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Abstract. This paper deals with rational base number systems for p-adic numbers. We mainly
focus on the system proposed by Akiyama, Frougny, and Sakarovitch in 2008, but we also show
that this system is in some sense isomorphic to other ones. We identify the numbers with finite
and eventually periodic representations and we also determine the number of representations of a
given p-adic number.

1 Introduction

The field of p-adic numbers, denoted by Qp, is an extension of the field Q of rational numbers in
a way complementary to the classical extension: the field R of real numbers. The letter p refers
to a prime number p, and so there exist an infinite number of p-adic fields, each corresponding
to one prime number. The topological structure of p-adic fields and of the field of real numbers
are very different; in fact, one can find the topology of Qp very nonintuitive. Nevertheless, it is
still reasonable to be concerned with such an unusual construction since, due to the celebrated
Ostrowski’s theorem from 1918, the p-adic fields and the field of real numbers are in some sense all
possible completions of Q. Although Ostrowski’s theorem clarified the full significance of p-adic
numbers, they have been introduced and systematically studied earlier by Hensel; his first work
[3] on this topic is from the year 1897.

There is a rich literature devoted to the p-adic analysis and number theory. Nice historical
review and further references can be found in [7], very friendly and accessible introduction to p-adic
numbers is [2]. Our aim is to propose a new non-standard way of how to represent p-adic numbers;
the standard way is a representation in base p with digits in the alphabet Ap = {0, 1, . . . , p − 1}.
Every p-adic number has then a unique such representation in the form of a left infinite word
over Ap. Another representation was proposed in [5], where it is proved that the p-adic integers
(certain subset of them) have a unique infinite representation as a product

∏∞
k=1(1+bnp

rn), where
1 ≤ bn ≤ p − 1, rn ∈ N, and rn+1 > rn. We will study a possibility of using rational base
representation. Our starting point will be the number system introduced by Akiyama, Frougny,
and Sakarovitch in [1]. They studied finite representations of the positive integers of the form of
∑m

k=0
ak

q

(
p
q

)k

, where p > q ≥ 1 are coprime integers (p may not be prime!), m ∈ N, and digits ak

are from the alphabet Ap = {0, 1, . . . , p−1}. We consider representations of the same form but we
allow m to tend to infinity. Of course, such a series does not converge in R, but, as we will see, it
converges in Qr if r is a prime factor of p. Hence, we get a new non-standard representation of a
certain r-adic number; this representation turns out to be a natural generalization of the standard
one.

We will find answers to questions usually connected with various numeration systems:

1. How many representations of a given number exist?

2. Which numbers have a finite representation (i.e., equal to ω0w for some w ∈ A∗p)?

3. Which numbers have an (eventually or purely) periodic representation?
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2 Fields of p-adic numbers

Definitions and results in this section are taken mainly from [2], where the reader can find also all
proofs and further details.

As we mentioned above, the set of p-adic numbers Qp is defined as a completion of Q. Any
completion must be defined with respect to some metric. Therefore we start with the definition of
the p-adic absolute value:

Definition 1. Let p be a prime number. The p-adic valuation on Z is the function vp : Z\{0} → R
given by n = pvp(n)n′, with p - n′. The extension to the set of rational numbers is as follows: for
x = a

b ∈ Q we put vp(x) = vp(a)− vp(b).
And, finally, the p-adic absolute value on Q is defined by

|x|p =

{
0 if x = 0,

p−vp(x) otherwise.

One can say that the valuation vp(x) measures the “divisibility” of x by p. To make it clearer,
let us consider several examples: vp(pn) = n and so |pn|p = p−n and pn converges to 0; if q is a
prime number different from p, then vp(qn) = 0 and |qn|p = p−0 = 1; if x = pa1

1 · · · pak

k , where pi

are prime factors of x, then |x|pi = p−ai and |x|q = 0 for all other primes q.
Completion Qp of Q with respect to | |p is then constructed in the usual way, i.e., by “adding all

limits of Cauchy sequences in Q”, for details see [2, Chapter 3]. So, we have now these completions
of Q: the “classical” completion, i.e., the set of real numbers R, and infinitely many completions
Qp, where p = 2, 3, 5, 7, 11, ... is prime. The following theorem states that we have constructed
all possible completions, recalling that two absolute values are equivalent if they induce the same
topology.

Theorem 2 (Ostrowski). Every non-trivial absolute value on Q is equivalent to the classical
absolute value | | or to one of the absolute values | |p, where p is prime.

The value of |x|p for all x ∈ Q is always equal to pi for certain i ∈ Z. This property is preserved
even in Qp \Q:

Lemma 3. Let x ∈ Qp. Then there exists i ∈ Z such that |x|p = pi.

Hence, |x|p can attain only countably many values. Another crucial difference between p-
adic absolute value and the classical one is that p-adic absolute value is ultrametric (also non-
Archimedean):

Lemma 4. The p-adic absolute value | |p is ultrametric, i.e., for all x, y ∈ Qp the strong triangular
inequality holds:

|x+ y|p ≤ max{|x|p, |y|p}.
Now, having defined p-adic numbers we can proceed with the definition of the standard repre-

sentation of p-adic numbers.

2.1 Standard representation of p-adic numbers

Standard and well studied way of how to represent p-adic numbers is the representation in the
form of a power series in p.

Theorem 5. Every x ∈ Qp can be uniquely written as

x = a−k0p
−k0 + · · ·+ a0 + a1p+ a2p

2 + · · ·+ akp
k + · · ·

=
∑

k≥−k0

akp
k

with ak ∈ Ap and −k0 = vp(x).
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Definition 6. The left infinite word · · · a2a1a0 �a−1 · · · a−k0 , k0 ∈ N, over the alphabet Ap such that
a−k0 > 0 or k0 = 0 and x =

∑
k≥−k0

akp
k is denoted by < x >p and called the p-representation of

x.

Of course, the infinite sum converges to x only with respect to the p-adic absolute value. There
are several ways of how to calculate the word < x >p. The most convenient for our purposes is
the following algorithm defined for integers:

Algorithm 7. Let x ∈ Z. If x = 0, return the empty word ε. Otherwise, put s0 = x and for all
i ∈ N define si+1 and ai ∈ Ap by

si = psi+1 + ai.

Return a = · · · a2a1a0.

The algorithm works only for integral x, but it can be easily modified for the rationals.

Definition 8. Let p be a prime number, then the set of p-adic integers is Zp = {x ∈ Qp | |x|p ≤ 1}.
Algorithm 9. Let x = s

t ∈ Zp ∩Q. Put s0 = s and for all i ∈ N define si+1 and ai ∈ Ap by

si

t
= p

si+1

t
+ ai.

Return a = · · · a2a1a0.

If t and p are not mutually prime, i.e., x /∈ Zp ∩ Q, multiply x by p until xp` can be written
as sp`

t′ with t′ co-prime to p. Then apply the algorithm obtaining < xp` >p= · · · a2a2a0. Then,
clearly, < x >p= · · · a`+1a` � a`−1 · · · a0. Thus, there is no loss of generality.

Theorem 10. Let x ∈ Qp. Then < x >p is

1. uniquely given,

2. finite if, and only if, x ∈ N,

3. eventually periodic if, and only if, x ∈ Q.

3 Rational base number system

In this section we will study the rational base number system proposed by S. Akiyama, C. Frougny,
and J. Sakarovitch in [1]. We will show that this system is a natural generalization of the standard
way of representing p-adic numbers described in the previous section. In [1] the system is proposed
as a new method to represent the non-negative integers in the form of a power series in p

q :

n∑

k=0

ak

q

(
p

q

)k

,

where p > q ≥ 1 are co-prime integers and digits ai are from the alphabet Ap. It is proved there
that such a representation is unique and finite and that the language of all such representations is
prefix-closed. In fact, it holds that if w ∈ A∗p is a representation of an integer, then there exists
at least one a ∈ Ap such that wa represents an integer as well. So, if w = anan−1 · · · a1a0, we

can study
∑n

k=0
ak

q

(
p
q

)−k

and get a representation of a rational number. As we have said, w can
be always prolonged by at least one letter and remain a representation of an integer. Doing this
prolongation repetitively, n approaches to infinity and we can get even irrational numbers. Such
infinite representations are then studied in [1] and they turn out to be very interesting and to
relate to old and difficult problems of Number Theory; namely, Mahler’s problem [6] and Josephus
problem [9], [8].

We will take a different approach; we will study also infinite series but containing an infinite
number of positive powers of p

q . It will naturally lead us to the p-adic numbers.
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3.1 Modified division algorithm

In what follows we assume that p > q ≥ 1 are co-prime positive integers (we do not assume that p
is a prime number!). Let us consider the following algorithm introduced in [1] and named modified
division (MD) algorithm.

Algorithm 11. Let x be an integer. If x = 0, return the empty word ε. Otherwise, put s0 = x

and for all i ∈ N define si+1 and ai ∈ Ap by qsi = psi+1 + ai. Return a = · · · a2a1a0.

Clearly, for q = 1 we get Algorithm 7. As we will see, these two algorithms share a lot of
properties. As well as Algorithm 7, the MD algorithm can be easily modified for rational x = s

t , s
and t being the lowest terms.

Algorithm 12 (MD algorithm). Let x = s
t , s being an integer and t a positive integer.

(i) If s = 0, return the empty word a = ε.

(ii) If t is co-prime to p, put s0 = s and for all i ∈ N define si+1 and ai ∈ Ap by

qsi

t
=
psi+1

t
+ ai. (1)

Return a = · · · a2a1a0.

(iii) If t is not mutually prime with p, multiply s
t by p

q until x
(

p
q

)`

is of the form s′

t′ , where
t′ is co-prime to p. Then apply the algorithm from (ii) returning a′ = · · · a′2a′1a′0. Return
a = · · · a1a0 � a−1a−2 · · · a−` = · · · a′` � a′`−1 · · · a′2a′1.

Definition 13. Let x ∈ Q. The word a returned by the previous algorithm for x is said to be the
1
q

p
q -expansion of x and denoted by < x > 1

q
p
q

.

Lemma 14. Let x = s
t , where s 6= 0 and t > 0 is co-prime to p. Then for the sequence (si)i≥1

from the MD algorithm we have:

(i) If s > 0 and t = 1, i.e., x ∈ N, (si)i≥1 is eventually zero.

(ii) If s > 0 and t > 1, (si)i≥1 is either eventually zero or eventually negative.

(iii) If s < 0, (si)i≥1 is negative.

(iv) For all i ∈ N, if si < −p−1
p−q t, then si < si+1.

(v) If −p−1
p−q t ≤ si < 0, then −p−1

p−q t ≤ si+1 < 0.

(vi) (si)i≥1 is always bounded and eventually periodic.

(vii) (si)i≥1 is eventually zero (resp. eventually periodic) if, and only if, a is eventually zero
(resp. eventually periodic).

The dynamics of the sequence (si)i≥0 is symbolically depicted in Figure 1; the interval [−tp−1
p−q , 0]

is a sort of attractor and this gives us the following bound for the length of the period of 1
q

p
q -

expansions.

-1−p−1
p−q t 0

Figure 1: The dynamics of the sequence (si)i≥0 from the MD algorithm.
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Corollary 15. Let x = s
t ∈ Q. Then the period of < x > 1

q
p
q

is less than bp−1
p−q ct. Moreover, if

< x > 1
q

p
q

is purely periodic, then −1 ≤ s ≤ bp−1
p−q ct.

Lemma 16. Let x = s
t ∈ Q such that its 1

q
p
q -expansion < x > 1

q
p
q
= · · · a−`+1a−`, ` ∈ N, is not

finite (i.e., it is not eventually zero). Then
∞∑

k=−`

ak

q

(
p

q

)k

converges to x with respect to the r-adic absolute value | |r if, and only if, r is a prime factor of p.
Moreover, if i is the multiplicity1 of r in p, then for all n ≥ −` we have

∣∣∣∣∣x−
n∑

k=−`

ak

q

(
p

q

)k
∣∣∣∣∣
r

≤ r−i(n+1). (2)

x < x > 1
q

p
q

(si)i≥0 abs. values

p = 3, q = 2
5 2101 5, 3, 2, 1, 0, 0, . . . all
-5 ω2012 -5, -3, -2, -2, -2, . . . | |3

11/4 201 11,6, 4, 0, 0, . . . all
11/8 ω1222 11, 2, -4, -8, -8, -8, . . . | |3
11/5 ω(02)2112 11, 4, 1, -1, -4, -6, -4, -6, . . . | |3

p = 30, q = 11
5 11 25 5, 1, 0, 0, . . . all
-5 ω19 8 5 -5, -2, -1, -1,. . . | |2, | |3, | |5

11/7 ω(12 21 5) 23 13 11, 1, -5, -3, -6, -5, . . . | |2, | |3, | |5

Table 1: Examples of < x > 1
q

p
q
. The last column contains the absolute values for which

the 1
q

p
q -expansion from the second column converges to x (in terms of Lemma 16).

3.2 1
q

p
q
-expansions of the negative integers

The case of 1
q

p
q -expansions of the positive integers has been already studied in [1]. In the present

subsection we will study the case of the negative integers.

Definition 17. Let a = · · · a−`+1a−`, ` ∈ N be an eventually periodic word over Ap. The evalua-
tion map π is defined by:

π(· · · a−`+1a−`) = x if, and only if, < x > 1
q

p
q
= · · · a−`+1a−`.

Lemma 18.

(i) If π(· · · a2a1a0) ∈ Z, then π(· · · a2a1) ∈ Z.

(ii) If x = π(· · · a2a1a0) is a negative integer, then there exists a ∈ Ap such that π(· · · a2a1a0a)
is also a negative integer. Moreover,

min {π(· · · a2a1a0a) | π(· · · a2a1a0a) ∈ Z, a ∈ Ap} =
⌈
x
p

q

⌉
(3)

max {π(· · · a2a1a0a) | π(· · · a2a1a0a) ∈ Z, a ∈ Ap} =
⌊1
q

(px+ p− 1)
⌋

(4)

1This means that i is the greatest integer such that ri divides p.
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In words, the set of 1
q

p
q -expansions of all negative integers is prefix-closed and all its elements

are extendable to the right. Moreover, the 1
q

p
q -expansion of a negative integer is eventually periodic

with period 1:

Proposition 19. Let k be a positive integer. Denote B =
⌊

p−1
p−q

⌋
, then:

(i) if k ≤ B, then < −k > 1
q

p
q
= ωb with b = k(p− q),

(ii) otherwise, < −k > 1
q

p
q
= ωbw with w ∈ A+

p and b = B(p− q).

3.2.1 Trees T 1
q

p
q

and T 1
q

p
q

In [1] the language of 1
q

p
q -expansions of all positive integers is studied. It is proved there, among

other properties of this language, that it is prefix-closed and extendable to the right. Thus, it is
quite natural to represent the language as a tree with infinite branches. We first recall the results
for the case of positive integers and then propose their analogues for the negative case.

Lemma 20. Define the language

L 1
q

p
q

= {w ∈ A∗p | w is the
1
q

p

q
-expansion of some s ∈ N}.

The language L 1
q

p
q

is prefix-closed, extendable to the right, and not context-free (if q 6= 1).

The proof is a direct consequence of the Pumping lemma and it can be found in [1].

Definition 21. The tree T 1
q

p
q

has the non-negative integers as nodes and the directed edges are
labeled by letters from Ap. Furthermore:

(i) 0 is the root of the tree,

(ii) there is an edge from node n1 to node n2 with label a if n1 = π(ω0w) for some w ∈ L 1
q

p
q

and
n2 = π(ω0wa).

Tree T 1
q

p
q

(surrounded by the dashed line) for p = 3, q = 2, is depicted in Figure 2.
It is reasonable to ask which non-negative integer is the least one with w of length n. Denote

such an integer by Gn: sure G0 = 0 and G1 = 1. The children in the tree T 1
q

p
q

of node n are given

by the condition 1
q (pn+ a) ∈ N, obviously, the least such integer is

⌈
p
qn
⌉
.

Lemma 22. The least non-negative integer with 1
q

p
q -expansion of length n ∈ N is Gn, where

G0 = 0, G1 = 1, Gn+1 =
⌈
p

q
Gn

⌉
.

We now propose equivalent objects for the negative integers. The language now reads

L 1
q

p
q

= {w ∈ A∗p | ωbw =< s > 1
q

p
q
, s ≤ −B, first letter of w 6= b}.

Clearly, the letter b is equal to B(p − q). Using absolutely the same techniques, one can prove
Lemma 20 even for the language L 1

q
p
q
.

Since both languages have the same properties, L 1
q

p
q

can be also represented by a tree. Only

difference is that the root of T 1
q

p
q

is −B. Tree T 1
q

p
q

(surrounded by the dotted line) for p = 3, q = 2
is depicted in Figure 2 as well.

Again, we can ask which integer ≤ −B is the least one with 1
q

p
q -expansion ωbw with w ∈ L 1

q
p
q

of length n. Using the same reasoning as in the case of positive integers, we get:
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T 1
q

p
q

T 1
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p
q

Figure 2: The graph containing 1
q

p
q -expansions of all integers for p = 3, q = 2. The dashed

line surrounds tree T 1
q

p
q

and the dotted line tree T 1
q

p
q
.

Lemma 23. The least negative integer with 1
q

p
q -expansion ωbw with b = B(p − q) and w ∈ L 1

q
p
q

of length n ∈ N is Gn, where

G0 = −B, Gn+1 =
⌈
p

q
Gn

⌉
.

In Figure 2 we see that the trees T 1
q

p
q

and T 1
q

p
q

are isomorphic in the case of p = 3, q = 2. But
this is not true in general:

Proposition 24. The trees T 1
q

p
q

and T 1
q

p
q

are isomorphic if, and only if, p−1
p−q is an integer.

3.3 Finite 1
q

p
q
-expansion

If x has a finite 1
q

p
q -expansion of length m+ 1, i.e.,

x =
m∑

k=0

ak

q

(
p

q

)k

,

then it equals s
qm+1 for some s ≥ 1. But not all numbers of this form have a finite 1

q
p
q -expansion,

e.g., x = 11/8 = 11/23 from Table 1 has an eventually periodic representation ω1222. In order
to better understand this, we introduce an alternative algorithm computing 1

q
p
q -expansion of the

numbers of this form.

Algorithm 25. Let x = s
qm , s,m positive integers. Put h0 := s and hi+1 and bi ∈ Ap define as

follows: for i = 0, 1, . . . ,m− 1 by

hi

qm−(i+1)
= p

hi+1

qm−(i+1)
+ bi,

for i = m,m+ 1, . . . by qhi = phi+1 + bi. Return b = · · · b2b1b0.
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We have b =< x > 1
q

p
q
. The alternative algorithm eventually coincides with the MD algorithm

for an integer (after m steps we get the MD algorithm for integer hm). Since we know that the
1
q

p
q -expansion of an integer is finite if, and only if, the integer is nonnegative, the representation

of x = s
qm is finite if, and only if, hm is nonnegative. This is the idea of the proof of the following

result.

Proposition 26. Let q > 1. Define for all positive integers m the set

INF(m) :=
{
i
∣∣∣ i > 0,

〈 i

qm

〉
1
q

p
q

is infinite
}
.

Then
INF(1) = ∅ and INF(m) = A(m) ∪B(m), m = 2, 3, . . . ,

where

A(m) =
{
−kp+ aqm−1 | k > 1, a ∈ Ap

}
∩ N

B(m) =
{
pk + aqm−1 | k ∈ INF(m− 1), a ∈ Ap

}
.

The definition of INF(m) is rather tricky and, as one can see from the following examples, even
the structure is very irregular.

Example 27. Let p = 3, q = 2. Then INF(1) = ∅ and

INF(2) = {−3 + 2 ∗ 2} = {1}, indeed
1
4

has an infinite representation,

INF(3) = {−6 + 2 ∗ 4,−3 + 1 ∗ 4,−3 + 2 ∗ 4} ∪ {1 ∗ 3 + 0 ∗ 4, 1 ∗ 3 + 1 ∗ 4, 1 ∗ 3 + 2 ∗ 4}
= {2, 1, 5, 3, 7, 11},

INF(4) = {1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 29, 31, 33, 37, 41, 49}.

3.4 1
q

p
q
-representation of r-adic numbers

Within this subsection letters r, r1, r2, . . . will stand for prime numbers, p will be then a general
integer greater than one. So far, we have been concerned with representation of rational numbers
in Qr in the form of

∑ ak

q

(
p

q

)k

(5)

with p > q ≥ 1 co-prime integers. We have shown that there exists at least one such representation
for all rational numbers, namely the 1

q
p
q -expansion obtained by the MD algorithm, provided that

r is a prime factor of p. Is this representation the only one of this type? Does it exist even for
non-rational r-adic numbers?

Definition 28. A left infinite word · · · a−`0+1a−`0 , `0 ∈ N, over Ap is a 1
q

p
q -representation of

x ∈ Qr if a−`0 > 0 or `0 = 0 and

x =
∞∑

k=−`0

ak

q

(
p

q

)k

with respect to | |r.

Theorem 29. Let r be a prime factor of p with multiplicity i and let x ∈ Zr.

(i) If p is not a power of r, then there exist uncountably many 1
q

p
q -representations a = · · · a2a1a0

such that for all n ∈ N: ∣∣∣∣∣x−
n∑

k=0

ak

q

(
p

q

)k
∣∣∣∣∣
r

≤ r−(n+1)i. (6)
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(ii) If p is a power of r, there exists a unique 1
q

p
q -representation satisfying (6).

Moreover, it holds that any 1
q

p
q -representation must satisfy (6).

Theorem 30 provides an answer to the question on uniqueness of a representation and also
characterizes all representations of x ∈ Qr which converge to x with respect to | |r. We have
seen that for rational x, which is an element of Qr for all r prime, the 1

q
p
q -expansion < x > 1

q
p
q

converges with respect to all absolute values | |r, r a prime factor of p. So it seems reasonable to
study 1

q
p
q -representations which represent a rational x in Qr for all r from any nonempty subset

of prime factors of p.

Theorem 30. Let r1, . . . , rk be all prime factors of p. Let {i1, . . . , i`} be a subset of {1, . . . , k}
and let x = s

t ∈ Q. Then:

(i) If ` < k, there exist uncountably many 1
q

p
q -representations of x converging with respect to

| |rij
, j = 1, . . . , `.

(ii) There exists a unique 1
q

p
q -representation of x converging with respect to all | |rj , j = 1, . . . , k,

namely, the 1
q

p
q -expansion.

Example 31. Let p = 30, q = 11, ri1 = 2, ri2 = 3. The following are aperiodic 1
q

p
q -representations

of 1 in both fields Q2 and Q3:

· · · 27 24 24 29 26 29 27 25 25 24 28 24 28 27 29

· · · 20 22 21 22 22 22 19 18 18 19 23 18 22 22 23 .

3.5 Periodicity

In the preceding section we have answered the first two of the three questions asked in the introduc-
tion of this chapter: see Theorem 29 and Proposition 26. In this subsection we will find an answer
to the last one. It turns out that the 1

q
p
q -expansion < x > 1

q
p
q

of a rational x plays an important

role between all 1
q

p
q -representations of x not only because it is the only one which converges in all

Qr, r a prime factor of p, but also because it is the only one which is eventually periodic:

Proposition 32. Let x ∈ Qri
, ri > 1 a prime factor of p = r`1

1 · · · r`k

k . Then the 1
q

p
q -representation

a of x is eventually periodic if, and only if, x ∈ Q and a =< x > 1
q

p
q

.

4 Relation with other numeration systems

4.1 p
q
-representations

So far, we have studied 1
q

p
q -representations of the form of power series in p

q with digits divided

by q, i.e., of the form of
∑ ak

q

(
p
q

)k

. What if we do not require the digits to be divided by q?
The resulting representation would even more resemble usual positional numeration systems. The
answer is that almost nothing changes for such a system. To show this, let us start with the MD
algorithm.

The key step in the MD algorithm, which determines the form of the obtained representation,
is this:

qsi

t
=
psi+1

t
+ ai, ai ∈ Ap.

But if we replace this relation with

qsi

t
=
psi+1

t
+ qai, ai ∈ Ap, (7)
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and if we still assume p > q ≥ 1, t > 0 mutually prime integers, the resulting representation will be

again a power series in p
q but without q dividing the digits, i.e., a sum of the type of

∑
ak

(
p
q

)k

.

Using the same reasoning as for the MD algorithm we can prove that the sum, if infinite, converges
to x with respect to | |r if, and only if, r is a prime factor of p. As this is a perfect analogue of
1
q

p
q -expansion, let us call it p

q -expansion and denote by < x > p
q
.

Having this analogue of 1
q

p
q -expansion, we can go even further and define an analogue of the

more general notion of 1
q

p
q -representation: for x ∈ Qr, any word a = · · · a−k0+1a−k0 , k0 ∈ N, over

Ap, such that

x =
∞∑

k=−k0

ak

(
p

q

)k

with respect to | |r, is said to be a p
q -representation of x in Qr.

As for the questions on periodicity and the number of representations, it is again true that
there is almost no difference between 1

q
p
q - and p

q -representations.

Theorem 33. There exists a finite right sequential transducer C converting p
q -representation of

any x ∈ Zr, r prime factor of p, to its 1
q

p
q -representation; the inverse of C is also a finite right

sequential transducer.

The convertor C for p = 3 and q = 2 is in Figure 3.
This theorem says that there is a one-to-one mapping between the sets of all p

q - and 1
q

p
q -

representations of a given x ∈ Zr. This mapping, moreover, preserves eventual periodicity, meaning
that p

q -expansions are mapped to 1
q

p
q -expansions:

Corollary 34. A 1
q

p
q -representation is eventually periodic if, and only if, the output by C is

eventually periodic.

This is not a surprising result as it is still true that only rational numbers can have an eventually
periodic p

q -representation.

2 1 0

1|0
2|2

0|0
1|1

1|1

2|0 2|1

.|2 0|20|1
.|2

Figure 3: Converter from p
q -representations to 1

q
p
q -representations for p = 3, q = 2.

4.2 Conversion from the integer base system

As we have seen, there exists a finite convertor between p
q - and 1

q
p
q -representation. Another nat-

ural question is whether there exists a convertor of p-representations in integer base p to 1
q

p
q -

representations. The answer is positive, but the convertor is not finite but is realized by an infinite
on-line algorithm. If there was a finite convertor, it would convert non-regular language  L 1

q
p
q

to
A∗p which is not possible.

Definition 35. Let ϕ : NA → NB,A,B some alphabets. Then ϕ is a (right) on-line function if for
any N ≥ 0 there exists φN : AN+1 → B such that bN = φN (aN · · · a0) for any · · · a1a0 ∈ NA such
that · · · b1b0 = ϕ(· · · a1a0).
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It holds in general that any on-line function is Lipschitz2 and so uniformly continuous. Obvi-
ously, the following algorithm is on-line.

Algorithm 36.
Input: · · · a1a0 ∈ NAp

Output: · · · b1b0 ∈ NAp

The rewriting rule is defined by: z0 = 0, i = 0 and

(zi, i)
ai|bi−−−→ (zi+1, i+ 1),

with ai, bi ∈ Ap such that

aiq
i + zi =

bi
q

+
p

q
zi+1.

Clearly, zi is always nonnegative and uniquely given.

Lemma 37. Let r be a prime factor of p and let · · · a1a0 ∈ NAp such that

x =
∞∑

i=0

aip
i ∈ Zr.

Then for the output · · · b1b0 ∈ NAp of Algorithm 36 we have

x =
∞∑

i=0

bi
q

(
p

q

)i

∈ Zr.

Lemma 38. If the input of Algorithm 36 is finite (i.e., eventually zero), then the output is finite
as well.

The input is finite if it is a representation of a non-negative integer in base p. This implies
that the lemma cannot be reversed since, as we know, there are finite outputs obtained for infinite
inputs (a trivial example is the representations of p

q ).

4.3 Negative base number systems

So far we have mentioned three representations: two with rational base, namely 1
q

p
q - and p

q -
representations and one integer base p-representation. For each of these one can define its negative
base version, let us denote them as 1

q (−p
q )- ,(−p

q )- and (−p)-representations. They are represen-
tations of the form of

∑ ai

q

(
−p
q

)i

,
∑

ai

(
−p
q

)i

, and
∑

ai(−p)i,

respectively. As in the positive case, there is an analogue of the MD algorithm computing represen-
tations (expansions, more precisely) of rational numbers. The key step for 1

q (−p
q )-representations

reads
q
si

t
= −psi+1

t
+ ai

and for (−p
q )-representations

q
si

t
= −psi+1

t
+ aiq.

The (−p)-representations are then obtained for q = 1.
Of course, in these negative base systems even some negative rational numbers can have finite

representation, but in some sense the negative base systems are still isomorphic to their positive

2For the usual distance on NA: for a,b ∈ NA we define d(a,b) = 2−i with i = min{j ∈ N | aj 6= bj}.
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base analogues. It is because that there are finite convertors between them as in the case of 1
q

p
q -

and p
q -representations (Theorem 33). Possibilities of conversions between all mentioned number

systems are visualized in Figure 4. Since in the negative base number systems even the negative
integers have a unique finite representation, these systems are canonical number systems [4]. This
means exactly that each x ∈ Z has a unique finite representation.

1
q

p
q -rep.

p
q -rep.

1
q

(
−p

q

)
-rep.

(
−p

q

)
-rep.

p-rep.

(−p)-rep.

rational base integer base

finite conversion by finite sequential transducer

infinite conversion by on-line algorithm

Figure 4: Converters between rational and integer base number systems.
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