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Abstract—A positional numeration system is given by a base
and by a set of digits. The base is a real or complex number β
such that |β| > 1, and the digit set A is a finite set of real or
complex digits (including 0). In this paper, we first formulate a
generalized version of the on-line algorithms for multiplication
and division of Trivedi and Ercegovac for the cases that β is any
real or complex number, and digits are real or complex.

We show that if (β,A) satisfies the so-called (OL) Property,
then on-line multiplication and division are feasible by the
Trivedi-Ercegovac algorithms. For a real base β and alphabet A
of contiguous integers, the system (β,A) has the (OL) Property
if #A > |β|.

Provided that addition and subtraction are realizable in paral-
lel in the system (β,A), our on-line algorithms for multiplication
and division have linear time complexity.

Three examples are presented in detail: base β = 3+
√
5

2
with alphabet A = {−1, 0, 1}; base β = 2i with alphabet
A = {−2,−1, 0, 1, 2} (redundant Knuth numeration system);
and base β = − 3

2
+ ı

√
3

2
= −1 + ω, where ω = exp 2iπ

3
,

with alphabet A = {0,±1,±ω,±ω2} (redundant Eisenstein
numeration system).

Index Terms—on-line algorithm; numeration system;

I. INTRODUCTION

A positional numeration system is given by a base and by a
set of digits. The base is a real or complex number β such that
|β| > 1, and the digit set A is a finite set of real or complex
digits (including 0). The most studied numeration systems are
of course the usual ones, where the base is a positive integer.
But there have been also numerous studies, where the base
is an irrational real number (the so-called β-expansions), a
complex number, or a non-integer rational number, etc. A
survey can be found in [6, Chapter 2].

On-line arithmetic, introduced in [14], is a mode of compu-
tation where operands and results flow through arithmetic units
in a digit serial manner, starting with the most significant digit.
To generate the first digit of the result, the first δ digits of the
operands are required. The integer δ is called the delay of the
algorithm. This technique allows for pipelining of different
operations, such as addition, multiplication and division. It
is also appropriate for the processing of real (or complex)
numbers having infinite expansions: it is well known that
when multiplying two real (or complex) numbers, only the
left part of the result is significant. On-line arithmetic is used
for special circuits such as in signal processing, and for very
long precision arithmetic. An application to real-time control
can be found in [1]. One of the interests of on-line computable

functions is that they are continuous for the usual topology on
the set of infinite sequences on a finite digit set. In order to be
able to perform on-line computations, it is necessary to use a
redundant numeration system, where a number may have more
than one representation. A sufficient level of redundancy can
also enable parallel addition and subtraction, which are used
internally in the multiplication and division on-line algorithms.

On-line algorithms for multiplication and division in some
complex numeration systems were given in [11], [9], and [7].
In this paper, we formulate a generalized version of the on-
line algorithms for multiplication and division of Trivedi and
Ercegovac [14], [2], for the cases that β is any real or complex
number, and digits are real or complex.

Denote by B(Z, ε) the ball of center Z and radius ε. Let
us say that a pair (β,A) has the (OL) Property if there exists
a number ε > 0 and a bounded set I satisfying the following
assumption: for every Z in ∪T∈βIB(T, ε) there exists a in A
such that B(Z, ε) ⊂ I + a. We show that if (β,A) has the
(OL) Property and if 0 is in I , then on-line multiplication and
division are feasible by the Trivedi-Ercegovac algorithms. For
a real base β and an alphabet A of contiguous integers, the
system (β,A) has the (OL) Property if #A > |β|.

The key point of our algorithms is the specific choice of the
function Select(W ) performing selection of the digit to output.
Since the definition of Select(W ) uses just a reasonable
approximation of W by a limited number of digits of W ,
it takes only constant time to evaluate it. In particular, we do
not treat the real and the imaginary components separately.

The operation of division requires a preprocessing of the
denominator, which we also discuss in this paper.

Provided that addition and subtraction are realizable in
parallel in the system (β,A) (see [4] for general results on this
topic), our on-line algorithms for multiplication and division
have linear time complexity.

Three examples are presented in full detail, wherein L de-
notes the number of fractional digits of W providing sufficient
approximation of W within the on-line algorithm:
1) β = 3+

√
5

2 and A = {−1, 0, 1}: on-line multiplication is
possible with delay δ = 4 and with L = 3, on-line division
with delay δ = 6 and with L = 9.
2) β = 2i and A = {−2,−1, 0, 1, 2} (redundant Knuth
numeration system): on-line multiplication is possible with
delay δ = 8 and L = 6, and on-line division with delay
δ = 11 and L = 11.



3) β = − 3
2 + ı

√
3

2 = −1 + ω, where ω = exp 2iπ
3 is the

third root of unity, and A = {0,±1,±ω,±ω2} (redundant
Eisenstein numeration system). We have two reasonable pos-
sibilities for the multiplication algorithm: (δmin, L) = (5, 7),
with minimized delay δ, and (δ, Lmin) = (6, 6), with mini-
mized parameter L; and similarly for the division algorithm:
(δmin, L) = (7, 10), with minimized delay δ, and (δ, Lmin) =
(10, 9), with minimized parameter L.

II. ALGORITHMS OF TRIVEDI AND ERCEGOVAC

The on-line multiplication and the on-line division algo-
rithms we describe below are the same as the algorithms in-
troduced by Trivedi and Ercegovac for computation in integer
bases with a symmetric alphabet [14], [2]. Our modification
for non-standard numeration systems for arbitrary base β (in
general a complex number) and a digit set A (in general a
finite set of complex numbers) stems from a specific choice
of the function Select.

In the sequel, if Z =
∑∞
i=1 ziβ

−i, we denote its partial sum
by Zj =

∑j
i=1 ziβ

−i; and let us put A = max{|a| : a ∈ A}.

A. On-line multiplication algorithm

The algorithm for on-line multiplication in a numeration
system (β,A) has one parameter – the delay δ ∈ N, which is
specified later. The Select function here is called SelectM.

The inputs of the algorithm are two strings

0.x1x2 · · ·xδxδ+1xδ+2 · · · and 0.y1y2 · · · yδyδ+1yδ+2 · · ·

with xi, yi ∈ A for all i ∈ N, xi = yi = 0 for i ≤ δ, and such
that X =

∑∞
i=1 xiβ

−i and Y =
∑∞
i=1 yiβ

−i.
The output is a string 0.p1p2p3 · · · corresponding to

a (β,A)-representation of the product P = X.Y =∑∞
i=1 piβ

−i.
Set W0 = X0 = Y0 = p0 = 0. At the k-th step of the

iteration (k ≥ 1) compute:

Wk = β(Wk−1 − pk−1) + (xkYk−1 + ykXk) , (1)
pk = SelectM(Wk) ∈ A . (2)

Lemma II.1. Definitions (1) and (2) imply that, for any k ≥ 1:

Wk = βk(XkYk − Pk−1) .

Moreover, if the sequence (Wk) is bounded, then

XY = lim
k→+∞

XkYk = lim
k→+∞

Pk = P .

B. On-line division algorithm

The algorithm for on-line division in (β,A) numeration
system has two parameters: the delay δ ∈ N and the minimal
value of the modulus of the denominator Dmin > 0. The
Select function here is called SelectD.

The inputs of the algorithm are two strings

0.n1n2 · · ·nδnδ+1nδ+2 · · · and 0.d1d2d3 · · ·

with ni, di ∈ A for all i ∈ N, with ni = 0 for i ≤ δ, such
that N =

∑∞
i=1 niβ

−i is the numerator, D =
∑∞
i=1 diβ

−i is
the denominator and

|Dj | ≥ Dmin for all j ∈ N, j ≥ 1 . (3)

The output is a string 0.q1q2q3 · · · corresponding to
a (β,A)-representation of the quotient Q = N/D =∑∞
i=1 qiβ

−i.
Set W0 = q0 = Q0 = 0 . Each k-th step of the iteration

(k ≥ 1) proceeds by calculating

Wk = β(Wk−1 − qk−1Dk−1+δ) +

+ β−δ(nk+δ −Qk−1dk+δ) , (4)
qk = SelectD(Wk, Dk+δ) ∈ A . (5)

Lemma II.2. Definitions (4) and (5) imply that, for any k ≥ 1:

Wk = βk(Nk+δ −Qk−1Dk+δ) .

Moreover, if the sequence (Wk) is bounded, then

Q = lim
k→∞

Qk =
N

D
.

It is clear that the choice of the Select function is the
crucial point for correctness of the algorithms, for both on-
line multiplication and on-line division.

III. ON-LINE MULTIPLICATION AND DIVISION IN REAL
AND COMPLEX BASES

In this section, we give a sufficient condition on β ∈ C and
A ⊂ C, which guarantees that the numeration system (β,A)
allows on-line multiplication and division.

We fix the following notation: for ε > 0 and a set T ⊂ C,
T ε is the ε-neighbourhood of the set T :

T ε =
⋃
T∈T

B(T, ε) ,

where B(T, ε) is the ball of center T and radius ε.
For numbers a, β ∈ C and a set T ⊂ C, we denote

T + a = {T + a : T ∈ T } and βT = {βT : T ∈ T } .

Definition III.1. A numeration system (β,A) possesses the
(OL) Property if there exist a number ε > 0 and a bounded
set I ⊂ C satisfying the following assumption:

∀ Z ∈ (βI)ε ∃ a ∈ A such that B(Z, ε) ⊂ I + a . (6)

Example III.2. The system defined by β = 3+
√

5
2 and A =

{−1, 0, 1} satisfies the (OL) Property with ε = 1
2β(β+1) and

I = [−( 1
2 + ε), 1

2 + ε]. See Section VI-A for details.

The following lemma is a direct consequence of Def. III.1:

Lemma III.3. Suppose that (β,A) has the (OL) Property,
and I ⊂ C and ε > 0 satisfy (6). Then there exists a function
Digit : (βI)ε → A such that

Digit(V ) = a ⇒ B(V, ε) ⊂ I + a . (7)



When selecting the kth-digit pk (in the multiplication algo-
rithm) or qk (in the division algorithm), we do not want to
evaluate the auxiliary variable Wk precisely, as it would be
too costly. We shall use only a reasonable approximation by
several most important digits of Wk.

Definition III.4. For E > 0, denote by TruncE a function
C→ C such that

|Z − TruncE(Z)| < E for any Z ∈ C. (8)

In the sequel, we use the TruncE function in the form
of truncation of the less significant digits of the (β,A)-
representation of the number Z =

∑∞
j=1 zjβ

−j ; namely
TruncE(Z) =

∑L
j=1 zjβ

−j with L ∈ N such that
|∑∞j=L+1 zjβ

−j | < E for any zj ∈ A.

A. Selection function for on-line multiplication

Definition III.5. Let (β,A) be a numeration system with the
(OL) Property, let I ⊂ C and ε > 0 satisfy (6), and let Digit
be the function from Lemma III.3. The selection function for
multiplication SelectM : (βI)ε/2 → A is defined by

SelectM(U) = Digit
(
Truncε/2(U)

)
(9)

for any U ∈ (βI)ε/2 .

The previous definition is correct only if Truncε/2(U)
belongs to the domain of the function Digit, i.e. (βI)ε. Indeed,
since U ∈ (βI)ε/2 and |U − Truncε/2(U)| < ε/2, the value
Truncε/2(U) is in (βI)ε, as needed.

Lemma III.6. Let U ∈ (βI)ε/2. Then U − SelectM(U) ∈ I .

Lemma III.7. Let (β,A) be a numeration system with the
(OL) Property, let I ⊂ C, ε > 0 satisfy (6), and let SelectM

be the function (9) from Def. III.5. Then there exists δ ∈ N
such that, for any U ∈ (βI)ε/2, any x, y ∈ A, any X =∑
i≥δ+1

xiβ
−i and Y =

∑
i≥δ+1

yiβ
−i with xi, yi ∈ A,

Unew = β
(
U−SelectM(U)

)
+(yX+xY ) belongs to (βI)ε/2.

Proof. Find δ ∈ N such that

1

|β|δ
2A2

|β| − 1
< ε/2 . (10)

Then |yX+xY | < ε
2 , and, according to Lemma III.6, the value

β
(
U − SelectM(U)

)
∈ βI . This concludes the proof.

Theorem III.8. Suppose that a numeration system (β,A) has
the (OL) Property, and I ⊂ C and ε > 0 satisfy (6). If 0 ∈ I ,
then on-line multiplication in (β,A) is performable by the
Trivedi-Ercegovac algorithm.

Proof. Since W0 = 0 ∈ I , necessarily W0 ∈ (βI)ε/2.
Lemma III.7 implies that Wk ∈ (βI)ε/2 for any k ∈ N
as well, and thus the sequence (Wk) is bounded. The result
follows from Lemma II.1.

B. Selection function for on-line division

Suppose that the value Dmin > 0 is given. In this whole
subsection, we assume that the numeration system (β,A) has
the (OL) Property, that I ⊂ C, ε > 0 satisfy (6), and the
divisor D satisfies (3).

The SelectD function in the Trivedi-Ercegovac algorithm for
division has two variables: Wk and Dk+δ . Again, we do not
want to compute these values precisely. In order to determine
a suitable level of approximation, find α > 0 such that

α
(
1 + |β|K + ε

)
< ε

2Dmin, where (11)
K = max{|z| : z ∈ I} . (12)

For specification of the function SelectD for division, we
use the function Truncα from Def. III.4.

Definition III.9. Let a value U ∈ C and a divisor D ∈ C
satisfy U ∈ D(βI)ε/2, and let α > 0 fulfill (11). The selection
function for division is defined by

SelectD(U,D) = Digit
(
V
∆

)
, where (13)

V = Truncα(U) and ∆ = Truncα(D) .

Let us stress that the domain of the function Digit is (βI)ε.
Thus Def. III.9 is correct only if V/∆ belongs to this domain;
which is confirmed by the following lemma:

Lemma III.10. For U ∈ C, D ∈ C satisfying (3), and α > 0
fulfilling (11), put V = Truncα(U) and ∆ = Truncα(D).
Then

U ∈ D(βI)ε/2 =⇒ V ∈ ∆(βI)ε .

The following statement corresponds to the iterative step in
the division algorithm.

Theorem III.11. Let a numeration system (β,A) have the
(OL) Property, and let I ∈ C, ε > 0 satisfy (6). If 0 ∈ I ,
then on-line division in (β,A) is performable by the Trivedi-
Ercegovac algorithm.

Proof. For the Trivedi-Ercegovac division algorithm, we
use the function SelectD from Def. III.9. According to
Lemma II.2, for correctness of the algorithm one has to show
that the sequence (Wk) is bounded.

We prove by induction on the index k ∈ N that, for each
k ≥ 0, the value Wk satisfies Wk ∈ Dδ+k(βI)ε/2 .

Let us set the delay δ such that:

A

Dmin

(
1 + A

|β|−1 +K + ε
)
< ε

2 |β|δ , (14)

with K from (12), and choose α > 0 fulfilling (11).
With such selection of parameters, it can be shown that, for

any U,D, F,G ∈ C with properties U ∈ D(βI)ε/2, |F | ≤ A

and |G| ≤ A
(

1 + A
|β|−1

)
, the numbers

Unew = β(U − qD) + G
βδ

and Dnew = D + F
βδ+1 , (15)

where q = SelectD(U,D), satisfy Unew ∈ Dnew(βI)ε/2 .



Now we apply (15) with F = dδ+k+1

βk
, G = nk+1+δ −

Qkdk+1+δ , U = Wk, Unew = Wk+1, q = qk, D = Dk+δ ,
Dnew = Dk+δ+1, and obtain the implication

Wk ∈ Dδ+k(βI)ε/2 =⇒ Wk+1 ∈ Dδ+k+1(βI)ε/2 .

The (OL) Property guarantees that the set I is bounded, and
the values Dk are bounded by A

|β|−1 in modulus. Thus the
sequence (Wk) is bounded too, as we wanted to demonstrate.

IV. (OL) PROPERTY

A. Real bases and the (OL) Property

For a given base β ∈ R, it is always possible to find a
sufficiently large alphabet A ⊂ Z such that the (OL) Property
for the numeration system (β,A) is fulfilled. But the challenge
is to prove the (OL) Property (and find the appropriate set
I and value ε > 0) for a given pair (β,A), especially for
alphabets of small size. In case of the real bases, we can
provide a general solution to this question:

Lemma IV.1. Let β be a real number with |β| > 1 and let
A = {m,m + 1, . . . ,M − 1,M} ⊂ Z with m ≤ 0 ≤ M . If
|β| < #A = M −m+ 1, then the numeration system (β,A)
has the (OL) Property. In particular:
• for β > 1, one of the pairs (I, ε) satisfying (6) is I =

[λ, ρ] and ε > 0 defined by

ε =
M −m+ 1− β

2(β + 1)
, λ =

m+ 2ε

β − 1
, ρ =

M − 2ε

β − 1
;

• for β < −1, one of the pairs (I, ε) satisfying (6) is I =
[λ, ρ] and ε > 0 defined by

ε =
M −m+ 1 + β

2(1− β)
, λ =

−M − 1

1− β , ρ =
1−m
1− β .

Remark IV.2. If β < −1, then the interval I = [λ, ρ] in
Lemma IV.1 always contains 0. The same is true if β > 1 and
m < 0 < M . Thus, according to Theorems III.8 and III.11,
the on-line algorithms work properly.

If β > 1 and M = 0, i.e., the alphabet consists of
non-positive integers, then only non-positive numbers have a
(β,A)-representation. Product or quotient of such numbers is
positive, and thus without any (β,A)-representation. There-
fore, no (on-line) algorithms for multiplication or division
make sense in this case.

If β > 1 and m = 0, i.e., the alphabet consists of non-
negative integers, then no interval I ⊂ R suitable for the (OL)
Property contains 0. Nevertheless, even in this case the Trivedi-
Ercegovac algorithm can be used. The Select function just
has to be slightly modified as follows: Consider the interval
I = [λ, ρ] from Lemma IV.1. In particular, the left boundary
of the interval is λ = 2ε

β−1 > 0. The SelectM function given
by Def. III.5 has as its domain the interval (βI)ε/2 with its
left boundary βλ− ε

2 . Put

˜SelectM(U) =

{
0 if U < βλ− ε

2 ,
SelectM(U) if U ≥ βλ− ε

2 .

Using this extended ˜SelectM function in the algorithm for mul-
tiplication (and analogously extended S̃electD for division),
starting with W0 = 0, we get the digit 0 at the beginning
on the output, and thus consequently Wk ≥ βWk−1. After
several steps, Wk reaches the interval (βI)ε/2. According to
Lemma III.7 and to (15), the value of Wk then stays in (βI)ε/2

in all further steps. Thus the sequence (Wk) is bounded, and
the algorithms work properly.

Lemma IV.1 and Remark IV.2 imply the following:

Theorem IV.3. Let β be a real number with |β| > 1 and
A = {m,m + 1, . . . ,M − 1,M} ⊂ Z. Let us assume that
m ≤ 0 < M if β > 1, and m ≤ 0 ≤ M if β < −1. If
|β| < #A = M −m+ 1, then multiplication and division in
the numeration system (β,A) are performable on-line by the
Trivedi-Ercegovac algorithms.

B. Complex bases and the (OL) Property

For complex bases β ∈ C, it is always possible to find a
sufficiently large alphabet A ⊂ C, so that the system (β,A)
has the (OL) Property. Nevertheless, it is an open question
(without a general result so far) whether the (OL) Property is
fulfilled for a given pair (β,A).

We provide examples of the Penney [12] and Eisenstein
numeration systems, working with (complex) alphabets of the
smallest possible size allowing parallel addition: #A = 5 for
the Penney base (Fig. 1), and #A = 7 for the Eisenstein base
(Fig. 2) – see Section VI for more details.

0

i

1−1

−i

βI

II − 1

I + i

Fig. 1. Penney numeration system with base β = −1 + ı and alphabet
A = {0,±1,±ı} fulfills the (OL) Property, due to the “star-shaped” set I
illustrated hereby.

V. PARAMETERS IN ON-LINE ALGORITHMS AND TIME
COMPLEXITY

In this whole section, we assume a numeration system
(β,A) satisfying the (OL) Property. In order to use the on-
line algorithms, we need to determine one parameter (δ) for
multiplication, and two parameters (δ, Dmin) for division. The
inequalities (10) and (14) provide formulae for δ, given the
bounded set I ⊂ C and the parameter ε > 0, due to the (OL)



0 1

−ω2ω

−1

ω2 −ωI − 1

I

I + ω

βI

Fig. 2. Eisenstein numeration system with base β = −1 + ω and alphabet
A = {0,±1,±ω,±ω2}, where ω is the third root of unity fulfills the
(OL) Property, due to the “rounded hexagon” set I illustrated hereby, see
Example VI-C.

Property; clearly, the bigger the value of ε, the smaller the
delay δ can be. Determination of the value Dmin is not so
straightforward.

A. Preprocessing of divisor and Dmin

By “preprocessing of divisor”, we mean a transformation of
the divisor into the form 0.d1d2d3 · · · with di ∈ A satisfying

|Dj | =
∣∣ j∑
i=1

diβ
−i∣∣ ≥ Dmin for all j ∈ N, j ≥ 1 ,

see (3). In particular, for j = 1, we need d1 6= 0. Therefore, the
transformation consists at least in shifting the fractional point
to the most significant non-zero digit of the representation of
the divisor, i.e., we multiply the divisor by a suitable power
of β, and, after obtaining the result of the division, we must
take this fact into account.

Let us denote

R =
{∣∣∑

i≥1

diβ
−i∣∣ : d1 6= 0, di ∈ A

}
.

If infR > 0, then one can put Dmin = infR into the on-
line algorithm for division, and nothing else than shifting the
fractional point is needed. In our further considerations about
the parameter Dmin, the following notion plays a key role.

Definition V.1. Let (β,A) be a numeration system. If 0 =∑
i≥1 ziβ

−i, where zi ∈ A for all i ≥ 1 and zj 6= 0 for at
least one index j, then the string z1z2z3 · · · is called a non-
trivial (β,A)-representation of zero.

The relation between representations of zero andR is obvious:

Lemma V.2. infR = 0 if and only if 0 has a non-trivial
(β,A)-representation.

In numeration systems having a non-trivial representation of
zero, the determination of Dmin and the divisor preprocessing
are more laborious, and no general recipe applicable to all
bases is available. The following lemma helps to identify such

numeration systems with real bases (and the proof is due to a
result of Rényi [13]):

Lemma V.3. Let β > 1 and {−1, 0, 1} ⊂ A =
{m, . . . , 0, . . . ,M} ⊂ Z. Then 0 has a non-trivial (β,A)-
representation if and only if β ≤ max{M + 1,−m+ 1} .
Example V.4. If β = 4 and A = {−2,−1, 0, 1, 2}, then zero
has only the trivial representation, and for Dmin one can take
1
12 = minR = 0.12 2 2 · · · , where 2 stands for the digit −2.

Remark V.5. If β > 1 and A = {0, 1, . . . ,M}, then zero has
only a trivial representation. But this numeration system has
another disadvantage: the operation of subtraction (needed for
evaluation of Wk in both algorithms) is not doable in parallel.

Example V.6. In the numeration system with β = 2 and
A = {−1, 0, 1}, zero has two non-trivial representations,
namely 0 = 0.11 1 1 1 · · · = 0.1 1 1 1 1 · · · , where 1 stands
for the digit −1. Therefore, preprocessing is a bit more
sophisticated. It is necessary to find a representation of the
divisor such that dndn−1 6= 11 and dndn−1 6= 11, where n is
the maximal index such that dn 6= 0. This can be achieved by
replacing the leading pair of neighbouring digits 11 with 01
or by replacing 11 with 01, and this procedure is repeated for
as long as necessary. Finally, the fractional point is shifted to
the first non-zero digit. For example:

0.11 1 1 01 7→ 0.01 1 1 01 7→ 0.001 1 01 7→ 0.000101 ,

and lastly, by shifting the fractional point, we get 0.101.
The parameter Dmin of the Trivedi-Ercegovac algorithm for
division can be set to Dmin = 1

4 , since any divisor D after
the described preprocessing satisfies

|D| ≥ 0.101 1 1 · · · = 1
2 − 1

8 − 1
16 − · · · = 1

4 = Dmin .

We illustrate on two less trivial examples how to find Dmin

and how to perform preprocessing. In both those examples,
the alphabet A consists of (possibly complex) units and zero,
and so it is closed under multiplication. To shorten our list of
preprocessing rules, let us adopt the following conventions:
1) instead of “If w1w2 · · ·wk is a prefix of d, replace it with
u1u2 · · ·uk”, we write “w1w2 · · ·wk −→ u1u2 · · ·uk”;
2) the rule “w1w2 · · ·wk −→ u1u2 · · ·uk” is equivalent to the
rule “w′1w

′
2 · · ·w′k −→ u′1u

′
2 · · ·u′k” if there exists a ∈ A\{0}

such that wj = aw′j and uj = au′j for all j = 1, 2, . . . , k.
In our list of preprocessing rules, we mention only one rule

from each class of equivalence. Of course, each rule on the
list preserves the value of the divisors, i.e.,

∑k
i=1 wiβ

i =∑k
i=1 uiβ

i, and sets u1 = 0. In this convention, the list of pre-
processing rules for base β = 2 and alphabet A = {−1, 0, 1}
consists of one item only, namely the rule 11 −→ 01.

Example V.7. Let β = 1+
√

5
2 and A = {−1, 0, 1}. Since

β2 − β − 1 = 0, zero has the representation 0 = 0.1 1 1.
On D = 0.d1d2d3 · · · , we use three preprocessing rules:
1) 101 −→ 010, 2) 110 −→ 001, 3) 111 −→ 000 .



If d1 6= 0 and the rules 1) - 3) cannot be applied to the
string d = d1d2d3 · · · , then |D| ≥ Dmin = 1

β5 . This can be
shown by inspecting all the possible triplets d1d2d3.

Example V.8. Let β = −1 + ω , where ω = exp 2iπ
3

is the third root of unity, and consider the alphabet A =
{0,±1,±ω,±ω2}. Firstly, we show that

Dmax = max{|0.d1d2d3 · · · | : di ∈ A} = 1
2

√
7 . (16)

Since |xβ + y| ≤ |β − 1| =
√

7 for any x, y ∈ A, we have
|0.d1d2d3 · · · | ≤

√
7
∑
k≥1

|β|−2k = 1
2

√
7 .

We use 9 equivalence classes of preprocessing rules (where
ω denotes −ω, and ω2 stands for −ω2):
• From the equality β + (1− ω) = 0, we get basic rules:

A) 1 1 −→ 0ω, B) 1ω −→ 0 1; and
• by suitable combinations of these basic rules, we obtain:

C) 1 0ω −→ 0ω 1, D) 1 0ω2 −→ 0 1ω,
E) 1ω2 ω −→ 0ω ω2, F) 1ω2 ω2 −→ 0ω ω,
G) 1 0 1 −→ 0ω ω, H) 1ω2 1 −→ 0 1ω, and
I) 1ω2 ω −→ 0 1 1.

If D = 0.d1d2d3 · · · with d1 6= 0, and the rules A) - I) cannot
be applied to the string d = d1d2d3 · · · , then

|D| ≥ Dmin =

√
3(6−

√
7)

18
. (17)

Without loss of generality, we can assume d1 = 1. By
exploring all possible triplets 1d2d3 to which no rules can
be applied, we see that |0.d1d2d3| ≥

√
3

3 . Therefore, |D| ≥√
3

3 − 1
|β|3Dmax, which, together with (16), proves (17).

B. Time complexity

The time complexity of both (multiplication and division)
algorithms depends on the number of steps needed to compute
the auxiliary value Wk and the k-th output digit by the function
Select. If both tasks can be performed in constant time, then
the time complexity (and also memory usage) of computing
the first n most significant digits of the result is O(n).

The (OL) Property of a numeration system (β,A) forces the
system to be redundant. For real bases, it implies #A > |β|.
Lemma IV.1 says that #A > |β| is also a sufficient condition
for (OL) Property. Nevertheless, #A > |β| does not guarantee
that in (β,A) addition and subtraction are doable in constant
time. Usually, the alphabet has to be extended further. For
example, both systems ( 1+

√
5

2 , {0, 1}) and ( 1+
√

5
2 , {1, 0, 1})

have the (OL) Property, but parallel addition is possible only
in the second one. The question of the minimal size of A for
parallel addition is treated in general in [5].

We focus here on the evaluation of the function Select. Let
us restrict to the on-line multiplication (as the on-line division
is then quite analogous). The function Digit assigns a digit
to Truncε/2(U). The value ε/2 determines the number L of
fractional digits that we take into consideration. Finding such
L consists in solving the inequality

A
|β|L+1 + A

|β|L+2 + A
|β|L+3 + · · · = A

|β|L(|β|−1)
< ε

2 . (18)

The value Truncε/2(U) in the course of the algorithm
belongs to the domain of the function Digit, i.e., to the
bounded set (βI)ε. We would like to limit also the number of
digits before the fractional point of U . Let us denote

S = {x−n · · ·xL ∈ A∗ : x−n 6= 0 ,

−n∑
i=L

xiβ
−i ∈ (βI)ε} .

If S is finite, one can create a table consisting of all
elements of S together with the Digit values assigned to them.
Therefore, the evaluation of the function SelectM can be made
in constant time in each iterative step of the on-line algorithm.

If the set S is not finite, one must modify a representation
of U after each iterative step of the algorithm, so as not to
allow any representation of U with unbounded index of the
leading coefficient. In fact, we apply the same list of rewriting
rules as for the divisor preprocessing (only without shifting the
fractional point). We can summarize as follows:

Lemma V.9. Let us assume a numeration system (β,A) with
a finite list of (preprocessing) rules and Dmin > 0 such that
any D = 0.d1d2d3 · · · with d1 6= 0 on which no rule of the
list can be applied has modulus |D| ≥ Dmin. Then the set
S ′ = {s ∈ S : no rules can be applied to s} is finite.

We can conclude this section with the following statement:
if a numeration system (β,A) with the (OL) Property allows
parallel addition, parallel subtraction, and preprocessing of
divisors (into the form (3)), then the time complexity of
algorithms for on-line multiplication and division is O(n).

VI. EXAMPLES

A. Base β = 3+
√

5
2 and alphabet A = {−1, 0, 1}

For illustration how the on-line algorithms for multiplication
and division work, we take a well-studied numeration system,
with base β = 3+

√
5

2 and alphabet A = {−1, 0, 1}. Let us list
the most important properties of this system:

• The base β = 3+
√

5
2 =

(
1+
√

5
2

)2

is a quadratic Pisot unit
with minimal polynomial f(t) = t2 − 3t+ 1.

• The numeration system with base β = 3+
√

5
2 and digit

set A = {−1, 0, 1} allows parallel addition [5].
• By Lemma V.3, zero has only the trivial (β,A)-

representation, and

Dmin = 0. 1 1 1 1 · · · = 1

β
−
∞∑
j=2

1

βj
=

1

β2
. (19)

Thus the sign of the first non-zero digit in a representation
determines the sign of the represented number. Prepro-
cessing of divisor is just shifting of the fractional point.

• If D = 0.d1d2d3 · · · is a (β,A)-representation, then

− 1

β − 1
≤ D ≤ 1

β − 1
= Dmax.

• By Lemma IV.1, (β,A) has the (OL) Property with

ε =
1

2β(β + 1)
> 0 and I = [−ρ, ρ] ,

where ρ = 1
2 + ε .



• By Lemma III.3, the function Digit : [−ρ− ε, ρ+ ε]→
{1, 0, 1} is defined by

Digit(V ) =

 1 if V > 1
2 ,

−1 if V < − 1
2 ,

0 otherwise.

1) On-line multiplication in base β = 3+
√

5
2 and alphabet

A = {−1, 0, 1}: For on-line multiplication, the delay δ
according to (10) has to satisfy 2

βδ(β−1)
< 1

4β(β+1) , and the
smallest such delay is δ = 4.

It remains to find an easy way of evaluating the function
SelectM(W ) = Digit(Truncε/2(W )). By Def. III.5, its do-
main is (βI)ε/2 = [−βρ− 1

2ε, βρ+ 1
2ε], which ensures that:

• Any Z ∈ (βI)ε/2 has a (β,A)-representation of the form
Z = z−1z0.z1z2 · · · .

• This Z = z−1z0.z1z2 · · · fulfills |Z − V | < 1
2ε for the

(β,A)-representation V = z−1z0.z1z2z3z4.
• The value V = z−1z0.z1z2z3z4 >

1
2 if and only if

z−1z0z1z2z3 � 0 1 1 1 0 or (20)(
z−1z0z1z2 = 0 0 1 1 and z3 6= 1

)
,

where � denotes the lexicographic order on strings.
This can be proved by inspection of all possibilities, and

using the fact that the lexicographically greatest infinite ex-
pansion of 1 is 1 = 0.21111 · · · , and from the symmetry of
A.

Therefore, the evaluation of the function SelectM can be
done via a finite table of values; and the statements above
imply that such table has 35 elements. But the lexicographic
order relations in (20) enable us to provide a more effective
means of SelectM evaluation.

In summary, on-line multiplication is possible by the
Trivedi-Ercegovac algorithm with delay δ = 4, and with linear
time complexity. The number of digits we need to evaluate for
W within the algorithm is L = 3 behind the fractional point,
and another 2 digits before the fractional point.

2) On-line division in base β = 3+
√

5
2 and alphabet

A = {−1, 0, 1}: To determine the algorithm for on-line
division, we have to specify two parameters: δ and Dmin.
We put Dmin = 1

β2 (cf. (19)). To find the delay δ, we may
again follow the general formula (14), and obtain δ = 7. By
a more elaborated calculation, using more precise estimates
(specific to this numeration system) in the formulas, the delay
can be further optimized to δ = 6, with the number L = 9 of
fractional digits to evaluate in expressions of W and D.

B. Knuth numeration system

D. E. Knuth showed in 1955 [8] that in the numeration
system with base β = 2i and alphabet C = {0, 1, 2, 3}, any
complex number Z has a representation of the form Z =∑
k≥n zkβ

−k, where n ∈ Z and zk ∈ {0, 1, 2, 3}. In this
numeration system, almost all complex numbers have a unique
representation. We consider a redundant system with the same
base and a symmetric alphabet A = {−2,−1, 0, 1, 2}. Let us
list some relevant properties of this system:

• In (β,A), parallel addition is possible, see [3].
• The system (β,A) has the (OL) Property, as the oblong
I with vertices ± 5

9 ± i 11
9 and ε = 1

18 satisfy (6).
• The function Digit is defined by

Digit(V ) =


2 if <(V ) > 3

2 ,
1 if <(V ) ∈ ( 1

2 ,
3
2 ] ,

0 if <(V ) ∈ [− 1
2 ,

1
2 ] ,

−1 if <(V ) ∈ [− 3
2 ,− 1

2 ) ,
−2 if <(V ) < − 3

2 .

• A number Z =
∑∞
k=1 zkβ

−k with zk ∈ A can be
decomposed into real and imaginary part as follows:

Z =

∞∑
k=1

z2k(−4)−k + 2i

∞∑
k=1

z2k−1(−4)−k .

So the real and imaginary parts (each separately) are
represented in real numeration system with base −4 and
alphabet {−2, . . . , 2}, with only the trivial representation
of 0.

• Dmin = 1
6 . It follows from the fact that if z1 6= 0 then

|Z| ≥ |=(Z)| = 2
∣∣∣ ∞∑
k=1

z2k−1

(−4)k

∣∣∣ ≥ 2
12 = 2·(0.1 2 2 2 2 · · · ) .

Using the parameters ε, Dmin and the oblong I mentioned
above, and using the general formulas (10) and (18) for on-
line multiplication, we obtain the delay δ = 9 and the number
L = 7 of fractional digits of W to evaluate. However, by a
more elaborate calculation, we can decrease these parameters
further down to δ = 8 and L = 6.

For on-line division, with K = max{|z| : z ∈ I} =
√

146
9 ,

the general formula (14) provides a delay δ = 11 and the
number L = 11 of fractional digits of W and D to evaluate.

In summary, the Knuth numeration system enables on-line
multiplication and division, with linear time complexity. The
preprocessing of divisor is just a shift of the fractional point.
We have another 3 digits of W (and W

D ) before the fractional
point to evaluate for on-line multiplication (and division).

C. Eisenstein numeration system

The Eisenstein numeration system has a complex base β =
−1+ω, where ω = exp 2iπ

3 is the third root of unity (ω3 = 1).
It is known that this base β with the alphabet C = {0, 1, 2}

forms a numeration system, in which any complex number
has a (β, C)-representation. The same property is true also
for other alphabets of cardinality #C = 3, for example C =
{0, 1,−ω}. This follows from Theorem 3.2 in [10].

Nevertheless, we choose to work with a larger, redundant
(complex) alphabet A of size #A = 7:

A = {0,±1,±ω,±ω2} .

This numeration system (β,A) has favorable properties:
• A is both symmetric and closed under multiplication;
• the numeration system (β,A) enables parallel addition

(a separate result, to be published), and #A = 7 is the



minimal size of alphabet allowing parallel addition for
the Eisenstein base (as proved in [5]);

• there are non-trivial representations of zero in (β,A),
nevertheless, the preprocessing of divisor D for on-line
division is possible (see Example V.8), and ensures that

√
3(6−

√
7)

18
= Dmin ≤ |D| ≤ Dmax =

√
7

2
.

Due to these properties, the Eisenstein numeration system with
alphabet A = {0,±1,±ω,±ω2} allows on-line multiplication
and division with linear time complexity, as shown below.

1) On-line property of the Eisenstein numeration system:
For each digit a ∈ A, we denote the set

Ha = {Z ∈ C : |Z − a| ≤ |Z − b| for all b ∈ A, b 6= a} .
The sets Ha for a 6= 0 are unbounded, while the set H0

is the regular hexagon with center in point zero and vertices
±ωk( 1

2 + ı
√

3
6 ). It can be easily verified that r =

√
3

6 is the
maximum possible value r > 0 such that

(βH0)r ⊂
⋃
a∈A

(H0 + a) .

We work with the following Digit function:

Digit(V ) = a ⇒ V ∈ Ha .

Using the parameter r =
√

3
6 , we can set ε > 0 as ε = r

|β|+1 =
3−
√

3
12 , and thereby fulfill the (OL) Property with the set I =

(H0)ε, see Fig.IV-B. Nevertheless, we modify our approach,
in order to optimize values for the delay δ and the number L
of fractional digits of arguments to evaluate in the function(s)
Select.

2) On-line multiplication in the Eisenstein numeration sys-
tem: We consider two parameters µ, ν > 0 such that

√
3µ+ ν = |β|µ+ ν ≤ r =

√
3

6
. (21)

The selection function for multiplication is defined by

SelectM : (βH0)r 7→ A
SelectM(W ) = Digit(Truncµ/2(W )) , implying

W − SelectM(W ) ∈ (H0)µ for any W ∈ (βH0)r .

From the formulas and requirements above, we find two
reasonable combinations of the parameters L and δ in the
algorithm of on-line multiplication in Eisenstein numeration
system:
• (δmin, L) = (5, 7), with minimized delay δ; and
• (δ, Lmin) = (6, 6), where the parameter L is minimized.
3) On-line division in the Eisenstein numeration system:

When specifying the algorithm for on-line division, we use
again the general formula (14). The Trunc function provides
partial evaluations V = Truncα(W ) and ∆ = Truncα(D),
where the parameter α > 0 is set so that

∣∣W
D − V

∆

∣∣ ≤ µ
2 .

It can be shown that
W

D
∈ (βH0)ν implies

Wnew

Dnew
∈ (βH0)ν

provided that parameters µ, ν > 0 fulfill the inequality (21).
The inequalities translating the relations between parameters
µ, ν and the desired results δ and L are somewhat more
laborious here than in the case of on-line multiplication, but
we can obtain two reasonable combinations of the parameters
L and δ in the on-line division algorithm for the Eisenstein
numeration system:
• (δmin, L) = (7, 10), where the delay δ is minimized; and
• (δ, Lmin) = (10, 9), where the parameter L is minimized.

VII. CONCLUSION

The algorithms of Trivedi and Ercegovac for on-line mul-
tiplication and division, originally introduced for integer nu-
meration systems (β,A), can be extended to real or complex
systems as well, provided that (β,A) has the (OL) Property.
Investigating the (OL) Property and defining the preprocessing
rules for a given system (β,A) remains an open problem,
particularly if we want to use a digit set A minimal in size.
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