
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Theoretical Computer Science 412 (2011) 5714–5727

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Parallel addition in non-standard numeration systems
Christiane Frougny a, Edita Pelantová b,c,∗, Milena Svobodová b,c

a LIAFA, UMR 7089 CNRS & Université Paris 7, and Université Paris 8, Case 7014, 75205 Paris Cedex 13, France
b Doppler Institute for Mathematical Physics and Applied Mathematics, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2, Czech Republic
c Department of Mathematics, FNSPE, Czech Technical University in Prague, Trojanova 13, 12000 Praha 2, Czech Republic

a r t i c l e i n f o

Article history:
Received 3 January 2011
Received in revised form 21 June 2011
Accepted 22 June 2011
Communicated by H. Prodinger

Keywords:
Numeration
Addition
Parallel algorithm
Golden Mean

a b s t r a c t

We consider numeration systems where digits are integers and the base is an algebraic
number β such that |β| > 1 and β satisfies a polynomial where one coefficient is dominant
in a certain sense. For this class of basesβ , we can find an alphabet of signed-digits onwhich
addition is realizable by a parallel algorithm in constant time. This algorithm is a kind of
generalization of the one of Avizienis.We also discuss the question of cardinality of the used
alphabet, andwe are able tomodify our algorithm in order toworkwith a smaller alphabet.
We then prove that β satisfies this dominance condition if and only if it has no conjugate
of modulus 1. When the base β is the Golden Mean, we further refine the construction to
obtain a parallel algorithm on the alphabet {−1, 0, 1}. This alphabet cannot be reduced any
more.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A positional numeration system is given by a base and by a set of digits. The base β is a real or complex number such
that |β| > 1, and the digit set A is a finite alphabet of real or complex digits. The most studied numeration systems are of
course the usual ones, where the base is a positive integer. But there have been also numerous studies where the base is an
irrational real number (the so-called β-expansions), a complex number, or a non-integer rational number, etc. Some surveys
can be found in [12, Chapter 7] and [8, Chapter 2].

In this work, the base β is an algebraic number, that is to say, the root of a polynomial with integer coefficients, and the
digits of A are consecutive integers. We consider only finite β-representations, see Section 2 for definitions. Let us denote

FinA(β) =

−
i∈I

xiβ i
| I ⊂ Z, I finite, xi ∈ A

.

In general, the set FinA(β) is not closed under addition. In this paper, we will prove that when β is a root of a polynomial
with a dominant coefficient, the alphabet A can be chosen in such a way that FinA(β) is a ring, and, moreover, addition can
be performed by a parallel algorithm with time complexity O(1).

Addition of two numbers in the classical b-ary numeration system, where b is an integer ⩾2, has linear time complexity.
In order to save time, several solutions have been proposed. A popular one is the Avizienis signed-digit representation [2],
which consists of changing the digit set. Instead of taking digits from the canonical alphabet {0, . . . , b − 1}, they are taken
froma symmetric alphabet of the form {−a, . . . , 0, . . . , a}, a being an integer such that b/2 < a ⩽ b−1 (bhas to be⩾3). Such
a numeration system is redundant, that is to say, some numbers may have several representations. This property allows one
to perform addition in constant time in parallel, because there is a limited carry propagation. A similar algorithm for base 2

∗ Corresponding author at: Department of Mathematics, FNSPE, Czech Technical University in Prague, Trojanova 13, 120 00 Prague 2, Czech Republic.
Tel.: +420 224358544.

E-mail address: edita.pelantova@fjfi.cvut.cz (E. Pelantová).

0304-3975/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2011.06.028

Author's personal copy

C. Frougny et al. / Theoretical Computer Science 412 (2011) 5714–5727 5715

has been devised by ChowandRobertson [5], using alphabet {−1, 0, 1}. Here addition is realized in parallelwith awindowof
size 3. Notice that Cauchy [4] already considered the redundant representation in base 10 and alphabet {−5, . . . , 0, . . . , 5}.

In symbolic dynamics, such functions computable in parallel are called local, more precisely p-local, whichmeans that to
determine the image of a word by a p-local function, it is enough to consider a sliding window of length p of the input. It is
a general result that a p-local function is computable by an on-line finite automaton with delay p − 1, see [6] for instance.

Amongst the non-standard bases, special attention has been paid to the complex ones, which allow to represent any
complex number by a single sequence (finite or infinite) of natural digits, without separating the real and the imaginary
part. For instance, it is known that every complex number can be expressed with base −1 + i and digit set {0, 1}, [14].

Parallel algorithms for addition in bases −2, i
√
2, 2i and −1+ i have been given in [13]. Results on addition in bases −b,

i
√
b and −1 + i in connection with automata theory have been presented in [6]. In particular, if b is an integer, |b| ⩾ 3, and

A = {−a, . . . , 0, . . . a} with a = ⌈
|b|+1

2 ⌉, addition in base β =
q√b is computable in parallel and is a (q + 1)-local function.

If |b| ⩾ 2 is even, set a = |b|/2; then addition in base β =
q√b on A is a (2q + 1)-local function.

The paper is organized as follows: First we suppose that the base β is a root of a polynomial with integer coefficients
such that one of them is greater than twice the sum of the moduli of the other ones. We then say that β satisfies the strong
representation of zero property (or, for short, that β is SRZ). We give a parallel algorithm, Algorithm I, for addition in that case,
Theorem 3.2. When β is an integer ⩾3, it is the same algorithm as the one of Avizienis.

Section 4 is devoted to reduction of the working alphabet. We now suppose that β is a root of a polynomial such that one
coefficient is greater than the sumof themoduli of the other ones.We then say thatβ satisfies theweak representation of zero
property (or, for short, that β is WRZ). We give a parallel algorithm, Algorithm II, where the alphabet is reduced compared to
Algorithm I, but there is a fixed number of iterations depending (only) on theweak polynomial satisfied byβ , to be compared
with Algorithm I which always has just one iteration.

We then show that in fact all algebraic numbers with no conjugate of modulus 1 are SRZ (or WRZ), and we give a
constructivemethod to obtain the suitable polynomial (strong orweak representation of zero) from theminimal polynomial
of β , Proposition 5.1.

In the end, we concentrate on the casewhere β is the GoldenMean. Algorithm II workswith alphabet {−3, . . . , 3}, which
is big compared to the minimally redundant alphabet. Using ideas similar to the Chow and Robertson algorithm, we obtain
a parallel algorithm on {−1, 0, 1}, Algorithm III. This algorithm can be applied to the Fibonacci numeration system as well.

2. Preliminaries

A finite word on the alphabet A is a concatenation of a finite number of letters of A. The set of words on A is the free
monoid A∗. The set of bi-infinite words on A is denoted AZ.

A finite β-representation of x with digits in A is a finite sequence (xi)m⩽i⩽n, with xi in A, such that x =
∑n

i=m xiβ i. It is
denoted by the word

xnxn−1 · · · xm+1xm

with the most significant digit at the left hand side, as in the decimal numeration system.
The notion of a function computable in parallel comes from computer arithmetic (see [10]), where it is defined on finite

words, but we give here a definition on bi-infinite words. A function ϕ : AZ
→ BZ is said to be computable in parallel if there

exist two non-negative integers r and t , a positive integer k, and a function Φ from Ap to Bk, with p = r + t + k, such that if
u = (ui)i∈Z ∈ AZ and v = (vi)i∈Z ∈ BZ, then v = ϕ(u) if, and only if, for every i inZ, vki+k−1 · · · vki = Φ(uki+k+t−1 · · · uki−r)

1.
This means that the image of u by ϕ is obtained through a sliding window of length p. Such functions are computable in
constant time in parallel.

The notion of a local function comes from symbolic dynamics (see [11]) and is often called a sliding block code. It is
a function computable in parallel with k = 1. The parameter r is called the memory and the parameter t is called the
anticipation of the function ϕ. The function ϕ is then said to be p-local.

To be self-contained, we recall the classical algorithms for parallel addition of Avizienis [2], and of Chow and
Robertson [5]. In what follows, ‘‘for each i in parallel’’ means that ‘‘each numbered step is executed in parallel, and the
results of the parallel computations are shared between the steps’’.

Algorithm of Avizienis: Base β = b, b ⩾ 3 integer, parallel addition on alphabet A = {−a, . . . , 0, . . . , a}, b/2 < a ⩽ b− 1.

Input: two words xn · · · xm and yn · · · ym of A∗, with m ⩽ n, x =
∑n

i=m xiβ i and y =
∑n

i=m yiβ i.
Output: a word zn+1 · · · zm of A∗ such that

z = x + y =

n+1−
i=m

ziβ i.

1 Careful! Indices of Z are decreasing from left to right.

Author's personal copy

5716 C. Frougny et al. / Theoretical Computer Science 412 (2011) 5714–5727

for each i in parallel do
0. zi := xi + yi
1. if zi ⩾ a then qi := 1, ri := zi − b

if zi ⩽ −a then qi := −1, ri := zi + b
if −a + 1 ⩽ zi ⩽ a − 1 then qi := 0, ri := zi

2. zi := qi−1 + ri

Addition realized by the Avizienis algorithm is a 2-local function, with memory 1 and anticipation 0. Notice that the
minimally redundant symmetric alphabet is obtained with the value a = ⌈

b+1
2 ⌉.

The Chow and Robertson algorithm works for base 2 and alphabet {−1, 0, 1}. We give here a generalization to an even
base β = b = 2a, A = {−a, . . . , 0, . . . , a}.

Algorithm of Chow and Robertson: Base β = b = 2a, a ⩾ 1 integer, parallel addition on alphabetA = {−a, . . . , 0, . . . , a}.

Input: two words xn · · · xm and yn · · · ym of A∗, withm ⩽ n, x =
∑n

i=m xiβ i and y =
∑n

i=m yiβ i.
Output: a word zn+1 · · · zm of A∗ such that

z = x + y =

n+1−
i=m

ziβ i.

for each i in parallel do
0. zi := xi + yi
1. if a + 1 ⩽ zi ⩽ b then qi := 1, ri := zi − b

if −b ⩽ zi ⩽ −a − 1 then qi := −1, ri := zi + b
if −a + 1 ⩽ zi ⩽ a − 1 then qi := 0, ri := zi
if zi = a and zi−1 > 0 then qi := 1, ri := −a
if zi = a and zi−1 ⩽ 0 then qi := 0, ri := a
if zi = −a and zi−1 < 0 then qi := −1, ri := a
if zi = −a and zi−1 ⩾ 0 then qi := 0, ri := −a

2. zi := qi−1 + ri

Addition realized by the Chow and Robertson algorithm is a 3-local function, with memory 2 and anticipation 0.
The main difference between the two algorithms is that the Avizienis algorithm is neighbour-free, while the Chow and

Robertson algorithm is neighbour-sensitive, since the decision taken at position i in Step 1 depends also on the digit at position
i − 1.

3. Parallel algorithm

Now we move to bases β that are algebraic numbers. Let us formalize the assumption we want β to satisfy.

Definition 3.1. Let β be such that |β| > 1. We say that β satisfies the strong representation of zero property (or, for short,
that β is SRZ) if there exist integers bk, bk−1, . . . , b1, b0, b−1, . . . , b−h, for some non-negative integers h and k, such that β
is a root of the polynomial

S(X) = bkXk
+ bk−1Xk−1

+ · · · + b1X + b0 + b−1X−1
+ · · · + b−hX−h (1)

and

b0 > 2
−

i∈{−h,...,k}\{0}

|bi|.

The polynomial S is a said to be a strong polynomial for β .

If β satisfies (1), then the word bkbk−1 · · · b1b0b−1 · · · b−h is a β-representation of zero. From this we can derive a set of
rewriting rules, generated by the rule bkbk−1 · · · b1b0b−1 · · · b−h → 0.

To simplify the notation, we set B = b0 andM =
∑

i∈{−h,...,k}\{0}
|bi|. The inequality from Definition 3.1 now reads

B > 2M. (2)

Suppose that β is SRZ. We choose the symmetric alphabet

A = {−a, . . . , 0, . . . , a}, where a =
 B−1

2

+

B−1

2(B−2M)

M. (3)

Author's personal copy

C. Frougny et al. / Theoretical Computer Science 412 (2011) 5714–5727 5717

For this fixed alphabet A, we describe a parallel algorithm for addition in base β . Let us denote

c =

B−1

2(B−2M)

and a′

=
 B−1

2

. (4)

Then a = a′
+ cM . The alphabet A′

= {−a′, . . . , 0, . . . , a′
} ⊂ A will be referred to as the inner alphabet.

Algorithm I: Parallel addition for base β with the strong representation of zero property (β is SRZ).

Input: two words xn · · · xm and yn · · · ym of A∗, with m ⩽ n, x =
∑n

i=m xiβ i and y =
∑n

i=m yiβ i.
Output: a word zn+k · · · zm−h of A∗ such that

z = x + y =

n+k−
i=m−h

ziβ i.

for each i in parallel do
0. zi := xi + yi
1. find qi ∈ {−c, . . . , 0, . . . , c} such that zi − qiB ∈ A′

2. zi := zi −
k∑

j=−h
qi−jbj

Before proving the correctness of the algorithm, let us stress that the numbers c , a, and a′ have been defined in such a
way that they satisfy

(i) 2a′
+ 1 ⩾ B, (ii) a′

+ cM ⩽ a, (iii) 2a − cB ⩽ a′. (5)

The first two inequalities are clear. To verify the last one, we will use the fact that, for any positive real numbers γ , δ, one
has ⌈γ δ⌉ ⩽ ⌈γ ⌉⌈δ⌉. Putting γ =

B−1
2(B−2M)

and δ = B − 2M , we obtain

a′
=

 B−1
2

=

B−1

2(B−2M)
(B − 2M)

⩽

B−1

2(B−2M)

(B − 2M) = c(B − 2M).

This inequality, together with our choice a = a′
+ cM , already proves the third inequality of (5).

Theorem 3.2. Suppose that β is SRZ. Then Algorithm I realizes addition in constant time in parallel in FinA(β) with A =

{−a, . . . , 0, . . . , a}, where a =
 B−1

2

+

B−1

2(B−2M)

M.

Proof. The proof is structured in two parts:

• The digits of the output belong to A:
After Line 0 of Algorithm I, zi belongs to {−2a, . . . , 0, . . . , 2a}.
Since the inner alphabetA′ is formed by 2a′

+1 consecutive integers and B ⩽ 2a′
+1, there exists qi such that zi−qiB ∈ A′.

Since |zi| ⩽ 2a and 2a − cB ⩽ a′, the integer qi can be found in range {−c, . . . , 0, . . . , c}.
Finally, in Line 2, the new digit zi (denoted for the moment by znewi) is

znewi = zi − qiB
:=E

−

−1−
j=−h

qi−jbj −
k−

j=1

qi−jbj
:=F

.

As |E| ⩽ a′ and |F | ⩽ cM , the resulting znewi satisfies |znewi | ⩽ a′
+ cM ⩽ a.

• The output represents the number x + y:
In order to avoid a tedious description of ranges of summation indices, we will consider all coefficients which do not
play any role in our consideration to be equal to zero. With this convention, bi = 0 for all i /∈ {−h, . . . , 0, . . . , k}, and
therefore we may express the rewriting rule (1) as

∑
i∈Z

biβ i
= 0. Similarly, xi and yi are set to 0 for all i /∈ {m, . . . , n}, and

thus x + y =
∑
i∈Z

(xi + yi)β i. Also the auxiliary coefficients qi are set to 0 for all i /∈ {m, . . . , n}.

After Line 2 of Algorithm I, we obtain

z =

−
i∈Z

znewi β i
= x + y −

−
i∈Z

−
j∈Z

qi−jbj

β i.

Author's personal copy

5718 C. Frougny et al. / Theoretical Computer Science 412 (2011) 5714–5727

Since for the last sum we have−
i∈Z

−
j∈Z

qi−jbj

β i

=

−
j∈Z

−
ℓ∈Z

qℓbjβℓ+j
=

−
ℓ∈Z

qℓβ
ℓ
−
j∈Z

bjβ j

=0

= 0,

the output is correct. �

Remark 3.3. The correctness of the algorithmstems from the inequalities (5),which are satisfied bymany triplets a, a′, c. Our
specific choice of a, a′, and c displayed in (3) and (4) gives the smallest possible value a, and thus the smallest cardinality
of the alphabet A in our algorithm. Of course, this does not exclude existence of other parallel algorithms with smaller
alphabets. Let us demonstrate the optimality of our choice of a, a′, and c. According to (ii) of (5), in order to minimize a, we
have to minimize integers a′ and c. The choice of a′ in (4) is minimal with respect to the requirement 2a′

+ 1 ⩾ B. By (ii) and
(iii) of (5), we obtain

2a′
+ 1 ⩽ 2a − 2cM + 1 ⩽ a′

+ cB − 2cM + 1 =⇒ a′ ⩽ cB − 2cM.

Combining the last inequality with (i) of (5), and insisting on positivity of c , we have

B ⩽ 2a′
+ 1 ⩽ 2cB − 4cM + 1 =⇒ c ⩾ B−1

2(B−2M)
,

which already shows that our choice of c in (4) was minimal as well. Let us point out that we also used the inequality
B > 2M .

Corollary 3.4. If β is SRZ, then addition realized by Algorithm I is a (h + k + 1)-local function with memory k and anticipation
h. Algorithm I is neighbour-free.

Example 3.5. Consider the base β = 10. It is SRZ for the polynomial −X + 10 = 0, where B = 10 andM = 1. In this case

c =
 9

16

= 1, a′

=
 9

2

= 5, and a = 6.

Therefore, our algorithm provides parallel addition in the decimal numeration system on alphabetA = {−6, . . . , 0, . . . , 6},
and in fact it is precisely the algorithm that Avizienis gave in 1961, see [2].

More generally, for any integer b ⩾ 3, the base β = b is SRZ for the polynomial −X + b = 0, and therefore we can apply
the same algorithm for addition, namely on the alphabet {−a, . . . , 0, . . . , a} with a =

 b+1
2

.

Example 3.6. Consider the base β = 2. For such a base, −X + 2 = 0 is not a strong polynomial. Nevertheless, this base
satisfies also the polynomial −X2

+ 4 = 0, which already is strong, with B = 4 andM = 1. Now we have

c =
 3

4

= 1, a′

=
 3

2

= 2, and a = 3.

So Algorithm I works for base 2 with the alphabet {−3, . . . , 0, . . . , 3}, and is 3-local. Remind that the Chow and Robertson
algorithm is 3-local as well, but it works with smaller alphabet {−1, 0, 1}.

Example 3.7. Let us consider the base β =
1+

√
5

2 , the Golden Mean. This base β is one root of the quadratic equation

X2
= X + 1, the second root is β ′

=
1−

√
5

2 = −
1
β
. Since β4

+ (β ′)4 = 7, β is a root of the strong polynomial

S(X) = −X4
+ 7 −

1
X4

with B = 7 and M = 2. This implies c = 1, a′
= 3, and a = 5. The alphabet we work with is A = {−5, . . . , 0, . . . , 5}. The

inner alphabet is A′
= {−3, . . . , 0, . . . , 3}.

In the following, we denote the signed-digit −b by b (this notation is already present in the work of Cauchy [4]). Below
is shown the performance of Algorithm I for addition of two numbers from FinA(β), namely

x = 2β7
+ 5β6

− 2β5
+ 5β4

− 5β3
+ 3 and y = 5β8

+ β7
+ 2β6

− 2β5
+ 5β4

− 4β3
+ 5.

We have x7 · · · x0 = 25255003 and y8 · · · y0 = 512254005.

x → 2 5 2 5 5 0 0 3
y → 5 1 2 2 5 4 0 0 5

z → 5 3 7 4 10 9 0 0 8

Author's personal copy

C. Frougny et al. / Theoretical Computer Science 412 (2011) 5714–5727 5719

All positions i of z for which zi does not belong to the inner alphabet {−3, . . . , 0, . . . , 3} must be modified by adding or
subtracting the rewriting rule 100070001, with the digit 7 on position i, as follows:

z → 5 3 7 4 10 9 0 0 8
0 → 1 0 0 0 7 0 0 0 1
0 → 1 0 0 0 7 0 0 0 1
0 → 1 0 0 0 7 0 0 0 1
0 → 1 0 0 0 7 0 0 0 1
0 → 1 0 0 0 7 0 0 0 1
0 → 1 0 0 0 7 0 0 0 1

z → 1 0 1 1 1 2 0 3 5 2 1 1 2 1 0 0 1

Hence x + y = z = β12
+ β10

− β9
− β8

+ 2β7
+ 3β5

+ 5β4
− 2β3

+ β2
− β + 2 − β−1

+ β−4.

Example 3.8. Consider the complex base β = −1+ i. Since β4
= −4, we can use the strong polynomial X4

+ 4 with B = 4
and M = 1, i.e., we can perform parallel addition on the alphabet A = {−3, . . . , 0, . . . , 3}, and this addition is a 5-local
function. This result appeared in [6]. There is also a parallel algorithm on alphabet {−2, . . . , 2} (à la Chow and Robertson),
which gives a 9-local function, [6]. On the minimally redundant alphabet {−1, 0, 1}, there is a parallel addition algorithm
provided by Nielsen and Muller [13].

Example 3.9. Take for base β the rational 7
2 . This is an algebraic number, which is not an algebraic integer. It is known that

any non-negative integer has a finite expansion in this base on the alphabet {0, . . . , 6}, see [7]. There is a strong polynomial
S(X) = −2X + 7 with B = 7 and M = 2. Thus a′

= 3, c = 1, and a = 5. It is not difficult to see that any integer has a finite
representation on the redundant alphabet {−5, . . . , 0, . . . , 5}, and, by Algorithm I, addition is realizable in parallel.

4. Reduction of the alphabet

It is very difficult to prove that an alphabet used by some algorithm for parallel addition is minimal. It is a lot easier to
prove that the alphabet is not minimal; which is the case for the alphabet we worked with in Algorithm I. Let us start this
section with an example.

Example 4.1. Take for β the Golden Mean. This base satisfies the equation

−β2
+ 3 −

1
β2

= 0.

We say that rewriting rule 1̄0301̄ → 0 is positively applied at position i if the number 3 is added to the actual digit occurring
at position i and the number 1 is subtracted from the actual digits at positions i − 2 and i + 2. Analogously, we define the
negatively applied at position i. We shall present a parallel algorithm for addition on the alphabet

A = {−3, . . . , 0, . . . , 3}

Let us explain the algorithm less formally.

Input: two finite sequences of digits (xi) and (yi) of {−3, . . . , 3}, with x =
∑

xiβ i and y =
∑

yiβ i.
Output: a finite sequence of digits (zi) of {−3, . . . , 3} such that

z = x + y =

−
ziβ i.

for each i in parallel do
0. zi := xi + yi
1. if zi ∈ {2, 3, 4, 5, 6} then apply negatively the rule at i

if zi ∈ {−6, −5, −4, −3, −2} then apply positively the rule at i
if zi ∈ {−1, 0, 1} then do nothing

2. if zi ∈ {2, 3, 4, 5} then apply negatively the rule at i
if zi ∈ {−5, −4, −3, −2} then apply positively the rule at i
if zi ∈ {−1, 0, 1} then do nothing

3. if zi ∈ {2, 3, 4} then apply negatively the rule at i
if zi ∈ {−4, −3, −2} then apply positively the rule at i
if zi ∈ {−1, 0, 1} then do nothing

Author's personal copy

5720 C. Frougny et al. / Theoretical Computer Science 412 (2011) 5714–5727

During the course of the algorithm, we change only the actual values of the coefficients zi, but we do not change the sum∑
ziβ i. Therefore, for correctness of the algorithm, we just have to realize that

• after Step 0, each zi belongs to {−6, . . . , 6},
• after Step 1, each zi belongs to {−5, . . . , 5},
• after Step 2, each zi belongs to {−4, . . . , 4}, and, finally,
• after Step 3, each zi belongs already to the original alphabet A = {−3, . . . , 3}.

Let us illustrate the algorithm on the following example:

Step 0. x → 3 1 3 0 3
y → 2 0 3 2 3

z → 5 1 6 2 6

Step 1. 0 → 1 0 3 0 1
0 → 1 0 3 0 1
0 → 1 0 3 0 1
0 → 1 0 3 0 1

z → 1 0 3 2 5 1 4 1 1

Step 2. 0 → 1 0 3 0 1
0 → 1 0 3 0 1
0 → 1 0 3 0 1
0 → 1 0 3 0 1

z → 2 1 1 1 4 0 2 1 2

Step 3. 0 → 1 0 3 0 1
0 → 1 0 3 0 1
0 → 1 0 3 0 1
0 → 1 0 3 0 1

z → 1 0 1 1 3 1 2 0 1 1 0 0 1

When β is the Golden Mean, we have seen how using a weaker representation of zero −β2
+ 3 −

1
β2 = 0 enables to

exploit the reduced alphabet {−3, . . . , 3} instead of the alphabet {−5, . . . , 5}, which was necessary for applying the strong
representation of zero −β4

+ 7 −
1
β4 = 0. The idea of this reduction can be generalized to other bases β as well.

Definition 4.2. Let β be such that |β| > 1. We say that β satisfies theweak representation of zero property (or, for short, that
β is WRZ) if there exist integers bk, bk−1, . . . , b1, b0, b−1, . . . , b−h, for some non-negative integers h and k, such that β is a
root of the polynomial

W (X) = bkXk
+ bk−1Xk−1

+ · · · + b1X + b0 + b−1X−1
+ · · · + b−hX−h (6)

and

b0 >
−

i∈{−h,...,k}\{0}

|bi|. (7)

The polynomialW is said to be a weak polynomial for β .

When β is WRZ, we can describe a parallel algorithm for addition. Let us put as aboveM =
∑

i∈{−h,...,k}\{0} |bi|, and let

A = {−a, . . . , 0, . . . , a}, where a =
 B−1

2

+ M. (8)

Similarly to Algorithm I, the inner alphabet is A′
= {−a′, . . . , 0, . . . , a′

} with a′
= ⌈

B−1
2 ⌉. The algorithm works in

s + 1 steps, where s =
 a

B−M

. (9)

The steps will be indexed by ℓ = 0, 1, . . . , s. After the ℓth-step, the digits zi will belong to the alphabet

A(ℓ)
= {−2a + ℓ(B − M), . . . , 0, . . . , 2a − ℓ(B − M)} for 0 ⩽ ℓ < s

and to the alphabet A for ℓ = s. Clearly A(0)
= {−2a, . . . ,−1, 0, 1, . . . , 2a}.

Author's personal copy

C. Frougny et al. / Theoretical Computer Science 412 (2011) 5714–5727 5721

Algorithm II: Parallel addition for base β with the weak representation of zero property (β is WRZ).

Input: two words xn · · · xm and yn · · · ym of A∗, with m ⩽ n, x =
∑n

i=m xiβ i and y =
∑n

i=m yiβ i.
Output: a word zn+ks · · · zm−hs of A∗ such that

z = x + y =

n+ks−
i=m−hs

ziβ i.

for each i in parallel do
0. zi := xi + yi
1. for ℓ := 1 to s do
2. if zi ∈ A′ then qi := 0 else qi := sgn zi
3. zi := zi −

∑k
j=−h qi−jbj

Theorem 4.3. Suppose that β is WRZ. Then Algorithm II realizes addition in constant time in parallel in FinA(β) with alphabet
A = {−a, . . . , 0, . . . , a}, where a =

 B−1
2

+ M.

Proof. During the course of the algorithm, we do not change the value
∑

ziβ i (thanks to the fact that we are only applying
the weak representation of zero, either positively, or negatively). For correctness of the algorithm, we just have to check the
magnitude of digits at the time when the algorithm stops.

After the 0th-step, any digit zi belongs to the alphabet A(0). We will prove

for 1 ⩽ ℓ < s : if after the (ℓ − 1)th-step the digit zi belongs to A(ℓ−1), then after the ℓth-step the new digit zi (we shall
denote it for the moment by znewi) belongs to A(ℓ).

for ℓ = s : if after the (s − 1)th-step the digit zi belongs to A(s−1), then after the sth-step the new digit znewi belongs to A.

This already will confirm the correctness of Algorithm II.

Let us discuss the value of digits zi after the ℓth-step according to the value qi computed in this step. During the discussion
we shall use the inequalities

a < 2a − ℓ(B − M) for ℓ < s ,
a ⩾ 2a − ℓ(B − M) for ℓ = s , (10)

which follow from the choice of s by (9). Let zi be in A(ℓ−1). There are three possible cases:

• qi = 0: In this case, |zi| ⩽ a′
= a − M and znewi = zi −

∑
j≠0 qi−jbj. Therefore,

|znewi | ⩽ |zi| +

−
j≠0

qi−jbj

 ⩽ a − M + M = a ⩽

2a − ℓ(B − M) if ℓ < s,
a if ℓ = s

i.e., znewi ∈ A(ℓ) for ℓ < s and znewi ∈ A for ℓ = s.
• qi = 1: In this case, a′

+ 1 = a − M + 1 ⩽ zi ⩽ 2a − (ℓ − 1)(B − M) and

znewi = zi − B −

−
j≠0

qi−jbj.

Therefore, for the upper bound we have

znewi ⩽ 2a − (ℓ − 1)(B − M) − B + M = 2a − ℓ(B − M) ⩽

2a − ℓ(B − M) if ℓ < s,
a if ℓ = s.

On the other hand, we obtain for the lower bound

znewi ⩾ a − M + 1 − B − M ⩾ −a ⩾

−2a + ℓ(B − M) if ℓ < s,
−a if ℓ = s,

i.e., znewi ∈ A(ℓ) for ℓ < s and znewi ∈ A for ℓ = s.
• qi = −1: Analogous to the previous case.

In the previous discussion we have also used the inequality a − M + 1 − B − M ⩾ −a which is a consequence of the
definition of a, see (8). �

Author's personal copy

5722 C. Frougny et al. / Theoretical Computer Science 412 (2011) 5714–5727

Corollary 4.4. Ifβ isWRZ, then addition realized by Algorithm II is a (hs+ks+1)-local functionwithmemory ks and anticipation
hs. Algorithm II is neighbour-free.

Remark 4.5. If β is a root of a strong polynomial, wemay use both Algorithm I and II with this strong representation of zero.
Theyworkwith the alphabetA = {−a, . . . , 0, . . . , a}, whereby in the first algorithm a = aI =

 B−1
2

+

B−1

2(B−2M)

M , while

in the second one a = aII =
 B−1

2

+ M . Thus the alphabet of Algorithm II is never bigger than the alphabet of Algorithm I

using the same SRZ.
It is easy to see that both the alphabets coincide (aI = aII) if, and only if, B ⩾ 4M − 1. If B and M satisfy this inequality,

then the parameter s from Algorithm II is equal to 1, and the algorithms are the same.
If 4M − 1 > B > 2M , then Algorithm II uses a strictly smaller alphabet. The price we have to pay is the number of

steps. Unlike Algorithm I, the number of steps in Algorithm II depends on values M and B in the weak polynomial. Another
disadvantage of Algorithm II is the increasing number of positions needed to store the result. Comparing the length of outputs
in both algorithms, if d = k+ h is the degree of the strong or weak polynomial, Algorithm I can enlarge the number of used
positions by d, while Algorithm II enlarges the number of used positions by ds.

Remark 4.6. A given base β can satisfy more than one strong polynomial, and, consequently, we have several versions of
Algorithm I. Similarly, one base β can satisfy several different weak polynomials, and thus several versions of Algorithm II.

Example 4.7. Let us consider an integer base β = b in N.

• If b ⩾ 3, then−X +b = 0 is a strong polynomial for b, with B = b andM = 1, thus B ⩾ 4M−1. According to the previous
remark, the two algorithms (I and II) coincide and require the same alphabet A = {−a, . . . , a} with a =

 b+1
2

. In this

sense, both algorithms are generalizations of the Avizienis algorithm to non-integer bases.
• For b = 2, the equation −X + 2 = 0 is a weak polynomial and we may use it in Algorithm II, which works now with the

alphabet A = {−2, −1, 0, 1, 2}. This alphabet is bigger than the alphabet in the parallel algorithm given by Chow and
Robertson, but, on the other hand, it is smaller than the alphabet in the algorithm that we have described in Example 3.6.

Remark 4.8. In both our algorithms (I and II), the decision about application of the rewriting rule at position i depends
only on the actual value of the digit at this position. This is the crucial difference from the algorithm described by Chow
and Robertson for base 2, where the decision depends also on the digit at the right neighbouring position i − 1. A natural
question is whether this kind of strategy may be applied to other bases as well. In the last section, we can answer this
question positively, at least for the Golden Mean.

5. Polynomials with a dominant coefficient

Algorithms I and II are applicable only to basesβ being a root of a strong or aweak polynomial, that is to say, a polynomial
with integer coefficients, where one of these coefficients is dominant, i.e., is greater than twice or once the sumof themoduli
of the other coefficients. We shall show that for most of the algebraic numbers β with |β| > 1 such a strong or weak
polynomial exists.

Proposition 5.1. Let α be an algebraic number of degree d with algebraic conjugates α1, α2, . . . , αd (including α itself). Let us
assume that |αi| ≠ 1 for all i = 1, 2, . . . , d and |α| > 1. Then, for any t ⩾ 1 there exist a polynomial

Q (X) = a0Xm
+ a1Xm−1

+ · · · + am−1X + am ∈ Z[X]

and an index i0 ∈ {1, . . . ,m} such that

Q (α) = 0 and |ai0 | > t
−

i∈{0,...,m}\{i0}

|ai|.

Proof. Let G(X) be the minimal polynomial of α, i.e.,

G(X) =

d∏
j=1

(X − αj) = Xd
+ g1Xd−1

+ · · · + gd−1X + gd ∈ Q[X].

LetM be the companion matrix of the polynomial G(X):

M =

−g1 1 0 0 . . . 0
−g2 0 1 0 . . . 0
−g3 0 0 1 . . . 0

...
−gd−1 0 0 0 . . . 1
−gd 0 0 0 . . . 0

 ∈ Qd×d.

Author's personal copy

C. Frougny et al. / Theoretical Computer Science 412 (2011) 5714–5727 5723

It is a well-known fact, which can be easily verified, that the characteristic polynomial ofM satisfies

det(M − XI) = (−1)dG(X) ,

where I is the unit matrix of corresponding size d × d. In particular, the numbers αj are eigenvalues of M . For any n in N,
n ⩾ 2, define

Gn(X) =

d∏
j=1

(X − αn
j) = g0(n)Xd

+ g1(n)Xd−1
+ · · · + gd−1(n)X + gd(n).

Since the matrixMn has eigenvalues αn
1, . . . , α

n
d , we have

det(Mn
− XI) = (−1)d

d∏
j=1

(X − αn
j) = (−1)dGn(X).

As M is a rational matrix, its power Mn is rational as well, and thus det(Mn
− XI) is a polynomial with rational coefficients.

It implies that, for all n in N, the polynomial Gn(X) has rational coefficients. Clearly, for all n in N and j in N, j ⩽ d, we have

gj(n) = (−1)j
−

{i1,i2,...,ij}∈Sj

αn
i1α

n
i2 . . . αn

ij , (11)

where Sj =

A ⊂ {1, 2, . . . , d} : #A = j

is the set of all subsets of {1, 2, . . . , d} with cardinality j.

Without loss of generality, let us assume |α1| ⩾ |α2| ⩾ . . . ⩾ |αd|, and denote j0 = max{i : 1 < |αi|}. Our choice of j0
guarantees thatαi1αi2 · · · αir

α1α2 . . . αj0

 < 1

for any subset {i1, i2, . . . , ir} ⊂ {1, 2, . . . , d} and {i1, i2, . . . , ir} ≠ {1, 2, . . . , j0}. Therefore, for all such choices of
{i1, . . . , ir} ≠ {1, 2, . . . , j0}, we have

lim
n→∞

αn
i1
αn
i2

. . . αn
ir

αn
1α

n
2 . . . αn

j0

= 0.

Since the coefficients gj(n) of the polynomial Gn satisfy (11), we can deduce

lim
n→∞

gj(n)
αn
1α

n
2 . . . αn

j0

=

0 for all j = 1, . . . , d, j ≠ j0 ,

(−1)j for j = j0.

Wemay already claim that there exists n0 = n0(t) in N such that

|gj0(n0)| > t
−

j∈{1,...,m}\{j0}

|gj(n0)| , (12)

or, equivalently,

|gj0(n0)|

|α
n0
1 α

n0
2 . . . α

n0
j0

|
> t

−
j∈{1,...,m}\{j0}

|gj(n0)|

|α
n0
1 α

n0
2 . . . α

n0
j0

|
.

The existence of a suitable n0 is obvious, as the right hand side tends to 0 and the left hand side has the limit 1.
Let us fix one suchn0, anddenote byK the least commonmultiple of the denominators of ratios g1(n0), . . . , gd−1(n0), gd(n0).

Then the polynomial Q (X) = KGn0(X
n0) and the index i0 = n0j0 have the desired properties. �

Definition 5.2. Let t ⩾ 1, and let T (X) =
∑n

i=0 tiX
i be a polynomial with integer coefficients ti inZ. T is called a t-polynomial

if there exists i0 ∈ {0, . . . , n} such that

|ti0 | > t
−

i∈{0,...,n}\{i0}

|ti|.

Remark 5.3. The polynomialQ constructed in the proof of Proposition 5.1 clearly is a t-polynomial, and, for t = 1we obtain
a weak polynomial, while for t = 2 we get a strong polynomial.
Remark 5.4. Lemma 8 in [1] gives a little bit weaker statement in the case of an expanding algebraic integer α, i.e., |αi| > 1
for all conjugates of α. Our proof of the previous Proposition 5.1 was strongly inspired by the proof given by Akiyama, et al.
in [1].
Example 5.5. The proof of Proposition 5.1 is constructive. The strong representations of zerowe have used in Examples 3.6–
3.8 can be obtained by the construction given in the proof with t = 2, namely as follows:

• For β = 2, the minimal polynomial is G(X) = X − 2, then G2(X) = X − 22, and the desired Q (X) = G2(X2) = X2
− 4.

Author's personal copy

5724 C. Frougny et al. / Theoretical Computer Science 412 (2011) 5714–5727

• For the Golden Mean, the minimal polynomial is G(X) = X2
− X − 1 = (X − β)(X − β ′) with β =

1+
√
5

2 and

β ′
=

1−
√
5

2 . The minimal n satisfying (12) is n = 4. Therefore, G4(X) =

X − β4

X − (β ′)4

, and the final Q (X) =

G4(X4) = X8
−

β4

+ (β ′)4

X4

+ β4(β ′)4 = X8
− 7X4

+ 1.
• For the base β = −1 + i, the minimal polynomial is G(X) = (X + 1 − i)(X + 1 + i) = X2

+ 2X + 2. Already for n = 2
we have G2(X) =

X − (−1 + i)2

X − (−1 − i)2

= (X + 2i)(X − 2i) = X2

+ 4, and our strong representation of zero
uses the polynomial Q (X) = G2(X2) = X4

+ 4.

Proposition 5.6. Let β be an algebraic number with a conjugate γ such that |γ | = 1. Then β cannot satisfy a t-polynomial for
any t ⩾ 1.
Proof. Suppose that β is a root of a polynomialW (X) = bkXk

+ bk−1Xk−1
+ · · · + b1X + b0 + b−1X−1

+ · · · + b−hX−h with
integer coefficients bi ∈ Z. Then also the conjugate γ is a root of W (X):

bkγ k
+ bk−1γ

k−1
+ · · · + b1γ + b0 + b−1γ

−1
+ · · · + b−hγ

−h
= 0.

Since |γ | = 1, we obtain

|b0| ⩽
−

i∈{−h,...,k}\{0}

|bi|. � (13)

By Propositions 5.1 and 5.6 we obtain the following result:
Theorem 5.7. Let β with |β| > 1 be an algebraic number. Then β is SRZ (or WRZ) if and only if it has no conjugate of modulus 1.

It is fairly easy to recognize whether an algebraic number does, or does not have a conjugate of modulus 1, by looking at
its minimal polynomial. First, if the number is quadratic, it cannot have any conjugate of modulus 1. Suppose now that α is
an algebraic number of degree d > 2, with a conjugate α′ withmodulus |α′

| = 1. Let G(X) = Xd
+g1Xd−1

+· · ·+gd−1X +gd
be its minimal polynomial, G(X) in Q[X]. Since G(X) is minimal, α′

≠ ±1; i.e., α′ is not real. As the minimal polynomial has
all its coefficients real, the complex conjugate α′ =

1
α′ is a root of G as well. In general, if the minimal polynomial has two

different roots η and 1
η
, then the minimal polynomial satisfies

G(X) = XdG
 1
X

,

thus it is reciprocal and its degree is even. This is summarized in the following remark.
Remark 5.8. Let β with |β| > 1 be an algebraic number of degree d.

• If d is odd, or
• if d = 2, or
• if d ⩾ 4 is even and the minimal polynomial of β is not reciprocal,

then β has no conjugate of modulus 1.

6. The Golden Mean — all good things come in threes

In [3], Berstel described an algorithm for parallel addition in base β =
1+

√
5

2 on an alphabet with cardinality 13. In this
section,we give Algorithm III for parallel addition in this numeration systemon the alphabet {−1, 0, 1}. This alphabet cannot
be further reduced, as proved in [6]. In our algorithm, we use a method similar to the method of Chow and Robertson.

We begin by describing two auxiliary algorithms for elimination of digits. Both of them use the weak representation of
zero −β2

+ 3 −
1
β2 = 0.

The first auxiliary algorithm removes digits −2:

Algorithm A: Base β =
1+

√
5

2 , reduction from alphabet {−2, . . . , 2} to {−1, . . . , 2}.

Input: a finite sequence of digits (zi) of {−2, 1, 0, 1, 2}, with z =
∑

ziβ i.
Output: a finite sequence of digits (zi) of {−1, 0, 1, 2}, with z =

∑
ziβ i.

for each i in parallel do

1. case

zi = −2
zi = −1
zi = 0 and zi+2 < 0 and zi−2 < 0

then qi := −1

else qi := 0
2. zi := zi − 3qi + qi+2 + qi−2

Author's personal copy

C. Frougny et al. / Theoretical Computer Science 412 (2011) 5714–5727 5725

Proof. For the correctness of Algorithm A we have to show that the value znewi = zi − 3qi + qi+2 + qi−2 belongs to the
alphabet {−1, 0, 1, 2} for each i.
We will use the fact that our prescription for qi satisfies

zi ⩾ 0 and zi+2 ⩾ 0 =⇒ qi = 0 and qi+2 = 0. (14)

Let us discuss the value of znewi according to the values qi:

qi = 0 and
• zi ∈ {1, 2}: Then, znewi = zi + qi+2 + qi−2 ∈ {−1, 0, 1, 2}.
• zi = 0: Then our algorithm for the value qi supposes that zi+2 ⩾ 0 or zi−2 ⩾ 0. According to (14), we have

qi+2 = 0 or qi−2 = 0. Therefore, znewi = qi+2 + qi−2 ∈ {−1, 0}.
qi = −1 and

• zi ∈ {−2, −1}: Then, znewi = zi + 3 + qi+2 + qi−2 ∈ {−1, 0, 1, 2}.
• zi = 0: The rule for the value qi supposes that zi+2 ⩽ −1 and zi−2 ⩽ −1. Therefore, qi+2 = qi−2 = −1, which

implies znewi = 3 + qi+2 + qi−2 = 1.

Other combinations, namely (qi = 0 and zi ∈ {−2, −1}) or (qi = −1 and zi ∈ {1, 2}), are impossible. Thereby, we have
shown that the digits of the result belong to the desired alphabet {−1, 0, 1, 2}.

The second auxiliary algorithm removes digits 2:

Algorithm B: Base β =
1+

√
5

2 , reduction from alphabet {−1, 0, 1, 2} to {−1, 0, 1}.

Input: a finite sequence of digits (zi) of {−1, 0, 1, 2}, with z =
∑

ziβ i.
Output: a finite sequence of digits (zi) of {−1, 0, 1}, with z =

∑
ziβ i.

for each i in parallel do

1. case

zi = 2
zi = 1 and (zi+2 ⩾ 1 or zi−2 ⩾ 1)
zi = 0 and zi+2 = zi−2 = 2
zi = 0 and zi+2 = zi−2 = 1 and zi+4 ⩾ 1 and zi−4 ⩾ 1
zi = 0 and zi+2 = 2 and zi−2 = 1 and zi−4 ⩾ 1
zi = 0 and zi−2 = 2 and zi+2 = 1 and zi+4 ⩾ 1

 then qi := 1

else qi := 0
2. zi := zi − 3qi + qi+2 + qi−2

Proof. Before explanation of the correctness of AlgorithmB,wepoint out several simple facts about the values qi determined
in Algorithm B:

• Fact 1. zi ⩾ 1 and zi+2 ⩾ 1 =⇒ qi = 1 and qi+2 = 1.
• Fact 2. zi ⩽ 0 and zi+2 ⩽ 0 =⇒ qi = 0 and qi+2 = 0.
• Fact 3. zi+2 ⩽ 0 and zi = 1 and zi−2 ⩽ 0 =⇒ qi = 0.
• Fact 4. zi = 0 and qi = 1 =⇒ qi+2 = 1 and qi−2 = 1.

Unlike the previous four facts, the following three ones deserve short proofs:

• Fact 5. zi = 1 and qi = 0 =⇒ qi+2 = 0 and qi−2 = 0.
Proof of Fact 5. The assumption zi = 1 and qi = 0 implies zi+2 ⩽ 0. If zi+2 = −1, then we have directly qi+2 = 0. Now
suppose that zi+2 = 0. If qi+2 were equal to 1, then, according to Fact 4, the value qi is equal to 1, a contradiction. The
discussion for qi−2 is analogous.

• Fact 6. zi = 0 and qi = 0 =⇒ qi+2 = 0 or qi−2 = 0.
Proof of Fact 6.When zi = 0, then the value qi is zero in these two situations:
(a) One of numbers zi+2, zi−2 is not positive. Then, according to Fact 2, one of the values qi+2, qi−2 is zero.
(b) Both zi+2 ⩾ 1 and zi−2 ⩾ 1. The assumption qi = 0 forces, without loss of generality, that zi−2 = 1 and zi−4 ⩽ 0. So
we can use Fact 3 to deduce qi−2 = 0.

• Fact 7. zi = 1 and qi = 1 =⇒ qi+2 = 1 or qi−2 = 1.
Proof of Fact 7. The assumption zi = 1 and qi = 1 implies zi+2 ⩾ 1 or zi−2 ⩾ 1. According to Fact 1, at least one of numbers
qi+2 or qi−2 is 1.

Nowwe demonstrate the correctness of AlgorithmB, by showing that znewi = zi−3qi+qi+2+qi−2 belongs to the alphabet
{−1, 0, 1} for each i.

Author's personal copy

5726 C. Frougny et al. / Theoretical Computer Science 412 (2011) 5714–5727

Let us again discuss the value znewi according to the values qi:

qi = 0 and
• zi = −1: Then, znewi = −1 + qi+2 + qi−2 ∈ {−1, 0, 1}.
• zi = 0: Due to Fact 6, we have znewi = qi+2 + qi−2 ∈ {0, 1}.
• zi = 1: According to Fact 5, we have znewi = 1 + qi+2 + qi−2 = 1.

qi = 1 and
• zi = 2: Then, znewi = −1 + qi+2 + qi−2 ∈ {−1, 0, 1}.
• zi = 1: Due to Fact 7, we have znewi = −2 + qi+2 + qi−2 ∈ {−1, 0}.
• zi = 0: According to Fact 4, we have znewi = −3 + qi+2 + qi−2 = −1.

Other combinations, namely (qi = 0 and zi = 2) or (qi = 1 and zi = −1), are impossible. Thereby, we have shown that the
digits of the result belong to the desired alphabet {−1, 0, 1}.

Lastly, we can proceed by summarizing the Algorithm III for parallel addition in base β =
1+

√
5

2 and alphabet {−1, 0, 1}:

Algorithm III: Base β =
1+

√
5

2 , parallel addition on alphabet A = {−1, 0, 1}.

Input: two finite sequences of digits (xi) and (yi) of {−1, 0, 1}, with x =
∑

xiβ i and y =
∑

yiβ i.
Output: a finite sequence of digits (zi) of {−1, 0, 1} such that

z = x + y =

−
ziβ i.

for each i in parallel do
0. vi := xi + yi
1. use Algorithm A with input (vi) and denote its output (wi)
2. use Algorithm B with input (wi) and denote its output (zi)

Corollary 6.1. Addition in base the Golden Mean on the alphabet {−1, 0, 1} realized by Algorithm III is a 21-local function with
memory 10 and anticipation 10. Algorithm III is neighbour-sensitive.

Proof. It is easily seen that Algorithm A is local with memory 4 and anticipation 4. Algorithm B is local with memory 6 and
anticipation 6. Therefore, Algorithm III is 21-local with memory 10 and anticipation 10. �

Remark 6.2. All of our algorithms described above are working with symmetric alphabets of signed-digits. Such a choice
of alphabet is practical, because the algorithm for addition can be used for subtraction at the same time. However, the
symmetry of the alphabet is not necessary for parallelism as such. The parallel algorithm for addition in base being the
Golden Mean given by Berstel [3] uses an alphabet of 13 non-negative digits, namely {0, 1 . . . , 9, 10, 11, 12}. In fact, our
auxiliary Algorithms A and B demonstrate that, if we do not insist on the symmetry, we may be able to further reduce the
alphabet.

Remark 6.3. In Algorithm III, input values x2i and y2i at even positions do not influence the output values z2i+1 at odd
positions, and similarly for the input in odd positions. Therefore, the data at even and odd positions can be stored separately,
and addition can be performed in parallel on the input (x2i) and (y2i) on one hand, and on the input (x2i+1) and (y2i+1) on
the other hand, by an 11-local function independently.

Remark 6.4. The structure of Algorithm III depends heavily on the coefficients of the weak polynomial satisfied by the
Golden Mean. It is not clear how to generalize it to a broader class of bases. However, the case where β is a quadratic unit
integer seems feasible similarly to the Golden Mean.

Remark 6.5 (Fibonacci Numeration System). The Fibonacci numbers are defined as follows:

F0 = 1, F1 = 2, and Fn+2 = Fn+1 + Fn for n ∈ N.

It is well known that any non-negative integer N can be expressed as a sum of different Fibonacci numbers,

N = Fik + Fik−1 + · · · + Fi0 with ik > ik−1 > . . . > i0 ⩾ 0.

If, moreover, we require ij ⩾ ij−1 +2 for any index j, then such an expression is unique, see [15]. For example, the number 29
can be represented in the Fibonacci numeration systemby (29)F = 1010000, as 29 = F6+F4. If we abandon the requirement
of uniqueness, and allow coefficients −1, 0, 1, then the numeration system is redundant, and addition can be performed by
a parallel algorithm in constant time as well. Let us explain it. We want to add two integers written in the form

X =

−
i⩾0

xiFi and Y =

−
i⩾0

yiFi with xi, yi ∈ {−1, 0, 1}.

Author's personal copy

C. Frougny et al. / Theoretical Computer Science 412 (2011) 5714–5727 5727

We can use Algorithm III with a small modification. Algorithm III is based on the weak representation of zero−β i+2
+3β i

−

β i−2
= 0. The Fibonacci numbers satisfy analogous relations:

• −Fi+2 + 3Fi − Fi−2 = 0 for all i ⩾ 2
• −F3 + 3F1 − F0 = 0
• −F2 + 3F0 = 0.

Therefore, the Algorithm III needs only slight changes, namely at the positions with indices i = 0, 1 in Part 1 (Algorithm A)
and i = 0, 1, 2, 3 in Part 2 (Algorithm B).

However, a function computable in parallel is defined by a sliding window of length p, which means that the function Φ

cannot depend on any particular index i, but only on the p-tuples of the input alphabet. To get rid of this problem, we use
the classical trick of extending the alphabet {−1, 0, 1} by an artificial symbol, say $, to indicate the exceptional positions
to the function Φ . Thus we will represent the above mentioned number 29 as (29)F = 1010000$$$ The domain of the
21-local function Φ announced in Corollary 6.1 has to be enlarged to the set {−1, 0, 1, $}21, and the definition of Φ must be
correspondingly extended as well.

Note that, due to the relation −F3 + 3F1 − F0 = 0, the alternative option of processing the odd positions separately from
the even positions (as described in Remark 6.3. for base β =

1+
√
5

2) cannot be used for the Fibonacci numeration system.

Acknowledgements

We are grateful to Shigeki Akiyama for showing us the connection between polynomials with a dominant coefficient and
the height reducing problemwith expanding base α, and for providing us the reference [1].We also want to thankWolfgang
Steiner for pointing out that the results contained in [9] imply Proposition 5.1 in case β is a Pisot number. Finally, we thank
Péter Burcsi for Proposition 5.6.

We acknowledge financial support by the Czech Science Foundation grant GAČR 201/09/0584, and by grants
MSM6840770039 and LC06002 of the Ministry of Education, Youth, and Sports of the Czech Republic.

References

[1] S. Akiyama, P. Drungilas, J. Jankauskas, Height reducing problem on algebraic integers, Functiones et Approximatio, Commentarii Mathematici (2011)
(in press).

[2] A. Avizienis, Signed-digit number representations for fast parallel arithmetic, IRE Trans. Electron. Comput. 10 (1961) 389–400.
[3] J. Berstel, Fibonacci words — A survey, The Book of L, Springer-Verlag, 1986, pp. 13–27.
[4] A. Cauchy, Sur les moyens d’éviter les erreurs dans les calculs numériques, C.R. Acad. Sc. Paris série I 11 (1840) 789–798.
[5] C.Y. Chow, J.E. Robertson, Logical design of a redundant binary adder, in: Proc. 4th IEEE Symposium on Computer Arithmetic 1978, pp. 109–115.
[6] Ch. Frougny, On-line finite automata for addition in some numeration systems, RAIRO Theor. Inform Appl. 33 (1999) 79–101.
[7] Ch. Frougny, K. Klouda, Rational base number systems for p-adic numbers, RAIRO Theor. Inform Appl. (2011) (in press).
[8] Ch. Frougny, J. Sakarovitch, Number representation and finite automata, in: V. Berthé, M. Rigo (Eds.), Combinatorics, Automata and Number Theory,

in: Encyclopedia of Mathematics and its Applications, vol. 135, Cambridge University Press, 2010.
[9] Ch. Frougny, W. Steiner, Minimal weight expansions in Pisot bases, J. Math. Cryptol. 2 (2008) 365–392.

[10] P. Kornerup, Necessary and Sufficient Conditions for Parallel, Constant Time Conversion and Addition, in: Proc. 14th IEEE Symposium on Computer
Arithmetic, 1999, pp. 152–155.

[11] D. Lind, B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, 1995.
[12] M. Lothaire, Algebraic Combinatorics on Words, in: Encyclopedia of Mathematics and its Applications, vol. 90, Cambridge University Press, 2002.
[13] A.M. Nielsen, J.-M. Muller, Borrow-Save Adders for Real and Complex Number Systems, Proc. Real Numbers Computers, Marseilles (1996) 121–137.
[14] W. Penney, A binary system for complex numbers, J. Assoc. Comput. Mach. 12 (1965) 247–248.
[15] E. Zeckendorf, Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41

(1972) 179–182.

