongs to M . The following result is
similar to the lexicographical characterisation of the β-shift given by Parry,
see Theorem 2.3.11.

Proposition 2.3.50 The following holds:

L(U) = ∪n≥0{v ∈ An
U | every suffix of length i ≤ n of v is � mi} .

Using the previous result, one can construct a finite automaton similar
to the one defined for the β-shift.

Proposition 2.3.51 If Maxlg (L(U)) is rational, so is L(U).

The following lemma shows that the β-expansion of 1 governs the U -
expansions when β is the dominant root of U .

Lemma 2.3.52 Suppose that U has a dominant root β, and let dβ(1) =
(tn)n≥1. Then for each j there exist n and a word wj of length n− j such
that mn = 〈un − 1〉U = t1 · · · tjwj .

Proposition 2.3.53 (Hollander 1998) Let U be a linear recurrent basis
with dominant root β. If L(U) is rational then β is a Parry number.

Proof [Sketch] If L(U) is rational, then Maxlg (L(U)) is of the form (2.13).
By Lemma 2.3.52, for each j, there exist an n and a word wj of length n− j
such that mn = t1 · · · tjwj . Combining the two properties, it follows that
dβ(1) must be finite or eventually periodic.
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From now on β is a Parry number. In this case, there is a polynomial
satisfied by β which arises from the greedy expansion of 1. If dβ(1) is finite,
dβ(1) = t1 · · · tm, then set

Gβ(X) = Xm −
m∑

i=1

tiX
m−i.

If dβ(1) is infinite eventually periodic, dβ(1) = t1 · · · tm(tm+1 · · · tm+p)ω ,
with m and p minimal, then set

Gβ(X) = Xm+p −
m+p∑
i=1

tiX
m+p−i −Xm +

m∑
i=1

tiX
m−i.

Such a polynomial is called the canonical beta-polynomial for β. Note that
in general Gβ is not equal to the minimal polynomial of β but is a multiple
of it.

Example 2.3.54 Let η be the root > 1 of the polynomial Mη = X3−X−
1. This number is the smallest Pisot number. Since dη(1) = 10001, the
canonical beta-polynomial is Gη = X5 −X4 − 1.

We will need a slightly more general definition. If dβ(1) is infinite even-
tually periodic, dβ(1) = t1 · · · tm(tm+1 · · · tm+p)ω, with m and p minimal,
set r = p. If dβ(1) is finite, dβ(1) = t1 · · · tm, then set r = m. An extended
beta-polynomial is a polynomial of the form

Hβ(X) = Gβ(X)(1 +Xr + · · ·+Xrk)Xn

for k in N and n in N.
When dβ(1) is infinite an extended beta-polynomial corresponds to taking

m and p not minimal. When dβ(1) is finite an extended beta-polynomial
corresponds to taking improper expansions of 1 of the form (t1 · · · tm−1(tm−
1))kt1 · · · tm, and to any writing of d∗

β
(1) as uvω.

Example 2.3.55 The canonical beta-polynomial for the Golden Ratio is
Gϕ = X2 −X − 1. The polynomial X4 −X3 −X − 1 = Gϕ(1 +X2) is an
extended beta-polynomial corresponding to the improper expansion 1011
of 1.

Lemma 2.3.56 Let Hβ(X) be an extended polynomial for β > 1, and as-
sume that Hβ(X) = CU (X). Then U satisfies the dominant root condition
for β, and β is a simple root of Hβ(X).

The following theorem shows that the situation for linear numeration
systems is much more complicated than for the β-shift.
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Theorem 2.3.57 (Hollander 1998) Let U be a linear recurrent basis
whose dominant root β is a Parry number.

• If dβ(1) is infinite eventually periodic, then L(U) is rational if, and only
if, U satisfies an extended beta-polynomial for β.

• If dβ(1) is finite, of length m, then: if U satisfies an extended beta-
polynomial for β then L(U) is rational; and conversely if L(U) is rational,
then U satisfies either an extended beta-polynomial for β, Hβ(X), or a
polynomial of the form (Xm − 1)Hβ(X).

In the finite case, rationality indeed depends on initial conditions.

Example 2.3.58 (Hollander 1998) Take un = 4un−1 − 3un−2 with
CU (X) = (X − 1)(X − 3). The dominant root is β = 3.
Take u0 = 1 and u1 = 4. Then un = 3un−1 + 1, and so the language of
maximal words is M = 30∗, and L(U) is rational.
Take u0 = 1 and u1 = 2. Then un = 3un−1 − 1 = (3n + 1)/2, and
AU = {0, 1, 2}. Let k be the largest integer such that mn begins with k

digits 2. Thus k is the largest integer such that

3n + 1
2

> 2(
3n−1 + 1

2
+ · · ·+ 3n−k + 1

2
)

that is, 3n−k + 1 > 2n, and 3n−k + 1 + 2(n − k) > 2n. As n → ∞, both
k→∞ and n− k →∞, and L(U) is not rational.

We now define a numeration system canonically associated with a real
number β in a way that gives the numeration system the same dynamical
properties as the β-shift.

Definition 2.3.59 The numeration system associated with β is defined by
the basis Uβ = (un)n≥0 as follows:
If dβ(1) is finite, dβ(1) = t1 · · · tm, set

un = t1un−1 + · · ·+ tmun−m for n ≥ m,

u0 = 1, and for 1 ≤ i ≤ m− 1, ui = t1ui−1 + · · ·+ tiu0 + 1.

If dβ(1) = (ti)i≥1 is infinite, set

un = t1un−1 + t2un−2 + · · ·+ tnu0 + 1, for n ≥ 1, u0 = 1.

If dβ(1) is finite or eventually periodic, the sequence Uβ is linearly recur-
rent, and its characteristic polynomial is thus the canonical beta-polynomial
of β.
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Example 2.3.60 The linear numeration system associated with the
Golden Ratio is the Fibonacci numeration system.

Proposition 2.3.61 (Bertrand-Mathis 1989) Let β > 1 be a real
number. Then L(Uβ) = L(Sβ) .

Example 2.3.62 Take the Pisot number θ = 3+
√

5
2 , then dθ(1) = 21ω,

and Uθ = {1, 3, 8, 21, 55, 144, 377, . . .} is the sequence of Fibonacci numbers
of even index. The beta-polynomial Gθ(X) = X2 − 3X + 1 is equal to
the minimal polynomial of θ. The set L(Uθ) is recognisable by the finite
automaton of Figure 2.13 above, which recognises the θ-shift.

On the other hand, consider the linear recurrent basis Rθ =
{1, 2, 6, 17, 46, 122, 321, . . .} defined by rn = 4rn−1−4rn−2 +rn−3 for n ≥ 3,
r0 = 1, r1 = 2, r2 = 6. Then θ is the dominant root of Rθ; the characteristic
polynomial of Rθ is equal to (X−1)(X2−3X+1). By showing that Rθ does
not satisfy an extended beta-polynomial, Theorem 2.3.57 implies that the
set L(Rθ) is not recognisable by a finite automaton. A direct combinatorial
proof can be found in (Frougny 2002).

2.3.3.2 Normalisation

Let C be an arbitrary alphabet of digits. The normalisation νU,C in basis
U on C is the partial function which maps any U -representation on C of
any positive integer n onto the U -expansion of n:

νU,C : C∗ → AU
∗ ck · · · c0 �→ 〈

k∑
i=0

ciui〉U .

As for beta-expansions, one can define the zero automaton and the con-
verter for a U -system. Let us say that U is a Pisot basis if U is a linear
recurrent basis whose characteristic polynomial is the minimal polynomial
of a Pisot number. It follows from Theorem 2.3.57 that if U is a Pisot basis,
then L(U) is rational.

Proposition 2.3.63 Let U be a Pisot basis. Then, for any alphabet of
digits, the zero automaton and the converter in the system U are finite.

Example 2.3.64 The zero automaton in the Fibonacci numeration system
and for the alphabet {−1, 0, 1} is the automaton of Figure 2.15, without
the states labelled ϕ and −ϕ, and with 0 as unique final state.

By a similar construction to the one exposed in Section 2.3.2.3, we obtain
the following result.
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Proposition 2.3.65 (Frougny and Solomyak 1996) Let U be a Pisot
basis. For any digit alphabet C, the normalisation νU,C is realisable by a
finite letter-to-letter transducer.

Example 2.3.66 Normalisation on {0, 1} in the Fibonacci numeration sys-
tem consists in replacing every factor 011 by 100. The finite transducer
realising normalisation is shown in Figure 2.16. For sake of simplicity, this
normaliser does not accept words which begin with 11.

1|1

0|0

0|11|0

0|0

0|0, 1|1

1|0

Fig. 2.16. Finite normaliser on {0, 1} for the Fibonacci numeration system.

2.3.3.3 Successor function

The successor function is usually and canonically defined on N: n �→ n+1 .
What we call ‘successor function’ here is of course the same function, but
lifted at the level of expansions in the system we consider. Successor func-
tion is a special case of addition and thus of normalisation. When the latter
is a rational function, or even realised by a letter-to-letter (right sequential)
transducer, so is the successor function, without any ado. But this succes-
sor function is such a special case that we can give statements under weaker
hypotheses than the ones that assure the rationality of normalisation.

Let U be a basis and, as above, L = L(U) the set of U -expansions. The
successor function in the basis U is thus the function SuccL which maps
every word of L onto its successor in L in the radix order. If L is a rational
language, it is thus known that SuccL is a synchronous relation, even a (left
and right) letter-to-letter rational relation, even a piecewise right sequen-
tial function (see Proposition 2.6.7, Corollary 2.6.11, Proposition 2.6.14 in
Section 2.6). From Proposition 2.3.61 above, we then have the following
consequence of these results.

Proposition 2.3.67 Let β be a Parry number and Uβ the linear numer-
ation system associated with β. The successor function in the numeration
system Uβ is realisable by a letter-to-letter transducer.

In general, the successor function in a linear numeration system is not

co-sequential, as shown by the next example.
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Example 2.3.68 Take the Pisot number θ = 3+
√

5
2 , see Example 2.3.62.

By the foregoing, L(Uθ) is rational, and SuccL(Uθ) is realisable by a finite
transducer. For every n, the words vn = 021n and wn = 01n+1 are in L(Uθ).
We have SuccL(Uθ)(vn) = 10n+1 and SuccL(Uθ)(wn) = 01n2.

The suffix distance ds (x, y) of two words x and y is

ds (x, y) = |x|+ |y| − 2 |x ∧s y|

where x∧sy is the longest common suffix of x and y. It comes ds (vn, wn) =
4 and ds

(
SuccL(Uθ)(vn), SuccL(Uθ)(wn)

)
= 2(n + 2) . By the character-

isation of co-sequential functions due to Choffrut (see Theorem 2.6.13),
SuccL(Uθ)is not co-sequential.

The conditions under which the successor function in a linear numeration
system is co-sequential are indeed completely determined.

Theorem 2.3.69 (Frougny 1997) Let U be a numeration system such
that L(U) is rational. The successor function in the system U is co-
sequential if, and only if, the set Maxlg (L(U)) is of the form

Maxlg (L(U)) =
i=p⋃
i=1

y∗i zi ∪M0 (2.14)

where M0 is finite, |yi| = p and the union is disjoint.

In the case of linear numeration system with dominant root, the previous
result can be refined.

Theorem 2.3.70 Let U be a linear recurrent basis whose dominant root
β is a Parry number. Then the successor function in the system U is co-
sequential if, and only if, the following conditions hold:
(i) β is a simple Parry number;
(ii) U satisfies the canonical beta-polynomial for β.

Example 2.3.71 The successor function in the Fibonacci numeration sys-
tem is realised by a finite right sequential transducer, see Figure 2.17.

2.3.4 Base changing

As far as comparison, or conversion, of the expansions of numbers in dif-
ferent real bases is concerned, the situation is very similar to the one with
integer bases. In the background, and for the negative part, stand the gen-
eralisations of Cobham’s Theorem — we choose the one due to Bès. If U
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0′ 0 1 ε1′

ε |1ε |1

1 |0

0 |ε

0 |ε

1 |00

0 |01

0 |0
1 |1

0 |0

Fig. 2.17. Finite right sequential transducer for the successor function in the
Fibonacci numeration system.

is a basis, a set of natural integers is said to be U -recognisable if the set of
the U -expansions of its elements is a rational set.

Theorem 2.3.72 (Bès 2000) Let U and V be two Pisot basis, associated
with two multiplicatively independent Pisot numbers. A set X of positive
integers is both U - and V -recognisable if, and only if, it is recognisable.

From this result follows that the conversion between the expansions in
two such linear numeration systems U and V cannot be realised by a finite
transducer.

2.3.4.1 Multiplicatively dependent bases

We now consider the case where the bases β and γ are multiplicatively de-
pendent. When β and γ are integers, then the conversion from base β

to base γ is realisable by a finite right sequential transducer (Proposi-
tion 2.2.17).

Proposition 2.3.73 Let β and γ be two multiplicatively dependent Pisot
numbers. The conversion from base γ to base β is realisable by a finite
transducer.

Proof Set δ = βk = γ� and let (xi)i≥1 = dδ(x) where x is in [0, 1). Then
0k−1x10k−1x20k−1 · · · is a β-representation of x on the alphabet Aδ. Since
β is Pisot, normalisation in base β on the alphabet Aδ is realisable by a
finite transducer. Similarly the conversion from base δ to base γ is realisable
by a finite transducer. By composition and inversion of relations realised
by finite transducers, the result follows (see Section 2.6).

Now, as in Theorem 2.3.72, we consider linear numeration systems. We
first suppose that the two systems have the same characteristic polynomial.

Proposition 2.3.74 Let U and V be two Pisot basis, associated with the
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same Pisot number, but defined by different initial conditions. The con-
version from a V -representation of a positive integer to the U -expansion of
that integer is computable by a finite transducer.

Proof By Proposition 2.3.65 normalisation in the system U is computable
by a finite transducer on any alphabet. Suppose that Mβ, the minimal
polynomial of β, has degree g. The family {un, un+1, . . . , un+g−1 | n ≥ 0}
is free, because its annihilator polynomial is Mβ. Since U and V have the
same characteristic polynomial, it is known from standard results of linear
algebra that there exist rational constants λi such that, for each n ≥ 0,
vn = λ1un+g−1 + · · · + λgun. One can assume that the λi’s are all of the
form pi/q where the pi’s belong to Z and q belongs to N, q �= 0. Let N be
a positive integer and consider a V -representation cj · · · c0 of N , where the
ci’s are in an alphabet of digits B ⊇ AV . Then qN = cjqvj + · · · + c0qv0.
Since for n ≥ 0, qvn = p1un+g−1 + · · ·+pgun, we get that qN is of the form
qN = dj+g−1uj+g−1 + · · ·+ d0u0. Since each digit di, for 0 ≤ i ≤ j + g− 1,
is a linear combination of q, p1, . . . , pg, and the ci’s, we get that di is an
element of a finite alphabet of digits D ⊃ AU . By assumption, νU,D is
computable by a finite automaton. It remains to show that the function
which maps νU,D(dj+g−1 · · · d0) =< qN >U onto < N >U is computable by
a finite automaton, and this is due to the fact that it is the inverse of the
multiplication by the natural q, which is computable by a finite automaton
in the system U .

Definition 2.3.75 Let β be a Pisot number of degree g, and denote
β1 = β, . . . , βg the roots of the minimal polynomial Mβ. The Lucas-like
numeration system associated with β is the system defined by the basis
Vβ = (vn)n≥0 where

v0 = 1, and for n ≥ 1, vn = βn
1 + · · ·+ βn

g .

The characteristic polynomial of Vβ is equal to Mβ .
This terminology comes from the fact that for the Golden Ratio ϕ, Vϕ is

the sequence of Lucas numbers. On the other hand, the numeration system
Uβ associated with β in Definition 2.3.59 is a Fibonacci-like numeration
system, since, for the Golden Ratio ϕ, Uϕ is the sequence of Fibonacci
numbers.

Proposition 2.3.76 Let β be a Pisot number, and let δ = βk. The con-
version from the Lucas-like numeration system Vδ to the the Lucas-like nu-
meration system Vβ is realisable by a finite transducer.

Not to be circulated c©Cambridge University Press 2010



46 Ch. Frougny, J. Sakarovitch

Proof The conjugates of δ are of the form δi = βk
i , for 2 ≤ i ≤ g. Set

Vδ = (wn)n≥0 with wn = δn
1 + · · · + δn

m for n ≥ 1. For n ≥ 1, wn = vkn.
Thus any Vδ-representation of an integer N of the form dj · · · d0 gives a
Vβ-representation of N of the form dj0k−1dj−10k−1 · · · d10k−1d0. Since the
normalisation in the system Vβ is computable by a finite transducer on any
alphabet by Proposition 2.3.65, the result follows.

Theorem 2.3.77 (Frougny 2002) Let U and V be two Pisot basis, as-
sociated with two multiplicatively dependent Pisot numbers. Then the con-
version from a V -representation of a positive integer to the U -expansion of
that integer is computable by a finite transducer.

Proof Set δ = βk = γ�. As in Proposition 2.3.76, the conversion from the
Lucas-like numeration system Vδ to the the Lucas-like numeration system
Vγ is realisable by a finite transducer. By Proposition 2.3.74, the conversion
from V to Vγ and the conversion from Vβ to U are realisable by a finite
transducer, and the result follows.

Corollary 2.3.78 Let U and V be two Pisot basis, associated with two
multiplicatively dependent Pisot numbers. Then the U -recognisable sets and
V -recognisable sets of natural integers coincide.

2.3.4.2 Base β and Uβ numeration system

When β is an integer, β-expansions and Uβ-expansions of the positive in-
tegers are the same. There is a particular case of Pisot numbers for which
the conversion from base β to the Uβ numeration system is realisable by
means of a finite transducer.

Let us take the example of the Golden Ratio ϕ and the Fibonacci nu-
meration system. By Theorem 2.3.25, ϕ satisfies the (F) Property, so the
greedy ϕ-expansion of every positive integer is finite. In this section we
want to answer the following questions. Does there exist a characterisation
of the greedy ϕ-expansions of the positive integers? Is there any relation
between the greedy ϕ-expansion of a positive integer and its greedy repre-
sentation in the Fibonacci system? Table 2.1 below gives the ϕ-expansion
of the 10 first integers together with their Fibonacci greedy representation.

In fact the results are not only valid for the Golden Ratio, but for the
larger class of quadratic Pisot units. A quadratic Pisot unit is an algebraic
number whose minimal polynomial is of the form X2−rX−1 with r ≥ 1 or
X2−rX+1 with r ≥ 3. By Corollary 2.3.28, every quadratic Pisot number
satisfies the (PF) Property, and thus the expansion of every positive integer
is finite. If the β-expansion of a positive integer n is of the form u.v, by
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N Fibonacci representations ϕ-expansions Folded ϕ-expansions

1 1 1. 1
0

2 10 10.01 1
1

0
0

3 100 100.01 1
0

0
1

0
0

4 101 101.01 1
0

0
1

1
0

5 1000 1000.1001 1
1

0
0

0
0

0
1

6 1001 1010.0001 1
1

0
0

1
0

0
0

7 1010 10000.0001 1
0

0
1

0
0

0
0

0
0

8 10000 10001.0001 1
0

0
1

0
0

0
0

1
0

9 10001 10010.0101 1
0

0
1

0
0

1
1

0
0

10 10010 10100.0101 1
0

0
1

1
0

0
1

0
0

Table 2.1. Fibonacci expansions, ϕ-expansions, and folded ϕ-expansions of
the 10 first integers.

padding the shortest word by 0’s one can suppose that they have the same
length. The folded β-expansion of n is the couple (u

ev ), where ṽ is the mirror
image of v.

Theorem 2.3.79 (Frougny and Sakarovitch 1999) Let β be a
quadratic Pisot unit. There exists a letter-to-letter finite transducer
that maps the Uβ-representation of any positive integer onto its folded
β-expansion.

Since the image of a function computable by a finite letter-to-letter
transducer is a rational language, it then follows immediately from The-
orem 2.3.79 that we have:

Corollary 2.3.80 Let β be a quadratic Pisot unit. The set of folded β-
expansions of all the non-negative integers is a rational language.

By a result of (Rosenberg 1967) follows thus that the set of β-expansions
of all the non-negative integers is a linear context-free language. The fol-
lowing result shows that only quadratic Pisot units enjoy this property.
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Theorem 2.3.81 (Frougny and Solomyak 1999) Let β > 1 be a non-
integral real number such that the β-expansion of every non-negative integer
is finite. Let Rβ ⊂ A∗

β.A
∗
β be the set of β-expansions of all the non-negative

integers. If Rβ is a context-free language, then β must be a quadratic Pisot
unit.

2.4 Canonical numeration systems

In this section we present another generalisation of the integer base num-
ber system, in which the expansion of a number is given by a right-to-
left algorithm. The canonical numeration systems have been extensively
studied, and we refer the reader to (Scheicher and Thuswaldner 2004),
(Akiyama and Rao 2005), (Brunotte, Huszti, and Pethő 2006) for some re-
cent contributions, and (Barat, Berthé, Liardet, and Thuswaldner 2006)
for a survey.

We also present briefly a new concept, the shift radix systems, which is a
generalisation of both the Pisot base and the canonical numeration systems.

2.4.1 Canonical numeration systems in algebraic number fields

The elements of this section are taken in particular from (Gilbert 1981,
Gilbert 1991, Kátai and Kovács 1981)).

Let β be an algebraic integer of modulus > 1, and let A be a finite set of
elements of Z[β] containing zero.

Definition 2.4.1 The pair (β,A) is a canonical numeration system (CNS
for short) if every element z of Z[β] has a unique integer representation
dk · · · d0 with dj in A, dk �= 0, that we denote 〈z〉β = dk · · · d0, and such
that z = πβ(dk · · ·d0) =

∑k
j=0 djβ

j .

Example 2.4.2 • The negative integer base β = −b, with b ≥ 2, forms a
CNS with the alphabet {0, . . . , b− 1}, see (Grünwald 1885).

• Base β = 3 with the alphabet {−1, 0, 1} forms a CNS, see (Knuth 1998).
• The Penney numeration system with base β = −1± i and digit set {0, 1}

forms a CNS, see (Penney 1964).

Let Mβ(X) = Xg + bg−1X
g−1 + · · · + b0 be the minimal polynomial of

β. The norm of β is N(β) = |b0|. A set R ⊂ Z[β] is a complete residue
system for Z[β] modulo β if every element of Z[β] is congruent modulo β to
a unique element of R.

It is classical (Theorem of Sylvester) that a complete residue system of
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elements of Z[β] modulo β contains N(β) elements, for instance the set
Aβ = {0, . . . , N(β)− 1}.

Proposition 2.4.3 Suppose that every element of Z[β] has a finite integer
representation in the CNS (β,A). Then this representation is unique if, and
only if, A is a complete residue system for Z[β] modulo β, that contains zero.

Proof Suppose that the representation of z ∈ Z[β] is dk · · · d0. Then z ∼ d0

(mod β), thus A must contain a complete residue system modulo β.
Now suppose that two digits c and d of A are congruent modulo β. Then

c− d = eβ for some e in Z[β]. Let 〈e〉β = ek · · · e0. Then c = eβ + d, so c
has two representations, c itself, and ek · · · e0d.

Conversely, suppose that there exists z ∈ Z[β] with two different rep-
resentations, dk · · · d0 and c� · · · c0. One can suppose that k ≥ �, and set
cj = 0 for �+1 ≤ j ≤ k. Then the polynomial (dk − ck)Xk + · · ·+(d0− c0)
vanishes at X = β, and it is thus divisible by the minimal polynomial
Mβ(X). Contradiction, since |d0 − c0| < N(β).

Given β and A a complete residue system, a word dk · · ·d0 with dj in
A is a representation of z ∈ Z[β] if d0 ∼ z (mod β) and dk · · · d1 is the
representation of (z − d0)/β. Thus we define

Φβ : Z[β] → Z[β] (2.15)

z �→ z − d
β

with d ∼ z (mod β).

The digits dj in the representation of z are given by dj = Φj
β(z) (mod β).

Thus the representation of z in the system (β,A) is finite if, and only if,
the iterates Φj

β(z), j ≥ 0, eventually reach 0.
Remark that all words of A∗ are admissible.

Proposition 2.4.4 If (β,A) is a canonical numeration system then
(i) β and all its conjugates have moduli greater than 1
(ii) β has no positive real conjugate.

Proof (i) Suppose that there is a conjugate βi with |βi| < 1. Let z be
in Z[β] with 〈z〉β = dk · · ·d0, dj in A. Let zi =

∑k
j=0 djβ

j
i . Set mA =

max(|a|, a ∈ A). Then |zi| < mA/(1 − |βi|), and so there exist elements in
Z[β] with no representation in (β,A).
(ii) Let βi be a conjugate of β which is real and positive. Suppose −1 could
be represented in the system as −1 =

∑k
j=0 djβ

j . Then −1 =
∑k

j=0 diβ
j
i ,

which is impossible.
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Note that (ii) implies that if (β,A) is a CNS then the constant term of
the minimal polynomial is positive.

An element z in Q(β) has a representation 〈z〉β = dk · · · d0.d−1d−2 · · · in
the CNS (β,A) if z =

∑k
i=−∞ diβ

i with di in A. The following result is
similar to the results in integer and non-integer real base, see (Gilbert 1981,
Gilbert 1991).

Proposition 2.4.5 If (β,A) is a canonical numeration system then every
element of the field Q(β) has an eventually periodic representation in (β,A).

2.4.2 Normalisation in canonical numeration systems

The results presented in this section primarily appeared in
(Grabner, Kirschenhofer, and Prodinger 1998), (Thuswaldner 1998),
(Safer 1998), (Scheicher and Thuswaldner 2004).

Let (β,A) be a canonical numeration system. Let C ⊃ A be a finite
alphabet of digits in Z[β]. The normalization on C in the system (β,A) is
the function

νβ,C : C∗ −→ A∗ ck · · · c0 �−→ 〈
k∑

j=0

cjβ
j〉β .

As in the previous sections, we define the zero automaton, on a finite sym-
metric alphabet D of digits in Z[β], that contains A. The zero automaton
Zβ,D on D is defined as follows: Zβ,D = ( Z[β], D,E, {0}, {0} ) where the
transitions in E are defined by

∀s, t ∈ Z[β], ∀a ∈ D, s a−−→
Zβ,D

t if, and only if, t = β s+ a . (2.16)

This automaton accepts the writings of 0 in base β on the alphabet D. Let
mD = max{|a| | a ∈ D} and let QD = {s ∈ Z[β] | |s| ≤ mD

|β|−1}.

Proposition 2.4.6 The trim part of Zβ,D contains only states belonging
to QD.

Proof As D contains A and is symmetrical, every element of Z[β] is acces-
sible in Zβ,D.

Suppose that ek · · · e0 is a word of D∗ such that
∑k

j=0 ejβ
j = 0. Then,

for 1 ≤ j ≤ k, sj = βj−1ek + · · ·+ ek−j+1 = −β−j+1(βj−2ej−2 + · · ·+ e0),
thus |sj | < mD

|β|−1 , and ek · · · e0 is the label of a path

0 ek−→ s1
ek−1−→ · · · sk

e0−→ sk+1 = 0
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in Zβ,D with all the states in QD.

Lemma 2.4.7 If β and all its conjugates have moduli greater than 1 then
for every finite alphabet D the zero automaton Zβ,D is finite.

Proof Recall that the norm defined on Z[β] � Z[X ]/(Mβ) is defined by
||P (X)|| = max1≤i≤g |P (βi)|, see (2.12). Let s = s(β) be in QD. Then for
1 ≤ i ≤ g, |s(βi)| < mD

|βi|−1 . Since the elements of QD are bounded in norm
in the discrete lattice Z[β], QD is finite and the automaton Zβ,D is finite.

We now consider the normalisation from an alphabet C in the CNS (β,A).
Let D be a symmetrized alphabet of digits in Z[β] containing the set {c−a |
c ∈ C, a ∈ A}. As explained in the integer base case, one can associate with
the zero automaton Zβ,D a converter Cβ(C×A). The transitions are defined
by

s
c|a−−−→

Cβ(C×A)
t if, and only if, s

c−a−−−−→
Zβ,D

t .

Lemma 2.4.8 If A is a complete residue system modulo β then the con-
verter Cβ(C×A) is input co-deterministic.

Proof By definition there is an edge s
c|a−→ t in Cβ(C×A) if, and only

if, βs + c = t + a. If there is another edge s′
c|a′
−→ t in Cβ(C×A), then

β(s− s′) = a−a′, which is impossible since A is a complete residue system.

It is thus more natural to define a right sequential letter-to-letter trans-
ducer, the normaliser Nβ(C), with

t
c|a−−−→

Nβ(C)
s if, and only if, (−s) c|a−−−→

Cβ(C×A)
(−t) .

Let ck · · · c0 ∈ C∗. Setting s0 = 0, there is a unique path in Nβ(C)

sk+1
ck|dk←− sk

ck−1|dk−1←− sk−1 · · ·
c1|d1←− s1

c0|d0←− s0

and
k∑

j=0

cjβ
j = (

k∑
j=0

djβ
j) + sk+1β

k+1. (2.17)

Not to be circulated c©Cambridge University Press 2010



52 Ch. Frougny, J. Sakarovitch

Remark 2.4.9 If any element of QD has a finite integer representation in
the system (β,A) (with A a complete residue system modulo β) then the
normaliser Nβ(C) converts any element z in Z[β] with a representation in
C∗ into its (β,A) integer representation.

Proof If z =
∑k

j=0 cjβ
j , then there exists a path in Nβ(C) satisfying (2.17),

and 〈z〉β = 〈sk+1〉βdk · · · d0.

Remark 2.4.10 The normaliser Nβ(C) can be used as an algorithm to
represent any z ∈ Z[β] in the system (β,A) (with A a complete residue
system modulo β). In fact, given z, there exists a C such that z belongs to
C. Feed the transducer with z as input. There exists a unique path

Φk+1
β (z)

0|dk←− Φk
β(z)

0|dk−1←− Φk−1
β (z) · · · 0|d1←− Φβ(z)

z|d0←− 0

and 〈z〉β = dk · · · d0 if, and only if, Φk+1
β (z) = 0.

From Proposition 2.4.4, Lemma 2.4.7 and Lemma 2.4.8 follows the fol-
lowing result.

Proposition 2.4.11 If the system (β,A) is a canonical numeration system
then the right sequential normaliser Nβ(C) is finite for every alphabet C.

2.4.3 Bases for canonical numeration systems

In general, it is difficult to determine which numbers are suitable bases for
a CNS. However, several results are known. In the particular case where
β is a Gaussian integer and A is an alphabet of natural integers there is a
nice characterisation due to (Kátai and Szabó 1975).

Theorem 2.4.12 Let β be a Gaussian integer of norm N , and let A =
{0, . . . , N − 1}. Then (β,A) is a canonical numeration system for the com-
plex numbers if, and only if, β = −n± i, for some n ≥ 1 (and N = n2).

It is noteworthy that any complex number has a representation — not
necessarily unique — in this system.

Quadratic CNS have been characterised in (Kátai and Kovács 1981)
and in (Gilbert 1981). In (Brunotte 2001, Brunotte 2002) are charac-
terised all CNS whose bases are roots of trinomials. In the general case
(Akiyama and Pethő 2002) have given an algorithm to decide whether a
number β is the base of a CNS.
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Theorem 2.4.13 Let β be an algebraic integer with minimal polynomial
Mβ(X) = Xg + bg−1X

g−1 + · · · + b0. If one of the following properties is
satisfied then β is a base for a CNS:

(i) b0 ≥ 2 and b0 ≥ b1 ≥ · · · ≥ bg−1 ≥ 1
(ii) b2 ≥ 0, . . . , bg−1 ≥ 0, 1 +

∑g−1
i=0 bi ≥ 0 and b0 > 1 +

∑g−1
i=1 |bi|.

Part (i) is due to (Kovács 1981), and Part (ii) has been obtained by
(Scheicher and Thuswaldner 2004) using automata.

2.4.4 Shift radix systems

The concept of shift radix system was introduced
in (Akiyama, Borbély, Brunotte, Pethő, and Thuswaldner 2005) to unify
canonical numeration systems and β-expansions. Although these two
numeration systems are quite different, they are close relatively to some
finiteness properties, which means that all numbers of a certain set admit
finite expansions.

Definition 2.4.14 Let r = (r1, . . . , rd) be an element of Rd. Define a
mapping µr : Zd → Zd by

µr((z1, . . . , zd)) = (z2, . . . , zd,−�r1z1 + · · ·+ rdzd�).

We say that µr has the finiteness property if for every z in Zd there exists
a k such that µk

r (z) = 0. In that case (Z, µr) is called a shift radix system
or SRS.

2.4.4.1 Connection with Pisot numbers and the (F) property

In (Akiyama and Scheicher 2005) it is indicated that the origin of SRS can
be found in (Hollander 1996).

Theorem 2.4.15 (Akiyama, Borbély, Brunotte, Pethő, and
Thuswaldner 2005) Let β > 1 be an algebraic integer with minimal poly-
nomial

Mβ(X) = Xg + bg−1X
g−1 + · · ·+ b0 ∈ Z[X ].

Write Mβ(X) = (X − β)(Xg−1 + rg−1X
g−2 + · · · + r1) and let r =

(r1, . . . , rg−1). Then β satisfies the (F) property if, and only if, r gives
a (g − 1)-dimensional SRS.

Proof It is easy to see that β satisfies the (F) property if, and only if,
each element of Z[β] ∩ [0,∞) has a finite greedy β-expansion. For 1 ≤ i ≤
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g − 1, ri = −( bi−1
β + · · · + b0

βi ) and rg = 1. The ring Z[β] is generated
by {1, β, . . . , βg−1} as a Z-module; the same is true for {r1, . . . , rg}. Thus
every element z of Z[β] ∩ [0, 1) can be expressed as z =

∑g
i=1 ziri. The

β-transformation of z can be written τβ(z) =
∑g

i=1 zi+1ri with zg+1 such
that 0 ≤ z2r1 + · · ·+ zg+1rg < 1, more precisely

zg+1 = −�z2r1 + · · ·+ zgrg−1�.

Then µr(z1, . . . , zg−1) = (z2, . . . , zg).

The roots of the polynomial Xg−1 + rg−1X
g−2 + · · ·+ r1 have modulus

less than one, and it can be proved that the SRS algorithm associated
with (r1, . . . , rg−1) always leads to a periodic orbit, and thus that every
positive element of Z[β] has an eventually periodic greedy β-expansion.
The same can be proved for every positive element of Q[β], which reproves
Theorem 2.3.20.

2.4.4.2 Connection with canonical numeration systems

Theorem 2.4.16 (Akiyama, Borbély, Brunotte, Pethő, and
Thuswaldner 2005) The polynomial Xg + bg−1X

g−1 + · · · + b0 gives a
CNS if, and only if,

r = (
1
b0
,
bg−1

b0
, . . . ,

b1
b0

)

gives a g–dimensional SRS.

Proof Take z in Z[β]. Then z can be written as z =
∑g−1

i=0 ziβ
i with zi in Z.

The mapping Φβ (see (2.15)) can be extended as a mapping Φ̃β : Zg → Zg

defined as

Φ̃β((z0, . . . , zg−2, zg−1)) = (z1 − qb1, . . . , zg−1 − qbg−1,−q))

with q = �z0/b0�.
For easier notation, set bg = 1. The basis {1, β, . . . , βg−1} can be replaced

by the basis {w1, . . . , wg} with wj =
∑g

i=g−j+1 bjβ
i+j−g−1 for 1 ≤ j ≤ g.

Now, if z =
∑g

i=1 yjwj , we can define a map Ψβ playing the same role as
Φβ by

Ψβ(z) = (
g−1∑
i=1

yj+1wj)− wg�
b1yg + · · ·+ bgy1

b0
�.

This maps is extended as a mapping Ψ̃β : Zg → Zg defined by

Ψ̃β((y1, . . . , yg−1, yg)) = (y2, . . . , yg,−�
b1yg + · · ·+ bgy1

b0
�)
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and Ψ̃β is just the SRS mapping µr.

2.5 Representation in rational base

We now turn to the problem of the representation of numbers, integers or
reals, again in a base which is not an integer but a rational number — and
thus certainly not a Pisot number, as it has been the case in most of the
preceeding sections. The greedy algorithm which was ubiquitous there and
underlying almost every construction is now inappropriate or, to tell the
truth, one cannot tell anything of its outcome. We shall make use instead
of an algorithm which is reminiscent of the division algorithm defined with
integer base and which produces, as the division algorithm, the digits of the
representations from right to left.

All the results of this section are taken, and their presentation is adapted,
from (Akiyama, Frougny, and Sakarovitch 2008).

2.5.1 Representation of integers

Let p and q be two co-prime integers, p > q � 1 . The definition of the
numeration system in base pq itself, and thus the evaluation map, will follow
from the algorithm which computes the representation of the integers.

2.5.1.1 The modified division algorithm

Let N be any positive integer; let us write N0 = N and, for i � 0, write

qNi = pNi+1 + ai (2.18)

where ai is the remainder of the division of qNi by p, and thus belongs
to Ap = {0, . . . , p − 1} . Since Ni+1 is strictly smaller than Ni, the divi-
sion (2.18) can be repeated only a finite number of times, until eventually
Nk+1 = 0 for some k. The sequence of successive divisions (2.18) for i = 0
to i = k is thus an algorithm — that in the sequel is referred to as the
Modified Division, or MD, algorithm — which given N produces the digits
a0, a1, . . . , ak, and it holds:

N =
k∑

i=0

ai

q

(
p

q

)i

. (2.19)

We will say that the word ak · · ·a0 , computed from N from right to left,
that is to say least significant digit first, is a p

q -representation of N .
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Let U p
q

be the sequence defined by:

U p
q

= {ui =
1
q

(
p

q

)i

| i ∈ Z} .

We will say that U p
q
, together with the digit alphabet Ap is the numeration

system in base p
q or the p

q numeration system. If q = 1 , it is exactly
the classical numeration system in base p. But, on the other hand, this
definition does not match the one we have given for the numeration system
in base β in Section 2.3: U p

q
is not the sequence of powers of pq but rather

these powers divided by q and the digits are not the integers smaller than p
q

but rather the integers whose quotient by q is smaller than p
q . The evaluation

map π p
q
: Ap

∗ → Q is defined accordingly: for every word w of Ap
∗, we have

w = ak ak−1 · · · a1 a0 �−→ π p
q

(w) =
k∑

i=0

aiui =
k∑

i=0

ai

q

(
p

q

)i

. (2.20)

With the same proof as for integer base system (cf. Lemma 2.2.1), we have:

Lemma 2.5.1 The restriction of π p
q

to Ap
k is injective, for every k.

As for integer base, π p
q

is not injective on the whole Ap
∗ since for any u

in Ap
∗ and any integer h it holds: π p

q

(
0hu

)
= π p

q
(u) . On the other hand,

Lemma 2.5.1 implies that this is the only possibility and we have:

π p
q

(u) = π p
q

(v) and |u| > |v| =⇒ u = 0h v with h = |u| − |v| .
(2.21)

Theorem 2.5.2 Every non-negative integer N has a p
q -representation

which is an integer representation. It is the unique finite p
q -representation

of N .

Proof Let ak · · ·a0 be the p
q -representation given to N by the MD algo-

rithm, and suppose that there exists another finite representation of N in
the system U p

q
, of the form e�e�−1 · · · e0.e−1 · · · e−m with e−m �= 0 . Then

q

(
p

q

)m

N =
�∑

i=−m

ei

(
p

q

)m+i

=
k∑

i=0

ai

(
p

q

)m+i

and therefore π p
q

(e� · · · e0e−1e−2 · · · e−m) = π p
q

(akak−2 · · ·a00m) . Contra-
diction between (2.21) and e−m �= 0 .
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This unique finite p
q -representation of N (under the condition that the

leading digit is not 0) will be called the p
q -expansion of N and writ-

ten 〈N〉 p
q

. By convention and as in the three preceeding sections, the
p
q -expansion of 0 is the empty word ε.

Example 2.5.3 Let p = 3 and q = 2, then A3 = {0, 1, 2} — this will be
our main running example in this section. Table 2.2 gives the 3

2 -expansions
of the twelve first non-negative integers.

ε 0 2120 6
2 1 2122 7

21 2 21011 8
210 3 21200 9
212 4 21202 10

2101 5 21221 11

Table 2.2. The 3
2 -expansion of the twelve first integers.

We let L p
q

denote the set of pq -expansions of the non-negative integers:

L p
q

= {〈N〉 p
q
| N ∈ N} .

In contrast with the three preceeding sections, and as we shall see below,
L p

q
is not a rational set. Before getting to this point, let us note that the

same order properties as for integer base systems hold for the pq numeration
system, provided only the words in L p

q
are considered.

Proposition 2.5.4 Let v and w be in L p
q
. Then v � w if, and only if,

π p
q

(v) � π p
q

(w) .

Proof Let v = ak · · · a0 and w = b� · · · b0 be the p
q -expansions of the

integers m = π p
q

(v) and n = π p
q

(w) respectively. By Theorem 2.5.2, we
already know that v = w if, and only if, π p

q
(v) = π p

q
(w) . The proof goes

by induction on �, which is (by hypothesis) greater than or equal to k. The
proposition holds for � = 0.

Let us write v′ = ak · · · a1 and w′ = b� · · · b1 , and m′ = π p
q

(v′) and
n′ = π p

q
(w′) are integers. It holds:

n−m =
p

q
(n′ −m′) +

1
q

(b0 − a0) .

Now v ≺ w implies that either v′ ≺ w′ or v′ = w′ and a0 < b0 . If
v′ ≺ w′ , then n′ −m′ � 1 by induction hypothesis and thus n −m > 0
since b0 − a0 � −(p− 1) . If v′ = w′ , then n−m = 1

q (b0 − a0) > 0 .
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Corollary 2.5.5 Let v and w be in 0∗L p
q

and of equal length. Then v ≤ w

if, and only if, π p
q

(v) � π p
q

(w) .

It is to be noted also that these statements do not hold without the
hypothesis that v and w belong to L p

q
(to 0∗L p

q
respectively). For instance,

π 3
2

(10) = 3/4 < π 3
2

(2) = 1 and π 3
2

(2000) = 27/16 < π 3
2

(0212) = 4 .

2.5.1.2 The set of pq -expansions of the integers

It is a very intriguing, and totally open, question to characterise the set L p
q
.

As far as now, we can only make basic observations.
By construction, L p

q
is prefix-closed, that is, any prefix of any word of L p

q

is in L p
q
. A simple look at Table 2.2 shows that it is not suffix-closed. In

fact, every word of Ap
∗ is a suffix of some words in L p

q
. More precisely, we

have the following statement.

Proposition 2.5.6 For every integer k and every word w in Ap
k, there

exists a unique integer n, 0 � n < pk such that w is the suffix of length k
of the p

q -expansion of all integers m congruent to n modulo pk.

Proof Given any integer n = n0 , the division (2.18) repeated k times
yields:

qk n0 = pk nk + qk π p
q

(ak−1ak−2 · · · a0) . (2.22)

If we do the same for another integer m = m0 and perform the subtraction
on the two sides of Equation (2.22), it comes:

qk (n0 −m0) = pk (nk −mk)

+ qk
(
π p

q
(ak−1ak−2 · · ·a0)− π p

q
(bk−1bk−2 · · · b0)

)
.

As qk is prime with pk, and using Lemma 2.5.1, it comes:

n−m ≡ 0 (mod pk) ⇐⇒ ak−1ak−2 · · · a0 = bk−1bk−2 · · · b0 . (2.23)

Since there are exactly pk words in Ap
k , each of them must appear once

and only once when n ranges from 0 to pk − 1 and (2.23) gives the second
part of the statement.

It follows that a word w of length k is a right context for the pq -expansions
〈n〉 p

q
and 〈m〉 p

q
of two integers n and m for L p

q
, that is, both 〈n〉 p

q
w

and 〈m〉 p
q
w are in L p

q
, if, and only if, n and m are congruent mod-

ulo qk. This implies immediately that the coarsest right regular equiva-
lence that saturates L p

q
is the identity, hence in particular is not of finite
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index. A classical statement in formal language theory (see for instance
(Hopcroft, Motwani, and Ullman 2006)) then implies:

Corollary 2.5.7 If q �= 1 , then L p
q

is not a regular language.

Along the same line it is easy to give a more precise statement on suffixes
that are powers of a given word.

Lemma 2.5.8 Let w be in L p
q

and w = uv be a proper factorization of w.
Then uvk belongs to L p

q
only if q(k−1)|v| divides π p

q
(w)− π p

q
(u) .

Proof The word uvk belongs to L p
q

only if

π p
q

(
uvk

)
− π p

q

(
uvk−1

)
=
(
p

q

)|v|
(π p

q

(
uvk−1

)
− π p

q

(
uvk−2

)
) = · · ·

=
(
p

q

)(k−1)|v|
(π p

q
(uv)− π p

q
(u))

is in Z. And this is possible only if q(k−1)|v| divides π p
q

(uv) − π p
q

(u) .

Lemma 2.5.8 will be used in the sequel to show that the closure of L p
q

does not contain eventually periodic infinite words; combined with the
classical ‘pumping lemma’ (see (Hopcroft, Motwani, and Ullman 2006) and
Lemma ??), it implies another statement related to formal language theory:

Corollary 2.5.9 If q �= 1 , then L p
q

is not a context-free language.

2.5.1.3 The evaluator and the converters

We build an evaluator and zero automata in a similar way as the one we
followed for integer base. Let pq be the base fixed as before but the digits
be a priori any integer, positive or negative. The evaluator Z p

q
has the set

of q-decimal numbers, that is, Z[1q ], as set of states, it reads (from left to
right) the numbers (written on the ‘alphabet’ Z), and runs in such a way
that, at every step of the reading, the reached state indicates the value of
the portion of the number read so far. The initial state of Z p

q
is thus 0 and

its transitions are of the form:

∀s, t ∈ Z[
1
q
] , ∀a ∈ Z s

a−−→
Z p

q

t if, and only if, q t = ps+ a ,

(2.24)
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from which we get the expected behaviour:

∀w ∈ {Z}∗ 0 w−−→
Zp

q

π p
q

(w) .

It follows from (2.24) that Z p
q

is both deterministic and co-deterministic.
As above, we shall make use of finite parts of Z p

q
. First, we restrict the

alphabet to be a finite subset of Z: Bd = {−d, . . . , d} with d ≥ p− 1 and
thus Ap ⊂ Bd . Second, we choose 0 as unique final state and we get a zero

automaton Z p
q ,d =

(
Z[1q ], Bd, E, {0}, {0}

)
where the transitions in E are

those defined by (2.24). This automaton accepts thus the writings of 0 (in
base pq and on the alphabet Bd). It is still infinite but we have the following.

4̄ 3̄ 2̄ 1̄ 0 1 2 3 4

7̄ 5̄ 3̄ 1̄ 1 3 5 7

5̄ 3̄ 1̄ 1 3 5 7 9

4 3 2 1 0 1̄ 2̄ 3̄ 4̄

4 3 2 1 0 1̄

4̄3̄2̄1̄01

4 24̄

4 3 2 1 0 1̄ 2̄
2 1 0 1̄ 2̄ 3̄ 4̄

1̄ 0
1 2

2̄ 1̄
0 1

3̄ 2̄
1̄ 0

Fig. 2.18. A partial view of Z 3
2 ,4.

The upper row consists of the states whose labels are integers; the row below of
the states whose labels are of the form n/2, with odd n; the next row of those
whose labels are of the form n/4, with odd n; etc. For the readibility of the figure,
not all transitions labelled in B4 are drawn.

Proposition 2.5.10 The trim part of Z p
q ,d is finite and its set of states is

H = {−h, . . . , h} where h =
⌊

d−q
p−q

⌋
.

Proof As Bd contains Ap and is symmetrical, every z in Z is accessible
in Z p

q ,d. On the other hand, no state in Z[1q ] \ Z is co-accessible to 0
in Z p

q ,d.
If m is a positive integer strictly larger than (d−q)/(p−q), the ‘smallest’

reachable state from m, that is, the smallest integer which is larger than, or
equal to, 1

q (mp−d), is also larger than, or equal to,m: m is not co-accessible
in Z p

q ,d and the same is true if m is strictly smaller than −(d− q)/(p− 1).
Conversely, if m is a positive integer smaller than (d − q)/(p − q), then

the integer k = p + (m − 1)(p − q) is smaller than, or equal to, d and
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m
k−−→ (m−1) is a transition in Z p

q ,d. Hence, by induction, a path from m

to 0 in Z p
q ,d.

By definition, the trim part of Z p
q ,d is the strongly connected component

of 0. Figure 2.18 shows Z 3
2 ,4.

Let Z p
q ,d denote the automaton reduced to its trim part only, with set of

states H . And as above again, the automaton Z p
q ,d will serve as the base

for the construction of a series of converters and normalisers exactly as in
the case of integer base.

Figure 2.19 (a) shows the right sequential converter that realises addition
in the 3

2 numeration system; Figure 2.19 (b) shows the right sequential

converter on the alphabet {1, 0, 1, 2} in the 3
2 numeration system.

2 1 0

21 2

0 |1
1 |2

4 |0

0 |2

3 |0
4 |1

2 |0
3 |1
4 |2

1 |0
2 |1
3 |2

0 |0
1 |1
2 |2

(a) The converter for the addition.

0 1

2 |0

1 |2

1 |0
0 |1
1 |2

0 |0
1 |1
2 |2

(b) The converter on
{−1, 0, 1, 2}.

Fig. 2.19. Two converters for the 3
2 numeration system.

Remark 2.5.11 A converter reads words on a digit alphabet C, and out-
put an equivalent pq -representation on another alphabet A, even for words
v such that π p

q
(v) is not an integer.

As a corollary to the construction of the converter, it is easy to build a
letter-to-letter right sequential transducer that realizes the successor func-
tion for the p

q numeration system.

2.5.2 Representation of the reals

Every infinite word u = (ai)i≥1 in AN
p is given a real value x by the evalu-

ation map π p
q
:

u = a1 a2 · · · �−→ x = π p
q

(u) =
∞∑

i=1

ai

q

(
p

q

)−i
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and u is called a p
q -representation of x. We use the same conventions as in

the preceeding sections and we have:

∀u = (ai)i≥1 ∈ Ap
N π p

q
(.u) = lim

n→+∞

(
q

p

)n

π p
q

(a1 a2 · · · an) , (2.25)

∀u ∈ Ap
N , ∀w ∈ Ap

∗ πp (.wu) =
(
q

p

)|w|
(πp (w) + πp (.u)) .

Proposition 2.5.12 The map π p
q
: Ap

N → R is continuous.

Our purpose here is to associate with every real number a p
q -

representation which will be as canonical as possible. In contrast with
what is done in integer or Pisot base numeration systems, where the canon-
ical representation — the greedy expansion — is defined by an algorithm
which computes it for every real, we set a priori what are these canonical
p
q -expansions.

2.5.2.1 Construction of the tree T p
q

The free monoid Ap
∗ is classically represented as the nodes of the (infinite)

full p-ary tree: every node is labeled by a word in Ap
∗ and has p children,

every edge between a node and its children is labeled by one of the letter
of Ap and the label of a node is precisely the label of the (unique) path that
goes from the root to that node.

As the language L p
q

is prefix-closed, it can naturally be seen as a subtree
of the full p-ary tree, obtained by cutting some edges. This will form the
tree T p

q
(after we have changed the label of nodes from words to the numbers

represented by these words). This tree, or more precisely its infinite paths,
will be the basis for the representation of reals in the p

q number system.
We give now an ‘internal’ description of T p

q
, based on the definition of a

family of maps from N to N, which will proved to be effective for the study
of infinite paths.

Definition 2.5.13 (i) For each a in Ap, let ψa : N → N be the partial
map defined by:

∀n ∈ N ψa(n) =

{ 1
q (pn+ a) if 1

q (pn+ a) ∈ N

undefined otherwise

We write e(n) = {a ∈ Ap | ψa(n) is defined} , Me(n) = max{e(n)} for the
largest digit for which ψa(n) is defined, and me(n) = min{e(n)} for the
smallest digit with the same property.
(ii) The tree T p

q
is the labeled infinite tree (where both nodes and edges
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are labeled) constructed as follows. The nodes are labeled in N, and the
edges in A, the root is labeled by 0. The children of a node labeled by n

are nodes labeled by ψa(n) for a in e(n), and the edge from n to ψa(n)
is labeled by a .
(iii) We call path label of a node s of T p

q
, and write p(s), the label of the

path from the root of T p
q

to s. We denote by I p
q

the subtree of T p
q

made of
nodes whose path label does not begin with a 0.

The very way T p
q

is defined implies that if two nodes have the same label,
they are the root of two isomorphic subtrees of T p

q
and it follows from

Proposition 2.5.6 that the converse is true, that is two nodes which hold
distinct labels are the root of two distinct subtrees of T p

q
. As no two nodes

of I p
q

have the same label, it comes:

Proposition 2.5.14 If q �= 1 no two subtrees of I p
q

are isomorphic.

Definition 2.5.13 and the MD algorithm imply directly the following facts.

Lemma 2.5.15 For every n in N, it holds:

(i) me(n) = e(n)∩{0, 1, . . . , q−1} and Me(n) = e(n)∩{p−q, . . . , p−1} .

(ii) a ∈ e(n) and a+ q ∈ Ap =⇒ a+ q ∈ e(n) .

(iii) a, a+ q ∈ e(n) =⇒ ψa+q(n) = ψa(n) + 1 .

(iv) me(n+ 1) = Me(n) + q − p and ψme(n+1)(n+ 1) = ψMe(n)(n) + 1 .
And finally:

(v) The label of every node s of T p
q

is π p
q

(p(s)).

We denote by W(n) (resp. by w(n) ) the label of the infinite path that
starts from a node with label n and that follows always the edges with
the maximal (resp. minimal) digit label. Such a word is said to be a
maximal word (resp. a minimal word) in T p

q
. We note: t p

q
= W(0) and

ω p
q

= π p
q

(
. t p

q

)
. (It holds ω p

q
< p−1

p−q .)
The infinite word t p

q
is the maximal element with respect to the lexico-

graphic order of the label of all infinite paths of T p
q

that start from the root.

Notice that, for any rational pq , 0ω is the minimal element with respect to
the lexicographic order of the label of all infinite paths of T p

q
and that, if

q = 1, that is, in an integer base, W(n) = (p − 1)ω , and w(n) = 0ω for
every n in N.

Example 2.5.16 For pq = 3
2, t 3

2
= 212211122121122121211 · · · .
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We call branching a node v of T p
q

if it has at least two children, that is,
if e(π p

q
(p(v))) has at least two elements. Direct computations yields the

following.

Lemma 2.5.17 Let v be any branching node in T p
q
, and n = π p

q
(p(v))

its label. Let a1 and b1 = a1 + q be in e(n) and let m1 = ψa1(n) and
m2 = ψb1(n) = m1+1 . Write W(m1) = a2 a3 · · · and w(m2) = b2 b3 · · · .
It then holds:

π p
q

(.a1 a2 a3 · · ·) = π p
q

(.b1 b2 b3 · · ·) . (2.26)

2.5.2.2 The p
q -expansions of real numbers

Notation 2.5.18 Let us denote by W p
q

the subset of Ap
N that consists of

the labels of infinite paths starting from the root of T p
q
.

Note that the finite prefixes of the elements ofW p
q

are the words in 0∗L p
q

.
A direct consequence of Lemma 2.5.8 is the following.

Proposition 2.5.19 If q > 1, then no element of W p
q

is eventually peri-
odic, but 0ω.

As announced, the set of pq -expansions is defined a priori and not algo-
rithmically.

Definition 2.5.20 The set of expansions in the p
q numeration system

is W p
q
.

In other words, an element u of W p
q

is a p
q -expansion of the real x =

π p
q

(u) and conversely any element of Ap
N which does not belong to W p

q
is

not a p
q -expansion. The following Lemma 2.5.21 and Theorem 2.5.23 tell

that pq -expansions are not too many nor too few respectively and vindicate
the definition.

Lemma 2.5.21 The map π p
q
: W p

q
→ R is order preserving.

Proof Let u = (ai)i≥1 and v = (bi)i≥1 be in W p
q
. If u ≤ v then,

for every k in N, a1 a2 · · · ak ≤ b1 b2 · · · bk and then, by Corollary 2.5.5,
π p

q
(a1 a2 · · · ak) � π p

q
(b1 b2 · · · bk) . By (2.25), π p

q
(.u) � π p

q
(.v) .

By contrast, it follows from the examples given after Corollary 2.5.5 that
the map π p

q
: Ap

N → R is not order preserving.
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Notation 2.5.22 Let X p
q

= π p
q

(
W p

q

)
. The elements of X p

q
are non-

negative real numbers less than or equal to ω p
q
:

X p
q
⊆ [0,ω p

q
] .

Theorem 2.5.23 Every real in [0,ω p
q
] has at least one p

q -expansion, that
is, X p

q
= [0,ω p

q
] .

Proof By definition, the set W p
q

is the set of infinite words w in Ap
N

such that any prefix of w is in 0∗L p
q

. As 0∗L p
q

is prefix-closed — since
L p

q
is prefix-closed and the empty word belongs to L p

q
— W p

q
is closed

(see (Perrin and Pin 2003)) in the compact set Ap
N, hence compact. Since

π p
q

is continuous, X p
q

is closed.
Suppose that [0,ω p

q
] \X p

q
is a non-empty open set, containing a real t.

Let y = sup{x ∈ X p
q
| x < t} and z = inf{x ∈ X p

q
| x > t}. Since X p

q

is closed, y and z both belong to X p
q
. Let u = a1 a2 · · · be the largest

p
q -expansion of y and v = b1 b2 · · · the smallest p

q -expansion of z (in the
lexicographic order). Of course, u < v since u �= v . Let a1 · · · aN be the
longest common prefix of u and v (with the convention thatN can be 0). Set
m = π p

q
(a1 · · · aN .), n = π p

q
(a1 · · · aNaN+1.) and r = π p

q
(a1 · · · aNbN+1.).

Then

u ≤ a1 · · · aNaN+1W(n) < a1 · · ·aNbN+1w(r) ≤ v .

By the choice of v, π p
q

(.a1 · · · aNaN+1W(n)) < z , and by the choice of u,
u = a1 · · · aNaN+1W(n) . Symmetrically, v = a1 · · · aNbN+1w(r) .

If aN+1 +q < bN+1 , then there exists a digit c in e(m) such that aN+1 +
q � c < bN+1 . For any w′ in Ap

N such that w = a1 · · · aN cw′ is in W p
q

(and there exist some), we have

u < w < v .

Whatever the value of π p
q

(.w), y or z, we have a contradiction with the
extremal choice of u and v.

If aN+1 + q = bN+1, then r = n+ 1 and z = y by Lemma 2.5.17, hence a
contradiction. And thus X p

q
= [0,ω p

q
] .

A word inW p
q

is said to be eventually maximal (resp. eventually minimal)
if it has a suffix which is a maximal (resp. minimal) word.

The following statement shows that in spite of the non-rationality of W p
q

the pq -expansions of reals behave very much as the expansions obtained by
a greedy algorithm in an integer or in a real base.
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Theorem 2.5.24 The set of reals in X p
q

that have more than one p
q -

expansion is countably infinite in bijection with the set of branching nodes
in T p

q
. The p

q -expansions of such reals are eventually maximal or even-
tually minimal. If p � 2q − 1 , then no real number has more than two
p
q -expansions.

Remark 2.5.25 In contrast with the classical representations of reals, the
finite prefixes of a p

q -expansion of a real number, completed by zeroes, are

not pq -expansions of real numbers (though they can be given a value by the
function π of course), that is to say, if a non-empty word w is in Lp

q
, then

the word w 0ω does not belong to W p
q

.

It is an open problem, a challenging one, to prove that the hypothesis
p � 2q − 1 in Theorem 2.5.24 is not necessary and that a real has never
more than two p

q -expansions (with the meaning we have given to it) for any

rational pq .

2.6 A primer on finite automata and transducers

The matter developed in this chapter calls for definitions and results on
finite automata and transducers that go beyond those given in Chapter ??
and we have gathered them in this section.

The notation follows the one adopted in (Sakarovitch 2003), where the
proofs of the statements can be found as well — unless otherwise stated.
The definitions are sometimes made simpler for their intended scope is the
content of this chapter only.

2.6.1 Automata

Let us first complete the definitions and results on finite automata given at
Chapter ??. We call recognisable or rational the languages of A∗ recognised
by a finite automaton — that were rather called regular in Section ?? — and
we denote this family by RatA∗. Since every finite automaton is equivalent
to a deterministic one, we have:

Theorem 2.6.1 RatA∗ is an effective Boolean algebra of languages.

The generating function of a language L of A∗ is the series

ΨL(X) =
∑
n∈N

�nX
n
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where �n is the number of words of L of length n: �n = Card (L ∩An) .
A series Φ(X) is called a rational function if it is the quotient of two

polynomials P (X) and Q(X) of Z[X ]: Φ(X) = P (X)
Q(X) . A classical result in

algebra states that a series Φ(X) =
∑

n∈N
anX

n is rational if, and only if,
its coefficients an satisfy a linear recurrence relation with coefficients in Z.
The following result is not for nothing in the choice of rational rather than
regular for languages recognised by finite automata.

Theorem 2.6.2 (Chomsky and Miller 1958) The generating function
of a rational language is a rational function.

Proof Let A be a finite deterministic automaton (of dimension Q) which
recognises the language L and let M be the adjacency matrix of A.
Write l(n) for the vector of dimension Q whose p-th entry is the num-
ber of words of length n which label paths from state p to a final state in A:
�n = li(n) for the initial state i of A. As A is deterministic, it holds

∀n ∈ N l(n+ 1) = Ml(n) . (2.27)

By the Cayley–Hamilton Theorem, M is a zero of its characteristic polyno-
mial, that is:

Mk − z1 Mk−1 − · · · − zk−1 M− zk I = 0 ,

which by (2.27) yields a linear recurrence relation for the �(n) and thus for
their ith entries.

A language L of A∗ is said to have bounded growth if the coefficients of its
generating function are uniformly bounded, that is, if for every n there are
less than k words of length n in L, for a fixed integer k. If x, y, and z are
words in A∗, the language xy∗z is called a ray language. A ray language,
or any finite union of ray languages, is rational and has bounded growth.
The following converse is folklore (see (Sakarovitch 2003) and see also in
Section ??, the proof of Theorem ??).

Proposition 2.6.3 A rational language L has bounded growth if and only
if it is a finite union of ray languages.

An automaton is said to be k-local if the end of any computation of
length k depends on its label only, and not on its origin. Remark that a
1-local automaton is deterministic.
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2.6.2 Transducers

As defined in Chapter ??, a transducer T (from A∗ to B∗) is an automaton
whose transitions are labelled by pairs of words (elements of A∗×B∗). We
write T = (Q,A,B,E, I, T ) where E ⊆ Q×A∗×B∗×Q is the set of tran-
sitions and where I and T are subsets of Q which we consider as functions
from Q into B in view of forthcoming generalisations. The transducer T is
finite if E, and thus the useful part of Q, is finite.

The set of labels of successful computations, which we denote by |||T |||, is
a subset of A∗×B∗, that is, the graph of a relation from A∗ to B∗, the
relation realised by T . If T is finite, |||T ||| is a rational subset of A∗×B∗,
hence realises a rational relation. If the labels of the transitions of a (finite)
transducer T are projected on the first (resp. the second) component, we get
a (finite) automaton, which we call the (underlying) input automaton (resp.
the (underlying) output automaton) which recognises the domain (resp. the
image) of the relation |||T |||: both are rational languages of A∗ (resp. of B∗).
Remark also that morphisms (from a free monoid into another) are realised
by one state transducers.

In contrast with Theorem 2.6.1, rational relations are not closed under
intersection, and thus the set of rational relations is not a Boolean algebra.
Moreover, as the Post Correspondence Problem may easily be described as
the intersection of the graph of two morphisms, it is not decidable whether
the intersection of two rational relations is empty, from which one deduces
that equivalence of rational relations is not decidable.

On the positive side, rational relations from a free monoid into another
one are closed under composition, and the image of a rational language by
a rational relation is rational. From the definition itself follows that the
inverse of a rational relation is a rational relation (it suffices to exchange
the first and the second components of the labels).

The model of finite transducers may be transformed, without changing
the class of realised relations, in order to allow various proofs. In particular,
the initial and final functions (from Q to B) may be generalised to functions
from Q into (ε×B∗) — or, by abuse, from Q into B∗ — together with
the adequate, and obvious, modification of the definition of the label of a
computation.

Figure 2.20 shows three transducers: one for the identity ι, one for ιK
the identity restricted to the rational set K = a∗b∗, that is, the intersection
with K, and one for the relation γ′ which maps every word w onto the set
of words of the same length as w and greater in the lexicographic order
(assuming that a < b).

As an example of the usefulness of rational relations in the study of ra-
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a |a

b |b

b |b
a |a b |b

a |b
a |a

b |b

a |a , a |b

b |a , b |b

Fig. 2.20. Three transducers.

tional languages, let us give a simple and short proof of a classical property
often credited to (Shallit 1994) and that appears several times in this chap-
ter. If L is a language, we denote by minlg (L) (resp. Maxlg (L)) the set of
words of L which have no lesser (resp. greater) word of the same length
in L in the lexicographic, or radix order (they coincide on words of the same
length).

Proposition 2.6.4 If L is a rational language, then so are minlg (L)
and Maxlg (L).

Proof Any word v of L which is greater (in the lexicographic order) than
another word u of L of the same length belongs to ιL(γ′(ιL(u))). Thus
minlg (L) = L \ Im[ιL ◦ γ′ ◦ ιL] , and is rational when L is.

An analogous equality holds for Maxlg (L).

2.6.3 Synchronous transducers and relations

The three transducers of Figure 2.20 have the property that the label of ev-
ery transition is a pair of letters, which immediately implies that they realise
length preserving relations. Being length preserving however is somewhat
too strong a restriction and this constraint is relaxed by allowing the re-
placement, in either component, of a letter by a padding symbol which does
not belong to any alphabet — traditionally denoted by a $ — under the
‘padding condition’, that is, no letter can appear after the padding symbol
on the same component. Such transducers are called synchronous trans-
ducers. They realise synchronous relations,† obtained by the projection
which erases the padding symbol, and the family of synchronous relations
(from A∗ into B∗) is denoted by SynA∗×B∗.

The introduction of the padding symbol is more than a technical
trick since in particular it is not decidable whether a given ratio-
nal relation is synchronous or not (see (Frougny and Sakarovitch 1993)).

† In (Sakarovitch 2003), synchronous relations are defined as relations realised by letter-
to-letter transducers whose final functions maps states into (Rat A∗×ε)∪(ε×Rat B∗) .
Hopefully, the two definitions are equivalent; the present one is preferred as it makes
Theorem 2.6.5 and Theorem 2.6.6 more evident.
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However synchronous relations are a very natural subfamily of ra-
tional relations and they have been given a logical characterisation
in (Eilenberg, Elgot, and Shepherdson 1969). Most of the rational relations
that are considered in this chapter are synchronous. Figure 2.21 shows a
synchronous transducer for the complement of the identity ι, and one for
the relation γ which maps every word w onto the set of words which are
greater than w in the radix order.

a |a

b |b

a |b , b |a

a |a , a |b

b |a , b |b

a |$ , b |$

a |$ , b |$

a |$ , b |$

$ |a , $ |b

$ |a , $ |b

$ |a , $ |b

$ |$

$ |$

$ |$

$ |$
a |a

b |b

a |b

a |a , a |b

b |a , b |b
$ |a , $ |b

$ |a , $ |b

$ |$

$ |$

$ |$

Fig. 2.21. Two synchronous transducers.

Thanks to the following two properties, SynA∗×B∗ provides a family of
rational relations which can be fruitfully used in constructions and proofs.
The first one follows from the fact that the pairs of letters from two al-
phabets can be considered as letters from the product alphabet and thus
synchronous tranducers as finite automata.

Theorem 2.6.5 SynA∗×B∗ is an effective Boolean algebra of rational re-
lations.

Theorem 2.6.6 SynA∗×B∗ is closed under composition.

Let T = (Q,A$, B$, E, I, T ) and U = (R,B$, C$, F, J, U ) be two syn-
chronous transducers which realise the two relations |||T ||| : A∗ → B∗ and
|||U||| : B∗ → C∗ respectively. Let then T ◦ U be the synchronous transducer
T ◦ U = (Q×R,A$, C$, G, I×J, T×U ) defined by

G = {
(
(p, r), (a, c), (q, s)

)
| ∃b ∈ B$

(
p, (a, b), q

)
∈ E,

(
r, (b, c), s

)
∈ F} ..

Without loss of generality, we can assume that both T and U are completed
by transitions labelled by ($, $) and that go from every final state to a sink
state equipped with a loop labelled in the same way (the grey part in the
transducers of Figure 2.21). Under this assumption, it is a formality to
check that T ◦U realises the relation |||U||| ◦|||T ||| : A∗ → C∗ . This construction
is used at § 2.2.2.2 for the construction of W2

′′.
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The fruitfulness of the notion is visible in establishing the following prop-
erty. If A is a totally ordered alphabet, the radix order is a well-ordering
on A∗ and thus on any of its subset L; we denote by SuccL the function
which maps every word of L onto its successor in L in the radix order.

Proposition 2.6.7 If L is a rational language, then SuccL is a syn-
chronous (functional) relation.

Proof As above, we write γ the relation which maps every word w onto the
set of words which are greater than w in the radix order. For any subset K
ofA∗, min(K) = K \ γ(K) . For any word u of L, the set of words of L that
are greater than u is ιL(γ(ιL(u))). Hence SuccL(u) = min(ιL(γ(ιL(u)))) =
ιL(γ(ιL(u))) \ γ(ιL(γ(ιL(u)))) and SuccL = ιL ◦ γ ◦ ιL \ γ ◦ ιL ◦ γ ◦ ιL is a
synchronous relation by Theorem 2.6.5 and Theorem 2.6.6.

Remark 2.6.8 If we take a slightly more general definition for the succes-
sor function, namely, a function ω whose restriction on L realises SuccL, we
may find non-rational languages whose successor fonction is realised by a
finite (letter-to-letter right) transducer. In this case, L is strictly contained
in Domω. Such an example is given by the numeration system in rational
base (see Section 2.5).

2.6.4 The left-right duality

Before studying further specialised classes of transducers, let us recall and
precise the conventions and terminology relative to the duality between the
left-to-right and right-to-left reading.

The transpose of a word of A∗, w = a1a2 · · · an , with the ai’s in A, is
the word wt = anan−1 · · · a1 , that is, the sequence of letters obtained by
reading w from right to left. Transposition is additively extended to subsets
of A∗: Lt =

⋃
w∈Lw

t .
The transpose of an automaton A = (Q,A,E, I, T ) , is the automaton

At = (Q,A,Et, T, I ) where Et = {
(
q, a, p

)
|
(
p, a, q

)
∈ E} . Obviously,

L(At) = [L(A)]t .
A number of properties of automata are directed, that is, corresponds to

properties of the reading of words from left to right; e.g. being deterministic.
IfAt has such a property P,A is said to have the property co-P. For instance,
A is co-deterministic if At is deterministic.

Another way to bring the left-right duality into play is to consider right
automata, that is, automata that read words from right to left (a procedure
that can prove to be natural when reading numbers: from least to most
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significant digit). It amounts to the same thing to say that w is accepted
by a right automaton A or that it is accepted by the (left) automaton At.

These notions go over to transducers. The transpose of a transducer T =
(Q,A,B,E, I, T ) , is the transducer T t = (Q,A,B,Et, T, I ) where Et =
{
(
q, (f t, gt), p

)
|
(
p, (f, g), q

)
∈ E} and |||T t||| = |||T |||t . A right transducer

reads the input word, and ‘write’ the output word from right to left. As
above, the relation realised by a right transducer T is the same as the one
realised by the (left) transducer T t.

Being synchronous is a directed notion, because of the ‘padding condition’
or, to state it in another way, because the padding symbols are written at
the right end of words, and we have (implicitly) defined it for (left) trans-
ducer, thus we have defined the left synchronous relations. A relation is
co-synchronous — we also say right synchronous if it is realised by a syn-
chronous right transducer, or by the transpose of a synchronous transducer.
In general, a left synchronous relation is not a right synchronous one. Re-
lations that are both left and right synchronous have been characterised
recently (Carton 2009). We consider below an important particular case of
such relations.

2.6.5 Letter-to-letter transducers and bld-relations

We call letter-to-letter transducer (with a slight abuse of words) a transducer
whose transitions are labelled by pairs of letters and whose initial and final
functions map states into (A∗×ε)∪ (ε×B∗) . In a relation realised by such
a transducer, the lengths of a word and its images are not necessarily equal
but their difference is bounded. More important, the converse of this simple
observation is true.

Let θ : A∗ → B∗ be a relation with the property that there ex-
ists an integer k such that, for every f in A∗ and every g in θ(f),
then

∣∣|f | − |g|∣∣ � k . If k = 0, θ is a length preserving relation; for
an arbitrary k, θ has been called a bounded length difference relation
((Frougny and Sakarovitch 1993)) or bounded length discrepancy relation
((Sakarovitch 2003)), bld-relation for short in any case.

It is not difficult to verify that a rational relation is bld if, and only
if, any transducer T (without padding symbol!) which realises θ has the
property that the label of every circuit in T is such that the length of
the ‘input’ is equal to the length of the ‘output’, a property which is thus
decidable. The following result is essentially due to Eilenberg who proves
it for length-preserving relations ((Eilenberg 1974)); it has been extended
to bld-relations in (Frougny and Sakarovitch 1993). It relates a property of
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the graph of a rational relation (being bld) to the way this relation may be
realised (being synchronous).

Proposition 2.6.9 A bld-rational relation is both left and right syn-
chronous.

The next characterisation of bld relations within synchronous ones goes
back to (Elgot and Mezei 1965).

Proposition 2.6.10 A left (or right) synchronous relation with finite im-
age and finite co-image is a bld-rational relation.

Corollary 2.6.11 If L is a rational language, then SuccL is realised by a
finite letter-to-letter transducer

2.6.6 Sequential transducers and functions

A transducer (from A∗ to B∗) is said to be sequential (resp. co-sequential )
if its underlying input automaton is deterministic (resp. co-deterministic)
and the initial and final functions map its states into ε×B∗. this definition,
a sequential, or co-sequential, transducer realises a functional relation. A
function (from A∗ to B∗) is said to be sequential (resp. co-sequential ) if
it is realised by a sequential (resp. co-sequential) transducer. Of course, a
co-sequential function is realised by a sequential right transducer.

Sequential functions are characterised within rational functions by a topo-
logical criterion in the following way: the prefix distance d of two words u
and v is defined as d (u, v) = |u|+ |v| − 2 |u ∧ v|, where u ∧ v is the longest
common prefix of u and v.

Definition 2.6.12 A function ϕ is said to be k-Lipschitz (for the prefix
distance) if:

∀u, v ∈ Domϕ , d (ϕ(u), ϕ(v)) ≤ kd (u, v) .

The function ϕ is Lipschitz if there exists a k such that ϕ is k-Lipschitz.

Theorem 2.6.13 (Choffrut 1977) A rational function is sequential if,
and only if, it is Lipschitz.

By the left-right duality, we define the suffix distance ds on A∗: ds (u, v) =
|u|+ |v|−2 |u∧s v|, where u∧s v is the longest common suffix of u and v. A
rational function is co-sequential if, and only if, it is Lipschitz for the suffix
distance. At this point, it cannot be skipped that sequentiality is a decidable
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property for functions realised by finite transducers (see (Choffrut 1977))
although this does not play any role in this chapter.

We call piecewise (co-)sequential a function that is a finite union of (co-
)sequential functions (thus with disjont domains). And we have the follow-
ing.

Proposition 2.6.14 (Angrand and Sakarovitch 2009) If L is a ratio-
nal language, then SuccL is a piecewise co-sequential function.

2.7 Notes

As we have already mentioned, we consider only positional numeration sys-
tems. However, we indicate a pioneer work on the relations between nu-
meration and finite automata, which is the paper (Raney 1973), in which
it is proved that the continued fractions expansion of a real number can be
coded by an infinite word on a two-letter alphabet, and that homographic
transformations can be realised by finite transducers.

2.7.1 Representation in integer base

On the links between numeration, logic and finite automata there is a sur-
vey (Bruyère, Hansel, Michaux, and Villemaire 1994).

A generalisation of Cobham’s Theorem to real numbers has
been established in a series of papers (Boigelot and Brusten 2009,
Boigelot, Brusten, and Bruyère 2008). It is proved in particular that, if
a set S of positive real numbers is recognised by a finite weak determinis-
tic automaton in two integer bases that are multiplicatively independent,
then S is definable in 〈R,Z,+, <〉, which means that S is a finite union of
intervals with rational endpoints.

2.7.2 Representation in real base

Symbolic dynamical systems defined by a particular order on the set of
infinite words on a finite alphabet have been studied from an ergodic point
of view in (Takahashi 1980).

An algebraic integer β > 1 is a Salem number if all its Galois conjugates
have modulus ≤ 1, with at least one conjugate with modulus 1. It has
been proved in (Boyd 1989) that every Salem number of degree 4 is a Parry
number. Boyd also conjectured that it is still true in degree 6, but false
for degree ≥ 8. An algebraic integer β > 1 is a Perron number if all its
Galois conjugates have modulus < β. Perron numbers are introduced in
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(Lind 1984). Every Parry number is a Perron number. In (Solomyak 1994)
and in (Flatto, Lagarias, and Poonen 1994) is proved that all the Galois
conjugates of a Parry number have modulus strictly less than the Golden
Ratio. Beta-expansions also appear in the mathematical description of qua-
sicrystals, see (Gazeau, Nešetřil, and B. Rovan, eds 2007).

The study of the β-shift from the point of view of the Chomsky hierarchy
has been done by K. Johnson. A symbolic dynamical system is said to
be context-free if the set of its finite admissible factors is a context-free
language. It is proved in (Johnson 1999) that the β-shift is context-free if,
and only if, it is sofic.

In Section 2.2.2.3 we have presented expansions of minimal weight in
base 2. Recently, the investigation of minimal weight expansions has
been extended to the Fibonacci numeration system in (Heuberger 2004),
and an equivalent to the NAF has been defined. When β is a Pisot
number the set of β-expansions of minimal weight, where the weight is
the absolute sum of the digits, is recognisable by a finite automaton,
(Frougny and Steiner 2008). For the Golden Ratio ϕ the average weight
of ϕ-expansions on the alphabet {−1, 0, 1} of the numbers of absolute value
less than M is 1

5 logϕM , which means that typically only every fifth digit
is non-zero. Note that the corresponding value for 2-expansions of minimal
weight is 1

3 log2M , see (Arno and Wheeler 1993, Bosma 2001), and that
1
5 logϕM ≈ 0.288 log2M .

Fractals and tilings are the subject of Chapter ?? of this book. Let us just
mention some works using finite automata associated with numeration in an
irrational base. The celebrated Rauzy fractal is associated with numeration
in base the Tribonacci number which is the root > 1 of the polynomial X3−
X2−X−1. The boundary of the Rauzy fractal (and of more general fractals
associated with Pisot numbers) has been described by a finite automaton
in (Messaoudi 1998, Messaoudi 2000) and (Durand and Messaoudi 2009).

Finite automata and substitutions are treated in (Pytheas Fogg 2002,
Chapter 7). (Canterini and Siegel 2001a, Canterini and Siegel 2001b) have
defined the prefix-suffix automaton associated with a substitution of Pisot
type.

Beta-expansions have been extended to finite fields by
(Hbaib and Mkaouar 2006) and (Scheicher 2007). Here β is an ele-
ment of the field of formal Laurent series F((X−1)), with |β| > 1. The
main difference with the classical real base is that all the expansions are
admissible. Moreover the (F) Property is satisfied if and only if β is a
Pisot element of F((X−1)), that is to say, β is an algebraic integer over
F[X ] such that for all Galois conjugate |βi| < 1 (Scheicher 2007).
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2.7.3 Canonical numeration systems

In the case where the alphabet associated with a number β is Aβ =
{0, 1, . . . , N(β)−1}, the ‘clearing algorithm’ of (Gilbert 1981) gives an easy
way of computing the expansion of an integer in the system (β,Aβ).

Tilings generated by a canonical numeration system have been investi-
gated by many authors. The first one is probably the twin dragon tiling,
linked to the Penney CNS defined by the base −1 + i, which was ob-
tained by Knuth as the set {z ∈ C | z =

∑
j≥0 dj(−1 + i)−j , dj ∈ {0, 1}},

see (Knuth 1998).
There are interesting contributions on fractals and tilings

in (Gilbert 1991), (Scheicher and Thuswaldner 2002) and
(Akiyama and Thuswaldner 2005).

There have been a number of generalisations of CNS. Let us mention that
the case where β is not an algebraic integer but an algebraic number has
been considered in particular in (Gilbert 1991). It is mentioned that for
any rational p/q > 1, β = −p/q with digit set {0, 1, . . . , p− 1} forms a CNS
in which any number of Z[1/q] has a finite representation.

Scheicher and Thuswaldner investigated number systems in polynomial
rings over finite fields (Scheicher and Thuswaldner 2003).

2.7.4 Representation in rational base

Expansions in rational base are linked to the problem of the distribution of
the fractional part of the powers of rational numbers.

The distribution modulo 1 of the powers of a rational number, indeed
the problem of proving whether they form a dense set or not, is an old
problem. Pisot, Vijayaraghavan and André Weil have shown that there are
infinitely many limit points. With this problem as a background, Mahler
asked in (Mahler 1968) whether there exists a non-zero real z such that the
fractional part of z (3/2)n for n = 0, 1, . . . fall into [0, 1/2[. It is not known
whether such a real — called a Z-number — does exist but Mahler showed
that the set of Z-numbers is at most countable. His proof is based on the
fact that the fractional part of a Z-number (if it exists) has an expansion
in base 3/2 which is entirely determined by its integral part.

Koksma proved that for almost every real number θ > 1 the sequence
( {θn} )n is uniformly distributed in [0, 1] , but very few results are known
for specific values of θ. One of these is that if θ is a Pisot number, then the
above sequence converges to 0 if we identify [0, 1[ with R/Z.

The next step in attacking this problem has been to fix the rational pq
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and to study the distribution of the sequence

fn(z) =
{
z

(
p

q

)n}
according to the value of the real number z. Once again, the sequence
fn(z) is uniformly distributed for almost all z > 0 , but nothing is known
for specific values of z.

In the search for z’s for which the sequence fn(z) is not uniformly dis-
tributed, Mahler considered those for which the sequence is eventually con-
tained in

[
0, 1

2

[
. Mahler’s notation is generalized as follow: let I be a (strict)

subset of [0, 1[ and let

Z p
q

(I) = {z ∈ R |
{
z

(
p

q

)n}
stays eventually in I } .

Mahler’s problem is to ask whether Z 3
2

([
0, 1

2

[)
is empty or not.

Mahler’s work has been developed in two directions: the search for sub-
sets I as large as possible such that Z p

q
(I) is empty and conversely the

search for subsets I as small as possible such that Z p
q

(I) is non-empty.
Along the first line, remarkable progress has been made by Flatto et

al. (Flatto, Lagarias, and Pollington 1995) who proved that the set of
reals s such that Z p

q

([
s, s+ 1

p

[)
is empty is dense in [0, 1 − 1

p ], and
Bugeaud (Bugeaud 2004) proved that its complement is of Lebesgue mea-
sure 0. Along the other line, Pollington (Pollington 1981) showed that
Z 3

2

([
4
65 ,

61
65

[)
is non-empty.

It is proved in (Akiyama, Frougny, and Sakarovitch 2008) that if p �
2q − 1 , there exists a subset Y p

q
of [0, 1[, of Lebesgue measure q

p , such

that Z p
q

(
Y p

q

)
is countably infinite. The elements of Z p

q

(
Y p

q

)
are indeed

the reals which have two p
q -expansions. Coming back to the historical 3/2

case, we have that the set of positive numbers z such that
{
z
(

3
2

)n}
∈

[0, 1/3[ ∪ [2/3, 1[ for n = 0, 1, 2, . . . is countably infinite. It is noteworthy
that the expansion ‘computed’ by Mahler for his Z-numbers happens to be
exactly one of the 3

2 -expansions presented in Section 2.5 — if it exists.
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