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ABSTRACT

A new method for representing positive integers and real numbers in a

rational base is considered. It amounts to computing the digits from right

to left, least significant first. Every integer has a unique expansion. The

set of expansions of the integers is not a regular language but nevertheless

addition can be performed by a letter-to-letter finite right transducer.

Every real number has at least one such expansion and a countable infinite

number of them have more than one. We explain how these expansions

can be approximated and characterize the expansions of reals that have

two expansions.

The results that we derive are pertinent on their own and also as they

relate to other problems in combinatorics and number theory. A first ex-

ample is a new interpretation and expansion of the constant K(p) from the

so-called “Josephus problem.” More important, these expansions in the

base p

q
allow us to make some progress in the problem of the distribution

of the fractional part of the powers of rational numbers.
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1. Introduction

The distribution modulo 1 of the powers of a rational number, indeed the prob-

lem of proving whether they form a dense set or not, is a frustrating ques-

tion: “This very old problem of Pisot and Vijayaraghavan is still unanswered”

writes Michel Mendés France in [16] and he goes on: “Pisot, Vijayaraghavan

and André Weil did however show that there are infinitely many limit points”

(cf. [25], for instance.) With this problem as a background, Mahler asked in [15]

whether there exists a nonzero real z such that the fractional part of z(3/2)n

for n = 0, 1, . . . fall into [0, 1/2[. It is not known whether such a real, called

Z-number, does exist but Mahler showed that the set of Z-numbers is at most

countable. His proof is based on the fact that the fractional part of a Z-number

(if it exists) has an expansion in base 3/2 which is entirely determined by its

integral part.

In this paper, we introduce and study a new method for representing positive

integers and real numbers in the base p
q
, where p > q > 2 are coprime integers.

While this new method does not solve Mahler’s original problem, it sheds a new

light on the question and allows us to make some progress on the commonly

studied generalization of Mahler’s problem — as we explain at the end of this

introduction.

The idea of nonstandard representation systems of numbers is far from be-

ing original and there have been extensive studies of these, from a theoretical

standpoint as well as for improving computation algorithms. It is worth (briefly)

recalling first the main features of these systems in order to clearly put in per-

spective and in contrast the results we have obtained on rational base systems.

Many nonstandard numeration systems have been considered in the litera-

ture: [13, Vol. 2, Chap. 4] or [14, Chap. 7], for instance, give extensive references.

Representation in integer base with signed digits was popularized in computer

arithmetic by Avizienis [2] and can even be found earlier in a work of Cauchy [4].

When the base is a noninteger real number β > 1, any nonnegative real number

is given an expansion on the canonical alphabet {0, 1, . . . , bβc} by the greedy

algorithm of Rényi [21]; a number may have several β-representations on the

canonical alphabet, but the greedy one is the greatest in the lexicographical

order. The set of greedy β-expansions of numbers of [0, 1[ is shift-invariant, and
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its closure forms a symbolic dynamical system called the β-shift. The proper-

ties of the β-shift are well-understood, using the so-called “β-expansion of 1”,

see [18, 14].

When β is a Pisot number1, the β number system shares many properties

with the integer base case: the set of greedy representations is recognizable by a

finite automaton; the conversion between two alphabets of digits (in particular

addition) is realized by a finite transducer [10].

In this work, we first define the p

q
-expansion of an integer N : it is a way of

writing N in the base p

q
by an algorithm which produces least significant digits

first. We prove

Theorem 1: Every non-negative integer N has a p
q
-expansion which is an

integer representation. It is the unique finite p

q
-representation of N .

The p

q
-expansions are not the p

q
-representations that would be obtained by

the classical “greedy algorithm” in base p
q
. They are written on the alpha-

bet A = {0, 1, . . . , p − 1}, and not every word of A∗ is admissible. These
p

q
-expansions share some properties with the expansions in an integer base —

digit set conversion is realized by a finite automaton, for instance — and are

completely different as far as other aspects are concerned. Above all, the set

L p

q
of all p

q
-expansions is not a regular language (not even a context-free one).

By construction, the set L p

q
is prefix-closed and any element can be extended

(to the right) in L p

q
. Hence, L p

q
is the set of labels of the finite paths in an

infinite subtree T p

q
of the infinite full p-ary tree of the free monoid A∗. The

tree T p

q
contains a maximal infinite word t p

q
— maximal in the lexicographic or-

dering — whose numerical value is ω p

q
. We consider the set of infinite wordsW p

q
,

subset of AN, that label the infinite paths of T p

q
as the admissible p

q
-expansions

of real numbers and we prove

Theorem 2: Every real in [0,ω p

q
] has exactly one p

q
-expansion, but for an

infinite countable subset of reals which have more than one such expansion.

If p > 2q − 1 then no real has more than two p
q
-expansions. It is noteworthy

as well that no p

q
-expansion is eventually periodic and thus in particular — and

in contrast with the expansion of reals in an integer base — no p

q
-expansion

ends with 0ω or, which is the same, is finite. This is a very remarkable feature

1 An algebraic integer > 1 whose Galois conjugates are all less than 1 in modulus.
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of the p

q
number system for reals and we explain how the p

q
-expansion of a real

number can be computed (in fact, approximated).

We shall give here two examples of the relations of the p

q
-expansions of reals

with other problems in combinatorics and number theory. The first one is the

so-called “Josephus problem” in which a certain constant K(p) is defined (cf.

[17, 11, 24]) which is a special case of our constant ω p

q
(with q = p − 1) and

this definition yields a new method for computing K(p).

The connection with the second problem, namely, the distribution of the

powers of a rational number modulo 1 with which we opened this introduction,

is even more striking. In order to describe this connection, let us first set the

framework of this deeply intriguing problem.2

Koksma proved that for almost every real number θ > 1 the sequence {θn}

is uniformely distributed in [0, 1], but very few results are known for specific

values of θ. One of these is that if θ is a Pisot number, then the above sequence

converges to 0 if we identify [0, 1[ with R/Z.

Experimental results show that the distribution of
{(

p

q

)n}

for coprime pos-

itive integers p > q > 2 looks more “chaotic” than the distribution of the

fractional part of the powers of a transcendental number like e or π (cf. [26]).

The next step in attacking this problem has been to fix the rational p
q

and to

study the distribution of the sequence

fn(z) =

{

z

(

p

q

)n}

according to the value of the Once again, the sequence fn(z) is uniformly dis-

tributed for almost all z > 0, but nothing is known for specific values of z.

In the search for z’s for which the sequence fn(z) is not uniformly distributed,

and as already explained, Mahler considered those for which the sequence is

eventually contained in
[

0, 1
2

[

. Mahler’s notation is generalized as follow: let I

be a (strict) subset of
[

0, 1
[

— indeed I will be a finite union of semi-closed

intervals — and write

Z p

q

(

I
)

=
{

z ∈ R :

{

z
(p

q

)n
}

stays eventually in I
}

.

Mahler’s problem is to ask whether Z 3

2

([

0, 1
2

[)

is empty or not.

2 This presentation is based on the introduction of [3]. The fractional part of a number x

is denoted by {x}.
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Mahler’s work has been developed in two directions: the search for subsets I

as large as possible such that Z p

q

(

I
)

is empty and conversely the search for

subsets I as small as possible such that Z p

q

(

I
)

is nonempty.

Along the first line, remarkable progress has been made by Flatto et al. ([8])

who proved that the set of reals s such that Z p

q

([

s, s+ 1
p

[)

is empty, is dense

in [0, 1 − 1
p
]. Recently Bugeaud [3] proved that its complement is of Lebesgue

measure 0. Along the other line, Pollington [20] showed that Z 3

2

([

4
65 ,

61
65

[)

is

nonempty.

Our contribution to the problem can be seen as an improvement of this last

result.

Theorem 3: If p > 2q − 1, there exists a subset Y p

q
of
[

0, 1
[

, of Lebesgue

measure q
p
, such that Z p

q

(

Y p

q

)

is countably infinite.

The elements of Z p

q

(

Y p

q

)

are indeed the reals which have two p

q
-expansions

(cf. Theorem 49) and this is the reason why the consideration of the p

q
number

system allowed to make some progress in Mahler’s problem. Coming back to

the historical 3/2 case, we have

Corollary 4: The set of positive numbers z such that

{

z

(

3

2

)n}

∈ [0, 1/3[∪[2/3, 1[ for n = 0, 1, 2, . . .

is countably infinite.

It is noteworthy that the expansion ‘computed’ by Mahler for his Z-numbers

happens to be exactly one of our 3
2 -expansions — if it exists. Another way to

state Corollary 4 is the following. Let us denote by ‖x‖ the distance between

x and the closest integer. Corollary 4 assures that there are (infinitely many)

positive numbers x such that ‖x(3/2)n‖ < 1/3 for n = 0, 1, . . . . This is to be

compared with a recent result of Dubickas [6] who showed that ‖x(3/2)n‖ <

0.238117 . . . (n = 0, 1, . . . ) implies that x = 0 — hence extending his result [5]

on the distribution of {xαn} which works basically for any algebraic number α.

Though there is a distance between 1/3 and 0.238117 . . . , we expect that our

Y p

q
is minimal in the sense that for any proper subset X of Y p

q
which is a finite

union of half open intervals, Z p

q

(

X
)

is empty, an even stronger statement than

Mahler’s conjecture (cf. (17) at the very end of this paper). Further study on
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the connection between Mahler’s problem and p

q
number system is carried out

in [1].

∗

We have introduced and studied here a fascinating object which can be seen

from many sides, which raises many difficult questions and whose further study

will certainly mix techniques from word combinatorics, automata theory, and

number theory.

2. Preliminaries

2.1. Finite and infinite words. An alphabet A is a finite set. Here we

consider alphabets of digits, that is, subsets of the integers. A finite sequence

of elements of A is called a word, and the set of words on A, equipped with

concatenation is the free monoid A∗. The empty word, denoted by ε, is the

identity element of A∗.

The length of a word w is equal to the length of the sequence w and is

denoted by |w|. The set of words on A of length n (resp., of length smaller than

or equal to n) is denoted by An (resp., A6n); the concatenation of w repeated n

times is denoted by wn. A word u is a factor of a word w if there exist words x

and y such that w = x u y. If x (resp., y) is the empty word, then u is a prefix

(resp., a suffix) of w. A subset of A∗ is prefix-closed (resp., suffix-closed)

if it contains all prefixes (resp., all suffixes) of any of its elements.

Let us suppose that A is ordered by a total order written 6, which is rather

natural as our alphabets are subsets of N or Z. The set A∗ is totally ordered

by the radix order 4 defined as follows3: v ≺ w if |v| < |w|, or |v| = |w| and

there exist letters a < b such that v = u a v′ and w = u b w′. The set A∗ is also

totally ordered by the lexicographic order v defined as follows: v @ w if v is

a prefix of w, or there exist letters a < b such that v = u a v′ and w = u b w′.

The radix order is a well order whereas the lexicographic order is not (if A has

more than one letter). Both orders coincide for pair of words of equal length.

An infinite word over A is an infinite sequence of elements of A. In this

work, infinite words can be indexed by positive, or negative, integers, depending

on the context; in both cases, we denote by AN the set of infinite words on A

3 It is easier to describe the nonreflexive part of the order.
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and whenever it is possible we denote infinite words by bold letters. The prefix

of length n of a is denoted a[n], but its n-th letter is more lightly written an.

The lexicographic order is defined on AN as follows: a @ b if there exist

letters a < b such that a = u a a′ and b = u b b′. An infinite word is said to be

eventually periodic if it is of the form u vω = u v v v v v · · · where u and v

belong to A∗.

The set AN is equipped with the distance δ defined by: if a = (an)n∈N and

b = (bn)n∈N, then δ(a,b) = 2−r if a 6= b and r = min{n : an 6= bn}, and

δ(a,b) = 0 if a = b. The topology on the set AN is then the product topology

(of the discrete topology on A), and it makes AN a compact metric space.

2.2. Automata and transducers. An automaton on A, A=〈Q,A,E, I, T 〉,

is a labeled graph: Q is the set of vertices, traditionally called states; I and T

are two subsets of Q, the sets of initial and final states respectively; and E,

the set of edges, traditionally called transitions, labeled in A, is (or can be

seen as) a subset of Q × A × Q. The transposed of A is the automaton

At = 〈Q,A,Et, T, I 〉 where (q, a, p) is in Et if, and only if, (p, a, q) is in E. The

automaton A is deterministic if it has only one initial state, and if for every

pair (p, a) in Q × A, there exists at most one q such that (p, a, q) is in E; the

automaton A is co-deterministic if its transposed is deterministic. A state q

is accessible if there exists a path from an initial state to q, the accessible

part of A is the subgraph induced by the set of accessible states.

A successful path in A is a path whose origin is in I and its end in T . A

word in A∗ is accepted by A if it is the label of a successful path. Figure 1 (a)

shows how automata are depicted; in particular, initial states are marked with

incoming arrows and final states with outgoing arrows.

An automaton (on a finite alphabet) is finite if it has a finite set of states.

A language on A, that is, a subset of A∗, is regular if it is the set of words

accepted by a finite automaton on A.

Indeed, we shall consider automata whose transitions are labeled in A∗ ×B∗

— where B is another alphabet — rather than in A, and which we call trans-

ducers. Pairs of words are multiplied component wise, that is, A∗ × B∗ is

a monoid, and the label of a (successful) path in such a transducer is a pair of

words. A transducer realizes then a relation from A∗ into B∗. Figure 1 (b)

shows a transducer Q that realizes the integral division by 3 on binary represen-

tations of numbers: (f, g) is accepted by Q if f is the binary representation of
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0 1 2

1

1

0

0

0 1

(a) An automaton for the numbers divisible by 3

0 1 2

(1, 0)

(1, 1)

(0, 0)

(0, 1)

(0, 0) (1, 1)

(b) A transducer for the quotient by 3

Figure 1. An automaton on {0, 1} and another one on {0, 1}×

{0, 1} that read, and write, numbers written in the binary sys-

tem.

an n divisible by 3 and g is the binary representation of n/3, possibly prefixed

with some 0’s.

For more definitions and results on automata theory the reader is referred

to [7], [12], or [22], to quote a few. Three more things should be added though.

First, the transitions of the transducers we shall consider are labeled in A×B —

we call these transducers letter-to-letter. If one retains the first component

of the labels of a letter-to-letter transducer T one gets an automaton (on A):

the underlying input automaton of T . A transducer is sequential (resp.,

co-sequential) if its underlying input automaton is deterministic (resp., co-

deterministic).

Second, we shall consider automata where the outgoing arrows are labeled,

with pairs of the form (ε, h); this means that if a path in A from i in I to t in

T is labeled with (f, g) and if the outgoing arrow from t is labeled with (ε, h),

then f is associated with g h by the relation realized by A.

Finally, the label of a path has been implicitly understood as the concatena-

tion from left to right of the label of transitions that constitute the path. But

one could consider automata which read (and write) words from right to left;

we call them right automata, or right transducers. An example of a trans-

ducer with these two further characteristics is the one shown at Figure 2 that
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realizes the addition in the binary system or, more precisely, the conversion

of representations written in the digit alphabet {0, 1, 2} into representations

written in the classical binary alphabet {0, 1}.

(ε, 1)

(2, 0)

(0, 1)

(0, 0)
(1, 1)

(1, 0)
(2, 1)

Figure 2. The converter from {0, 1, 2}∗ in the binary system.

2.3. Representation of numbers. Let U = {ui : i ∈ Z} be a strictly increas-

ing sequence of positive real numbers such that for any k > 0,
∑

k>i>−∞ ui <

+∞. A representation in the system U of a nonnegative real number x on

a finite alphabet of digits D is an infinite sequence (di)k>i>−∞, with k in Z and

every di in D, such that

x =

i=k
∑

−∞

diui.

It is denoted by

〈x〉U = dk · · · d0.d−1d−2 · · · ,

most significant digit first.

When a representation ends in infinitely many zeroes, it is said to be finite,

and the trailing zeroes are omitted. When all the di at the right of the radix

point are zeroes, the representation is said to be an integer representation.

Conversely, the numerical value in the system U of a word on an alphabet of

digits D is given by the evaluation map π:

π : DZ −→ R, d = (di)k>i>−∞ 7−→ π(d) =

i=k
∑

−∞

diui.

3. Representation of the integers

3.1. The Modified Division algorithm and the
p

q
number system. Let

p > q > 1 be two co-prime integers. Let N be any positive integer; let us write
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N0 = N and, for i > 0, write

(1) qNi = pNi+1 + ai

where ai is the remainder of the division of qNi by p, and thus belongs to

A = {0, . . . , p− 1}. Since Ni+1 is strictly smaller than Ni, the division (1) can

be repeated only a finite number of times, until eventually Nk+1 = 0 for some k.

The sequence of successive divisions (1) for i = 0 to i = k is thus an algorithm

— that in the sequel is referred to as the Modified Division, or MD algorithm

— which, given N , produces the digits a0, a1, . . . , ak, and it holds

(2) N =
k
∑

i=0

ai

q

(

p

q

)i

.

We will say that the word ak · · ·a0, computed from N from right to left, that

is to say least significant digit first, is a p
q
-representation of N . Since we

will show that this representation is unique in Theorem 1, it will be called the
p

q
-expansion of N and written 〈N〉 p

q
. By convention, the p

q
-expansion of 0 is

the empty word ε.

Example 1: Let p = 3 and q = 2, then A = {0, 1, 2} — this will be our main

running example. Table 1 gives the 3
2 -expansions of the eleven first non negative

integers.

ε 0

2 1

21 2

210 3

212 4

2101 5

2120 6

2122 7

21011 8

21200 9

21202 10

Table 1.

Following the notations of Section 2.3, let U be the sequence defined by:

U = {ui =
1

q

(

p

q

)i

: i ∈ Z}.
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We will say that U , together with the alphabet A = {0, . . . , p − 1}, is the
p

q
number system. If q = 1, it is exactly the classical number system in

base p.

It is to be stressed that this definition is not the classical one, the so-called

beta-expansions, see [21] and [14, Chapter 7], for the numeration system in

base p
q
: U is not the sequence of powers of p

q
but rather these powers divided

by q and the digits are not the integers smaller than p
q

but rather the integers

whose quotient by q is smaller than p

q
. If, on the contrary, q = 1 the MD

algorithm gives the same expansion as the one given by the classical greedy

algorithm, since the expansion is unique.

As stated in the following lemma, one of the main properties of the classical

integer base system is nevertheless retained.

Lemma 5: Let π : A∗ → Q be the evaluation map associated with the p

q
number

system. The restriction of π to Ak, for any k, is injective.

Proof. Let u = ak−1ak−2 · · · a0 and v = bk−1bk−2 · · · b0 be two words of A∗ of

length k such that π(u) = π(v). Hence

k−1
∑

i=0

ai

(

p

q

)i

−
k−1
∑

i=0

bi

(

p

q

)i

= 0

and therefore
∑k−1

i=0 (ai − bi)X
i is a polynomial in Z[X ] vanishing at X = p

q
.

By Gauss Lemma on primitive polynomials, it is then divisible by the minimal

polynomial qX−p. Contradiction, since the absolute value of the constant term

a0 − b0 is strictly smaller than p.

It is not true that π is injective on the whole A∗ since for any u in A∗ and any

integer h it holds that: π(0hu) = π(u). On the other hand, Lemma 5 implies

that this is the only possibility and we have:

(3) π(u) = π(v) and |u| > |v| =⇒ u = 0hv with h = |u| − |v|.

Theorem 1: Every nonnegative integer N has a p
q
-expansion which is an inte-

ger representation. It is the unique finite p

q
-representation of N .

Proof. Let ak−1 · · · a0 be the p

q
-expansion given to N by the MD algorithm, and

suppose that there exists another finite representation of N in the system U ,
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of the form e`−1e`−2 · · · e0.e−1 · · · e−m with e−m 6= 0. Then

q

(

p

q

)m

N =
∑̀

i=−m

ei

(

p

q

)m+i

=

k
∑

i=0

ai

(

p

q

)m+i

and therefore π(e` · · · e0e−1e−2 · · · e−m) = π(ak−1ak−2 · · · a00
m). Contradiction

between (3) and e−m 6= 0.

Thus the word ak · · · a0 of A∗ is the unique finite p

q
-representation of N (with

the condition that ak 6= 0) and we denote

〈N〉 p

q
= ak · · · a0.

3.2. The set of
p

q
-expansions of the integers. Let us denote by L p

q
the

set of p

q
-expansions of the nonnegative integers. If q = 1, then L p

q
is the set

of all words of A∗ which do not begin with a 0; if we release this last condition,

we then get the whole A∗.

3.2.1. Right contexts. By construction, L p

q
is prefix-closed; the observation of

Table 1 shows that it is not suffix-closed if q 6= 1. In the sequel we assume that

q 6= 1, unless it is stated otherwise.

Let n and k be natural integers and let us denote by RCk(n) the set of words

of length smaller than k + 1 that can be suffixed to the p

q
-expansion of n and

still form words of L p

q
:

RCk(n) = {w ∈ A6k : 〈n〉 p

q
w ∈ L p

q
}.

Lemma 6: Let n and m be two nonnegative integers. A word w of length k

belongs to both RCk(n) and RCk(m) if and only if n and m are congruent

modulo qk and in this case RCk(n) = RCk(m). That is:
{

〈n〉 p

q
w ∈ L p

q
and 〈m〉 p

q
w ∈ L p

q

}

⇒ n ≡ m (mod qk) ⇒ RCk(n) = RCk(m).

Proof. The word 〈n〉 p

q
w belongs to L p

q
if and only if (p

q
)kn+ π(w) is in N, and

similarly for m. Thus:

{

〈n〉 p

q
w ∈ L p

q
and 〈m〉 p

q
w ∈ L p

q

}

⇒

(

p

q

)k

(n−m) ∈ Z ⇒ n ≡ m (mod qk)

since p and q are coprime. Conversely, suppose that n ≡ m (mod qk) then

n ≡ m (mod qh) for any h 6 k. Hence for every word w of length h 6 k such

that (p
q
)hn+ π(w) is in N, so is (p

q
)km+ π(w), and RCk(n) = RCk(m).
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Lemma 6 implies immediately that the coarsest right regular equivalence

that saturates L p

q
is the identity, hence, in particular, is not of finite index. A

classical statement in formal language theory (see [12]) then implies

Corollary 7: If q 6= 1 then L p

q
is not a regular language.

Along the same line as Lemma 6, one can give a more precise statement on

suffixes that are powers of a given word.

Lemma 8: Let w be in L p

q
and w = uv be a proper factorization of w. Then

uvk belongs to L p

q
only if q(k−1)|v| divides π(w) − π(u).

Proof. The word uvk belongs to L p

q
only if

π(uvk) − π(uvk−1) =

(

p

q

)|v|

(π(uvk−1) − π(uvk−2)) = · · ·

=

(

p

q

)(k−1)|v|

(π(uv) − π(u))

is in Z. And this is possible only if q(k−1)|v| divides π(uv) − π(u).

Lemma 8 will be used in the sequel to show that the closure of L p

q
does not

contain eventually periodic infinite words; combined with the classical “pump-

ing lemma” (see [12]), it implies another statement related to formal language

theory:

Corollary 9: If q 6= 1, then L p

q
is not a context-free language.

3.2.2. Suffixes. We observed that L p

q
is not suffix-closed. In fact, every word

of A∗ is a suffix of some words in L p

q
. More precisely, we have the following

statement.

Proposition 10: For every integer k and every word w in Ak, there exists

a unique integer n, 0 6 n < pk such that w is the suffix of length k of the
p
q
-expansion of all integers m congruent to n modulo pk.
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Proof. Given any integer n = n0, the repetition k times of the division4 (1)

yields

(4) qkn0 = pknk + qkπ(ak−1ak−2 · · · a0).

If we do the same for another integer m = m0 and subtract the equation we get

from (4),

qk (n0 −m0) = pk (nk −mk) + qk (π(ak−1ak−2 · · · a0) − π(bk−1bk−2 · · · b0)) .

As qk is prime with pk, and using Lemma 5, we get

(5) n−m ≡ 0 (mod pk) ⇐⇒ ak−1ak−2 · · · a0 = bk−1bk−2 · · · b0.

Since there are exactly pk words in Ak, each of them must appear once and

only once when n ranges from 0 to pk − 1 and (5) gives the second part of the

statement.

3.2.3. The odometer. Proposition 10 can be interpreted, or reformulated, with

the construction of a machine that could be called “a boosted Pascal machine”

and would be described as follows.

The main feature of the “Pascaline”, the famous adding machine invented by

young Blaise Pascal is a series of toothed wheels linked together by a special

mechanism: when a wheel finishes a full rotation, it sends to the next wheel on

the left an impulse that makes the latter move by one unit.

Think of the Pascal machine as a series — virtually extending infinitely to

the left — of wheels with a dial in front of each wheel and every dial is marked

with p digits. The original Pascaline used 10 digits, from 0 to 9, since young

Pascal was counting in base 10, but any p will be as good. Let us take p = 3 as

in our running example for the remaining of this description; the digits are 0,

1 and 2. There is an arm, attached to the wheel and moving in front of the

corresponding dial.

And let us consider the machine as Pascal designed it, but somewhat turned

into a clock. In the beginning, every arm is vertical and points to 0. Imagine

that at every second the rightmost wheel moves by one unit: the arm passes in

front of 1, 2, 0 again, 1, 2, etc. When that arm comes to 0 again, the arm of the

second wheel goes to 1, and so on. After n seconds, one reads on the machine a

4 If n is large enough, this amounts to the first k steps of the MD algorithm. Otherwise,

ni = 0 and ai = 0 for i greater than a certain j and this is not, strictly speaking, the

MD algorithm.
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certain word written on the alphabet A = {0, 1, 2} which is exactly the writing

of n in base 3 — if we forget all the 0’s on the left — and conversely every word

w of A∗ appears exactly once, at time π(w), where π(w) is the number whose

writing in base 3 is w.

Imagine now that the machine is so to speak “boosted” and that every quan-

tum of rotation of the wheels is 2 units instead of 1: the rightmost wheel goes

every second from 0 to 2, from 2 to 1, from 1 to 0, etc. and every time the arm

of one wheel passes in front of 0 of its dial — whether it stops there or not — it

sends an impulse to the next wheel to the left that makes it moving by 2 units.

The sequence of words that will then turn up on the dials of the machine

is exactly the p
q
-expansions of integers that is the words of L p

q
, ordered by

length, and within the same length by the lexicographic order. If a finite such

machine were constructed (which is more realistic than an infinite one) with,

say, k wheels, the above result states that its behavior is periodic, of period pk,

and that every possible configuration of the k wheels will appear once (and only

once) during the cycle.

The transformation of words witnessed on the boosted Pascal machine at

every impulse is the one that is realized by the machine that is usually called

the odometer of the number system: it takes as input a word v representing

a number n and outputs the word w representing the number n+ 1.

From the description of the boosted Pascal machine, it is easy to build a

digit-to-digit right sequential transducer that realizes the odometer for the p

q

number system. It is represented at Figure 3 for our running example.

2 1 0

(ε, 2)(ε, 2)

(2, 1)
(1, 0)(0, 2)

(0, 2)

(0, 0)
(1, 1)
(2, 2)

(2, 1)
(1, 0)

Figure 3. The odometer for the 3
2 number system.
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3.2.4. Order on numbers, order on words. In an integer base, the order on

integers and the radix order on the words (on the canonical alphabet) that

represent the numbers coincide, and this is also true of the lexicographic

order on words of the same length (and with a possible prefix in 0∗). The same

properties hold for the p

q
number system, provided only the words in L p

q
are

considered.

Proposition 11: Let v and w be in L p

q
. Then v 4 w if, and only if, π(v) 6

π(w).

Proof. Let v = ak−1 · · · a0 and w = b`−1 · · · b0 be the p

q
-expansions of the in-

tegers m = π(v) and n = π(w), respectively. By Theorem 1, we already know

that v = w if, and only if, π(v) = π(w). The proof goes by induction on `,

which is (by hypothesis) greater than or equal to k. The proposition holds for

` = 1.

Let us write v′ = ak−1 · · · a1 and w′ = b`−1 · · · b1, and m′ = π(v′) and n′ =

π(w′) are integers. It holds:

n−m =
p

q
(n′ −m′) +

1

q
(b0 − a0)

Now v ≺ w implies that either v′ ≺ w′ or v′ = w′ and a0 < b0. If v′ ≺ w′, then

n′−m′ > 1 by induction hypothesis and thus n−m > 0 since b0−a0 > −(p−1).

If v′ = w′, then n−m = 1
q
(b0 − a0) > 0.

Corollary 12: Let v and w be in 0∗L p

q
and of equal length. Then v v w if,

and only if, π(v) 6 π(w).

It is to be noted also that these statements do not hold without the hypothesis

that v and w belong to L p

q
(to 0∗L p

q
respectively). For instance, π(10) = 3/4 <

π(2) = 1 and π(2000) = 27/8 < π(0212) = 4.

3.3. Conversion between alphabets. Another property of the integer base

systems that carries over to the p

q
number system is the fact that the conversion

of digits can be realized by a finite (right) transducer.

Let D be a finite alphabet of (positive or negative) digits that contains A.

The digit-set conversion is a map χD : D∗ → A∗ which commutes to the

evaluation map π, that is, a map which preserves the numerical value:

∀w ∈ D∗ π(χD(w)) = π(w).
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Proposition 13: For any alphabet D the conversion χD is realizable by a

finite letter-to-letter sequential right transducer CD.

Proof. Let UD = 〈Z, D ×A,E, {0}, ω 〉 be the (infinite) transducer whose set

of transitions E is defined by:

(6)
(

z, (d, a), z′
)

∈ E ⇐⇒ qz + d = pz′ + a.

As z′ and a are uniquely determined for a given z and d, UD is sequential.

If the final function is defined as ω(z) = 〈z〉 p

q
for every z in N (and ω(z) = ∅,

that is, z is not final, if z < 0), it is immediate to verify, by induction on the

length of the input words, that UD, seen as a right transducer, realizes the digit

conversion of any word w whose numerical value is positive. Thus, it remains

to show that the accessible part CD of UD is finite.

Without loss of generality, one can suppose that D is an interval: what

matters is the largest digit e and the smallest digit f in D, e > p − 1 and

f 6 0, at least one of the two inequalities being strict. It follows from (6) that

from a state z it is possible to reach the state z+1 (resp., the state z−1) in UD

if there exist d in D and a in A such that z =
(

(d− a)− p
)

/(p− q) (resp., such

that z =
(

(d− a) + p
)

/(p− q)).

Thus the largest accessible positive state and the smallest accessible state

in UD are:

zmax =

⌊

e− p

p− q

⌋

+ 1 and zmin =

⌈

f − (p− 1) + p

p− q

⌉

− 1 =

⌈

f + 1

p− q

⌉

− 1

and hence CD is finite.

The integer addition may be seen — after digit-wise addition — as a par-

ticular case of a digit-set conversion χD with D = {0, 1, . . . , 2(p − 1)} and

Figure 4 (a) shows the converter that realizes addition in the 3
2 number system.

For reasons which will be explained in Section 5.2, we also give at Figure 4 (b)

the converter on the alphabet {−1, 0, 1, 2} in the 3
2 number system (the signed

digit −d is denoted d̄).

Remark 14: Let us stress that χD is defined on the whole set D∗ even for word

v such that π(v) is not an integer, and also that, if π(v) is in N, then χD(v) is

the unique p

q
-representation of π(v).
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2 1 0

21 2

(0, 1)
(1, 2)

(4, 0)

(0, 2)

(3, 0)
(4, 1)

(2, 0)
(3, 1)
(4, 2)

(1, 0)
(2, 1)
(3, 2)

(0, 0)
(1, 1)
(2, 2)

(a) The converter for the addition.

0 1

(2, 0)

(1, 2)

(1, 0)
(0, 1)
(1, 2)

(0, 0)
(1, 1)
(2, 2)

(b) The converter on {−1, 0, 1, 2}.

Figure 4. Two converters for the 3
2 number system.

Remark 15: As p
q

is not a Pisot number (when q 6= 1), the conversion from any

representation onto the representation computed by the greedy algorithm is not

realized by a finite transducer (see [14, Ch. 7]).

4. The tree T p

q

The free monoid A∗ is classically represented as the nodes of the (infinite) full

p-ary tree: every node is labeled by a word in A∗ and has p children, every edge

between a node and each of its children is labeled by one of the letter of A and

the label of a node is precisely the label of the (unique) path that goes from the

root to that node.

As the languageL p

q
is prefix-closed, it can naturally be seen as a subtree of the

full p-ary tree, obtained by cutting some edges. This will form the tree T p

q
(after

we have changed the label of nodes from words to the numbers represented by

these words). This tree, or, more precisely, its infinite paths, will be the basis for

the representation of reals in the p

q
number system. We give now an ‘internal’

description of T p

q
, based on the definition of a family of maps from N to N,

which will proved to be effective for the study of infinite paths.

4.1. Construction of the tree T p

q
.

Definition 16: (i) For each a in A, let τa : N → N be the partial map

defined by:
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∀n ∈ N τa(n) =







1
q (pn+ a) if 1

q (pn+ a) ∈ N

undefined otherwise

We write d(n) = {a ∈ A : τa(n) is defined}, Md(n) = max{d(n)} for

the largest digit for which τa(n) is defined, and md(n) = min{d(n)} for

the smallest digit with the same property.

(ii) The tree T p

q
is the labeled infinite tree (where both nodes and edges are

labeled) constructed as follows. The nodes are labeled in N, and the

edges in A, the root is labeled by 0. The children of a node labeled by n

are nodes labeled by τa(n) for a in d(n), and the edge from n to τa(n)

is labeled by a.

(iii) We call path label of a node s of T p

q
, and write p(s), the label of the

path from the root of T p

q
to s. We denote by I p

q
the subtree of T p

q
made

of nodes whose path label does not begin with a 0.

For example, the first six levels of T 3

2

and I 3

2

are shown at Figure 5.

The very way T p

q
is defined implies that if two nodes have the same label,

they are the root of two isomorphic subtrees of T p

q
and it follows from Lemma 6

that the converse is true, that is, two nodes which hold distinct labels are the

root of two distinct subtrees of T p

q
. As no two nodes of I p

q
have the same label,

we have

Proposition 17: If q 6= 1 no two subtrees of I p

q
are isomorphic.

Definition 16 and the MD algorithm imply directly the following facts that

will be used in the sequel, most often without explicit reference.

Lemma 18: For every n in N, it holds:

(i) md(n) = d(n)∩ {0, 1, . . . , q− 1} and Md(n) = d(n)∩ {p− q, . . . , p− 1}.

(ii) a ∈ d(n) and a+ q ∈ A =⇒ a+ q ∈ d(n).

(iii) a, a+ q ∈ d(n) =⇒ τa+q(n) = τa(n) + 1.

(iv) md(n+ 1) = Md(n) + q − p and τmd(n+1)(n+ 1) = τMd(n)(n) + 1.

And finally:

(v) The label of every node s of T p

q
is π(p(s)).

In particular, it follows:

Corollary 19: ∀n ∈ N d = md(n) ⇐⇒ τd(n) =

⌈

p

q
n

⌉

.
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Figure 5. The tree T 3

2

, the tree I 3

2

in grey and double edge.

This statement induces the definition of the following sequence.

Definition 20: Let (Gk)k∈N
be the sequence of integers defined by:

G0 = 1 and Gk+1 =

⌈

p

q
Gk

⌉

, ∀k ∈ N.

It then comes, by induction on k:
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Proposition 21: The nodes of depth k in T p

q
, ordered by their path label in

the lexicographic (or radix) order, are labeled by integers from 0 to Gk − 1.

We shall return to the computation of the Gk’s at Section 4.4.

4.2. Minimal and maximal words. The infinite paths in the tree T p

q
will

be used in Section 5 to define the representations of real numbers. Here we

consider only some particular infinite paths (or words) in T p

q
.

We denote by W(n) (resp., by w(n)) the label of the infinite path that starts

from a node with label n and that follows always the edges with the maximal

(resp., minimal) digit label. Such a word is said to be a maximal word (resp.,

a minimal word) in T p

q
. The following is a direct consequence of Lemma 18 (i).

Proposition 22:

(i) For all n ∈ N,W(n) ∈ {p− q, . . . , p− 1}N and w(n) ∈ {0, . . . , q − 1}N.

(ii) Conversely let u be the label of an infinite path in T p

q
.

If u is in {p− q, . . . , p− 1}N, then there exists an n such that u = W(n)

and if u is in {0, . . . , q−1}N, then there exists an n such that u = w(n).

(iii) For every n, the digit-wise difference between w(n + 1) and W(n) is

(p− q)ω.

Two special cases are worth special notations; we note:

t p

q
= W(0) and g p

q
= w(1).

The infinite word t p

q
is the maximal element with respect to the lexicographic

order of the label of all infinite paths of T p

q
that start from the root. Since

τq(0) = 1, the infinite word q g p

q
is the minimal element with respect to the

lexicographic order of the label of all infinite paths of I p

q
that start from the

root. Notice that, for any rational p

q
, 0ω is the minimal element with respect to

the lexicographic order of the label of all infinite paths of T p

q
and that, if q = 1,

that is, in an integer base, W(n) = (p− 1)ω, and w(n) = 0ω for every n in N.

Example 2: For p

q
= 3

2 ,

t 3

2

= 2 1 2 2 1 1 1 2 2 1 2 1 1 2 2 1 2 1 2 1 1 2 2 1 · · ·

and g 3

2

= 1 0 1 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 · · · .

which illustrates, in particular, Proposition 22 (iii).
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In Section 3, words of L p

q
, and thus labels of finite paths of T p

q
, were indexed

from right to left or, if one prefers, from left to right by decreasing nonnegative

integers, always ending with 0; the possibility of extending the indexation to

the right after the ‘radix’ point, and of using decreasing negative integers, up

to minus infinity, for indexing the ‘fractional’ part of a writing was mentioned

at Section 2.3. When we deal with infinite words that will correspond to rep-

resentations of numbers with only fractional part — as it will be the case in

the next section — we find it much more convenient to change the convention

of indexing and use the positive indices in the increasing order (and starting

from 1) from left to right.

In particular, we write

g p

q
= g1 g2 g3 · · · ,

and by induction and using Corollary 19 and the fact that the label of a node

is the value of its path label it then comes:

Corollary 23: G0 = π(q) = 1 and Gk = π(qg1g2 · · · gk) for all k ∈ N.

4.3. Evaluation of infinite words in T p

q
. According to the convention we

have just taken on the indexing of infinite words, the evaluation map takes the

following form:

(7) ∀a = a1 a2 · · · ∈ AN π(. a) =
1

q

∑

i>1

ai

(

q

p

)i

.

We use the radix point ‘.’ on the left of the infinite word in order to mark the

position of the index 0 and distinguish clearly between the use of the evaluation

map π in equations such as Corollary 23 and (7). Let a = a1a2 · · · be in AN

and x = π(. a). With these notations we clearly have:
(

p

q

)h

x = π(a1 a2 · · ·ah.ah+1 ah+2 · · · ), for all h ∈ N(8)

x = lim
h→∞

(

q

p

)h

π(a1 a2 · · · ah) = lim
h→∞

(

q

p

)h

π(a[h])(9)

As in an integer base system, we have:

Proposition 24: [7] The map π : AN → R is continuous.

Notation 25: Let us denote by W p

q
the subset of AN that consists of the labels

of infinite paths starting from the root of T p

q
.
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Note that the finite prefixes of the elements of W p

q
are the words in 0∗L p

q
. A

direct consequence of Lemma 8 is the following.

Proposition 26: If q > 1, then no element of W p

q
, but 0ω, is eventually

periodic.

From (8), it then follows:

Lemma 27: Let a = a1 a2 · · · be in W p

q
and x = π(.a). Then, for every k ∈ N,

⌊

(

p

q

)k

x

⌋

=π(a1 a2 · · · ak)+ ρk(x) with ρk(x)=bπ(. ak+1 ak+2 · · · )c <
p− 1

p− q
.

Proof. The statement holds because π(a1 a2 · · · ak) is an integer as a is in W p

q

and the inequality is strict as no word of W p

q
may end in (p− 1)ω.

We call branching a node v of T p

q
if it has at least two children, that is, if

d(π(p(v))) has at least two elements.

Lemma 28: Let v be any branching node in T p

q
, and n = π(p(v)) its label.

Let a1 and b1 = a1+q be in d(n) and let m1 = τa1
(n) and m2 = τb1(n) = m1+1.

Write W(m1) = a2 a3 · · · and w(m2) = b2 b3 · · · . Then, it holds

(10) π(. a1 a2 a3 · · · ) = π(. b1 b2 b3 · · · ).

Proof. Proposition 22 (iii) directly yields the computation:

π(. a1 a2 a3 · · · ) − π(. b1 b2 b3 · · · ) =
1

q

(

(−q)
q

p
+ (p− q)

∑

i>2

(

q

p

)i)

and the right member is clearly equal to 0.

We then define the two real numbers ω p

q
and γ p

q
by:

(11) ω p

q
= π(. t p

q
) and γ p

q
= π(. q g p

q
),

and Lemma 28 implies: γ p

q
= π(. 0 t p

q
) = q

p
ω p

q
. The next property is a kind of

a converse of Lemma 28 but a bit more technical.

Lemma 29: Suppose q > 2 and let k and r be two integers, k > q−1
p−q

and

r =
⌈

q−2
p−q

⌉

. Let n be any non negative integer and u and v two words of the
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same length ` such that π(u) = n and π(v) = n+ k. Then

π(.v w(n+ k)) − π(.u w(n)) >

(

q

p

)`+r

ω p

q
.

Proof. The following notation, inspired by Corollary 19, will be convenient:

µ(n) = τmd(n)(n) =

⌈

p

q
n

⌉

for n in N, and of course µi+1(n) = µ(µi(n)). The proof goes in three steps.

Since
⌈

p
q
n
⌉

− q−1
q

6
p
q
n, the choice of k implies, for every n in N,

⌈

p

q
(n+ k)

⌉

−

⌈

p

q
n

⌉

>
p

q
(n+ k) −

(

p

q
n+

q − 1

q

)

> k.

Thus, since the left handside is an integer,

(12) ∀n ∈ N µ(n+k) > µ(n)+k+1 and ∀i ∈ N µi(n+k) > µi(n)+k+i .

It then holds, for every n, m, and z in N:
⌈

p

q
(n+m+ z)

⌉

>

⌈

p

q
n

⌉

+

⌈

p

q
m

⌉

+
p

q
z − 2

q − 1

q
.

The choice of r implies then

p

q
(k+ r)− 2

q − 1

q
> k+ 1 +

p

q
r− 2

q − 1

q
= k+ r+

(p− q)r − (q − 2)

q
> k+ r.

And it then follows, by induction on j,

(13) µj(n+ k + r) > µj(n) +Gj−1 + k + r,

an inequality that follows from (12) for j = 1. Indeed, it holds:

µ
(

µj(n) +Gj−1 + k + r
)

=

⌈

p

q
µj(n) +

p

q
Gj−1 +

p

q
(k + r)

⌉

> µj+1(n) +Gj +
p

q
(k + r) − 2

q − 1

q

> µj+1(n) +Gj + k + r.

For sake of brevity let us write now a = uw(n) and b = vw(n+k). By defini-

tion of w(n) and of µi(n), it comes π(a[h].) = µi(n) for h = `+ i. Equation (13)

may then be rewritten as

∀j ∈ N π(b[h].) − π(a[h].) > Gj−1 + k + r with h = `+ r + (j − 1),
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and from (9) it follows

π(.b) − π(.a) > lim
j→+∞

(

q

p

)`+r+j−1

(Gj−1 + k + r)

=

(

q

p

)`+r
[

p

q
lim

j→+∞

(

q

p

)j

Gj−1

]

.

Figure 6 shows the tree T 3

2

again. But this time every node s is given an

ordinate equal to π(p(s)); nodes at the same level in the tree are given the

same abscissa (as in Figure 5) and the distance between two levels of the tree

is multiplied by q

p
when the level increases, which gives the fractal aspect.

4.4. The Josephus Problem. The above definitions and notations allow us

to give another expression for the integer sequence (Gk)k∈N
.

Proposition 30: For every k in N, there exists an integer ek, 0 6 ek <
q−1
p−q

,

such that

Gk =
⌊

γ p

q

(

p

q

)k+1
⌋

− ek.

Proof. From the definition of γ p

q
and as in Lemma 27, it follows:

⌊

γ p

q

(

p

q

)k+1
⌋

= π(q g1 · · · gk.) +
⌊

π(.gk+1gk+2 · · · )
⌋

= Gk + ek,

where ek is an integer strictly smaller than q−1
p−q

since gi is in {0, . . . , q − 1} for

every i > 1.

Corollary 31: If p > 2q − 1 then, for every k in N, Gk =
⌊

γ p

q

(

p

q

)k+1⌋
.

Remark 32: Still in the case where p > 2q − 1, then for every k > 1, the digit

gk of the p
q
-expansion of γ p

q
is obtained as follows:

(i) compute Gk+1 =
⌈

p

q
Gk

⌉

(ii) gk+1 = q Gk+1 (mod p).

The definition of the sequence Gk and the computation of γ p

q
have been

developed not only because they are important for the description of T p

q
but

also as they relate to a classical problem in combinatorics.

Inspired by the so-called “Josephus problem”, Odlyzko and Wilf consider, for

a real α > 1, the iterates of the function f(x) = dα xe: f0 = 1 and fn+1 = dα fne

for n > 0. They show (in [17]) that in the cases where α > 2, or α = 2−1/q for
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Figure 6. Another view on T 3

2

(with four more levels)

some integer q > 2, then there exists a constant H(α) such that fn =
⌊

H(α)αn
⌋

for all n > 0.
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Thus, we obtain the same result as in [17] for any rational α = p

q
, with

p > 2q − 1, and we find H(p
q
) = p

q
γ p

q
= ω p

q
. Our method does not yield an

“independent” way of computing this constant, as was called for in [17], but

the p
q
-expansion of ω p

q
gives at least an easy algorithm.

In the case where q = p − 1 (the Josephus case), the constant ω p

q
is the

constant K(p) in [17]. In this case the integer ek of Proposition 30 is less than

p− 2, and this is the same bound as in [17].

Example 3: For p

q
= 3

2 , the constant ω 3

2

is the constant K(3) already discussed

in [17, 11, 24]. Its decimal expansion:

ω 3

2

= 1.6 2 2 2 7 0 5 0 2 8 8 4 7 6 7 3 1 5 9 5 6 9 5 0 9 8 2 · · ·

is recorded as Sequence A083286 in [23]. Observe that, in the same case, the

sequence (Gk)k>1 is Sequence A061419 in [23].

5. Representation of the reals

Every infinite word a in AN is given a real value x by π:

x = π(.a),

and a is called a p

q
-representation of x. Our purpose here is to associate with

every real number a p

q
-representation which will be as canonical as possible. In

contrast with what is done in Pisot base number systems, where the canonical

representation, the greedy expansion, is defined by an algorithm which com-

putes it for every real, we set these canonical p

q
-expansions a priori. Then we

have to prove: first, that they represent indeed the reals and, second, to what

extent they are canonical.

In a second part, we give an algorithmic way to compute a p
q
-representation

which we call the companion p
q
-representation. This representation is not on

the alphabet A anymore but on a larger alphabet with negative digits. We

investigate then how one can recover the p

q
-expansion from the companion p

q
-

representation and it is from their relationships that we shall derive in the next

section the new results on the power of rational numbers.

5.1. The
p

q
-expansions of real numbers. As announced, the set of p

q
-

expansions is defined a priori and not algorithmically.

Definition 33: The set of expansions in the p
q

number systems is W p

q
.
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In other words, an element a of W p

q
is a p

q
-expansion of the real x = π(.a) and

conversely any element of AN which does not belong to W p

q
is not a p

q
-expansion.

The following Lemma 34 and Theorem 2 tell respectively that p

q
-expansions are

not too many nor too few and vindicate the definition.

Lemma 34: The map π : W p

q
→ R is order preserving.

Proof. Let a and b be in W p

q
. If a v b then, for every k in N, a1 a2 · · ·ak v

b1 b2 · · · bk and then, by Corollary 12, π(a1 a2 · · ·ak) 6 π(b1 b2 · · · bk). By (9),

π(. a) 6 π(. b).

By contrast, it follows from the examples given after Corollary 12 that the

map π : AN → R is not order preserving. Let X p

q
= π(W p

q
). The elements of

X p

q
are nonnegative real numbers less than or equal to ω p

q
: X p

q
⊆ [0,ω p

q
] (note

that ω p

q
< p−1

p−q
).

Theorem 2: Every real in [0,ω p

q
] has at least one p

q
-expansion, that is, X p

q
=

[0,ω p

q
].

Proof. By definition, the set W p

q
is the set of infinite words w in AN such that

any prefix of w is in 0∗ L p

q
. As 0∗ L p

q
is prefix-closed — since L p

q
is prefix-

closed and the empty word belongs to L p

q
— W p

q
is closed (see [19]) in the

compact set AN, hence compact. Since π is continuous, X p

q
is closed.

Suppose that [0,ω p

q
] \X p

q
is a nonempty open set, containing a real u. Let

y = sup{x ∈ X p

q
: x < u} and z = inf{x ∈ X p

q
: x > u}. Since X p

q
is closed,

y and z both belong to X p

q
. Let a = a1 a2 · · · be the largest p

q
-expansion of

y and b = b1 b2 · · · the smallest p

q
-expansion of z (in the lexicographic order).

Of course, a @ b since a 6= b. Let a1 · · · aN be the longest common prefix

of a and b (with the convention that N can be 0). Set m = π(a1 · · · aN .),

n = π(a1 · · · aNaN+1.) and p = π(a1 · · · aNbN+1.). Then

a v a1 · · ·aNaN+1W(n) @ a1 · · ·aNbN+1w(p) v b.

By the choice of b, π(.a1 · · · aNaN+1W(n)) < z, and by the choice of a, a =

a1 · · · aNaN+1W(n). Symmetrically, b = a1 · · ·aNbN+1w(p).

If aN+1 + q < bN+1, then there exists a digit c in d(m) such that aN+1 + q 6

c < bN+1. For any c′ in AN such that c = a1 · · · aN c c′ is in W p

q
(and there

exist some), we have

a @ c @ b.
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Whatever the value of π(.c), y or z, we have a contradiction with the extremal

choice of a and b.

If aN+1 + q = bN+1, then p = n + 1 and z = y by Lemma 28, hence a

contradiction. And thus X p

q
= [0,ω p

q
].

A word in W p

q
is said to be eventually maximal (resp., eventually min-

imal) if it has a suffix which is a maximal (resp., minimal) word. From

Lemma 28, follows

Proposition 35: If a inW p

q
is eventually maximal, then x = π(.a) has another

p
q
-expansion which is eventually minimal, and conversely.

Theorem 36: The set of reals in X p

q
that have more than one p

q
-expansion is

countably infinite. The p

q
-expansions of such reals are eventually maximal or

eventually minimal.

We have seen, with Lemma 28, that to every branching node in T p

q
cor-

responds a real with at least two p

q
-expansions. The theorem will thus be

established when the following proposition will be proved.

Proposition 37: Let x be a real in [0,ω p

q
], with more than one p

q
-expansion.

Then x has at most k + 1 p

q
-expansions, where k is the least integer strictly

greater than q−1
p−q

, and can be associated with at most k branching nodes of T p

q
.

The smallest of these expansions is eventually maximal and the largest even-

tually minimal; the others, if any, are both eventually maximal and eventually

minimal.

Proof. Let R = π−1(x) ∩ W p

q
be the (closed) set of p

q
-expansions of x. Let

a = a1 a2 · · · be the smallest and b = b1 b2 · · · the largest p

q
-expansion of x (in

the lexicographic order) and, as above, let a1 · · · aN be the longest common

prefix of a and b (with the convention that N can be 0).

Let c = c1c2 · · · be in R and different from (and thus smaller than) b. We first

claim that it does not exist any integer h such that π(b[h].) − π(c[h].) > k + 1.

Suppose the contrary, write π(c[h].) = n− 1, π(b[h].) = m > n+ k and let d be

the word of 0∗L p

q
of length h such that π(d) = n. It then holds

c @ d w(n) @ b[h]w(m) v b,
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and thus, by Lemma 29,

π(.c) 6 π(.d w(n)) < π(.b[h]w(m)) 6 π(.b),

which contradicts π(.c) = π(.b) = x. This directly implies that R, which

consists of the c in W p

q
such that a v c v b, contains at most k + 1 elements

and the corresponding subtree of T p

q
at most k branching nodes.

Suppose now that for an integer h greater than N , ch+1 is not the ‘maximal’

digit, that is, ch+1 is smaller than Md(π
(

c[h].
)

). Let us write c′h = W(π
(

c[h]

)

).

It then holds:

c @ c[h] c
′
h @ b.

From this we deduce that the sequence of integers h such that ch+1 is not the

‘maximal’ digit is finite (and smaller than k) and thus that c is eventually

maximal. Symmetrically, any p
q
-expansion in R that is different from (and thus

larger than) a is eventually minimal.

It follows in particular that if p > 2 q then no real number has more than two
p

q
-expansions. A simple combinatorial argument allows to widen the condition

— and to recover the case p

q
= 3

2 .

Corollary 38: If p > 2q − 1, then no real number has more than two p

q
-

expansions.

Proof. Suppose p = 2q − 1 since the other cases are already settled by Propo-

sition 37. If x has more than two p

q
-expansions, then by Proposition 37 one is

both eventually maximal and eventually minimal and thus eventually written

(cf. Proposition 22) on the alphabet:

{0, . . . , q − 1} ∩ {p− q, . . . , p− 1} = {q − 1}

reduced to one letter, since p− q = q − 1. Contradiction, since no p
q
-expansion

is eventually periodic.

Remark 39: In contrast with the classical representations of reals, the finite

prefixes of a p
q
-expansion of a real number, completed by zeroes, are not p

q
-

expansions of real numbers (though they can be given a value by the function π

of course), that is to say, if a non empty word w is in L p

q
, then the word w 0ω

does not belong to W p

q
.
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5.2. The companion
p

q
-representation and the co-converter. A fea-

ture of the p
q
-expansion of the integers is that it is computed ‘least significant

digit first’, that is, from right to left. This is quite a reasonable process for

integers, and becomes problematic when it comes to the reals and to the com-

putation from right to left of a representation which is infinite to the right.5 This

difficulty is somewhat overcome with the definition of another p
q
-representation

for the reals; it can be computed with any prescribed precision (provided we

can compute in Q with the same precision) and somehow from left to right. The

price we have to pay for this is that we use a larger alphabet of digits, contain-

ing negative digits, exactly in the same way as the Avizienis representation

of reals which uses negative digits and allows to perform addition from left to

right (cf. [2]).

Let ψ : R+ → Z be the function defined by:

ψ(x) = q
⌊

(

p

q

)

x
⌋

− p bxc.

Lemma 40: The function ψ is periodic of period q and for all x in R+, ψ(x)

belongs to the digit alphabet

C = {−(q − 1), . . . , 0, 1, . . . , p− 1}.

Proof. The function ψ is clearly periodic, of period q. It holds:

(

p

q

)

x−
p

q
<

(

p

q

)

bxc 6

(

p

q

)

x <
⌊

(

p

q

)

x
⌋

+ 1.

This line being multiplied by q, the two rightmost inequalities give −q < ψ(x)

and considering that q
⌊

(

p

q

)

x
⌋

−px is nonpositive, the leftmost inequality gives

ψ(x) < p.

Definition 41: For every x in R+, the infinite sequence ϕ(x) defined by:

ϕ(x) = c = c1c2 · · · cn · · · with cn = ψ

(

(

p

q

)n−1

x

)

for every n ≥ 1

is called the companion p
q
-representation of x.

5 As W. Allen said: “The infinite is pretty far, especially towards the end.”
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Figure 7. The function ψ

If q = 1, cn is precisely the n-th digit after the radix point in the expansion of x

in base p. An obvious computation yields, with the notation of Definition 41,

(14) π(c1 · · · cn.) =
⌊

(

p

q

)n

x
⌋

−

(

p

q

)n

bxc

from which the name ‘companion representation’ is easily justified (recall that

{x} denote the fractional part of the number x: {x} = x− bxc):

Proposition 42: For every x in R+, ϕ(x) is a p
q
-representation of {x}.

Proof. From (9), it comes:

π(.ϕ(x)) = lim
n→∞

(

q

p

)n

π(c1 · · · cn.) = lim
n→∞

(

q

p

)n
⌊

(

p

q

)n

x
⌋

− bxc = x− bxc

since the limit when n tends to infinity of
(

q
p

)n⌊
(

p
q

)n

x
⌋

is x.

Let x be in [0,ω p

q
], 〈x〉 p

q
= a = a1a2 · · · its p

q
-expansion, and ϕ(x) = c =

c1c2 · · · its companion representation. As in Lemma 27, we note ρn(x) =
⌊

π(.an+1an+2 · · · )
⌋

and it holds: 0 ≤ ρn(x) < p−1
p−q

. From the same lemma,

for k = n and k = n− 1, and from the definition of cn:

cn = ψ

(

(

p

q

)n−1

x

)

= q

⌊(

p

q

)n

x

⌋

− p

⌊

(

p

q

)n−1

x

⌋

,

it comes, since q π(a1 · · ·an) = p π(a1 · · · an−1) + an:

(15) cn + p ρn−1(x) = an + q ρn(x).
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Definition 43: Let A p

q
= 〈H,C ×A,F,H,H 〉 be the letter-to-letter (left) trans-

ducer with set of states H = {h ∈ N | 0 6 h < p−1
p−q

} and whose set of transitions

F is defined by:

(16)
(

h, (c, a), h′
)

∈ F ⇐⇒ p h+ c = q h′ + a.

By comparison with (6):

(6)
(

z, (d, a), z′
)

∈ E ⇐⇒ q z + d = p z′ + a.

we recognize that A p

q
is the transposed automaton of the converter CC (once

the label of the states have been changed to their opposite). Equation (15)

amounts then to the proof of the following.

Theorem 44: Let x be a real in [0,ω p

q
], c its companion representation and a

a p
q
-expansion of x. Then (c,a) is the label of an infinite path which begins in

the state ρ0(x) = bxc in the transducer A p

q
.

Let us write the digit alphabet C = {−(q− 1), . . . , 0, 1, . . . , p− 1}, the image

of the function ψ, as the disjoint union C = C1 ∪ C2 ∪ C3 with C1 = {−(q −

1), . . . ,−1}, C2 = {0, . . . , q − 1} and C3 = {q, . . . , p− 1}.

If p > 2 q− 1, the interesting case which we have already considered, A p

q
has

then only two states. The transducer A p

q
is drawn at Figure 8 (a) and the case

p

q
= 3

2 at Figure 8 (b) (compare with Figure 4 (b) above).

0 1

(a, a)

(d, d+ p)

(b, b− q)

(c, c+ p− q)

∀a ∈ C2 ∪C3

∀b ∈ C3

∀c ∈ C1 ∪C2

∀d ∈ C1

(a) The general case A p

q
, p > 2 q − 1.

0 1

(2, 0)

(1, 2)

(1, 0)
(0, 1)
(1, 2)

(0, 0)
(1, 1)
(2, 2)

(b) The transducer A 3

2

.

Figure 8. The transducer that converts the companion repre-

sentation into a p
q
-expansion.

The computation of the companion representation is the first step of the

“algorithm” for the computation of p
q
-expansions of the real numbers. Let x be
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in [0,ω p

q
], and let c be its companion representation. Let n be a fixed (large)

positive integer and v = c1 · · · cn be the prefix of length n of c. When v is read

from right to left by the converter CC , which is the transposed of A p

q
, and taking

a state s as initial state, the output is a word f (s) of length n on the alphabet A

and which depends upon s. The maximal common prefix of all these words f (s)

is the beginning of all the p
q
-expansions of x.

To get longer prefixes one has to make the computation again with an n′

larger than n, but it is not possible to know in advance how large this n′ has to

be in order to get a better approximation.

A characterization of the companion representation of the reals that have

multiple p
q
-expansions is given now.

Proposition 45: Suppose that p ≥ 2q − 1. A real x has two p

q
-expansions if

and only if its companion representation is eventually in C2
N.

Proof. Under the hypothesis, A p

q
has only two states, labeled with 0 and 1, and

if a digit c belongs to C1 (resp., to C3), then a transition labeled (c, a) goes out

from state 1 (resp., from state 0).

Let x be a real and c its companion representation. By Theorem 2, x has

at least one p
q
-expansion a and by Theorem 44, (c,a) is the label of an infinite

path in A p

q
.

If c is not eventually in CN
2 , then there is an increasing sequence of indices

(ni) such that cni
belongs to C1 ∪ C3. The state from which the transition

starts labeled (cni
, .) is uniquely determined. As the transducer A p

q
is co-

deterministic, i.e. input co-deterministic, this implies — by reading backwards

from the indices where the state is determined — that the infinite path labeled

by (c,a) is unique and x can have only one p
q
-expansion.

Assume now that c is eventually in CN
2 , that is, there exists N > 0 such

that for any n ≥ N , cn belongs to C2. In the transducer A p

q
there are no

transitions from state 0 to state 1, or from state 1 to state 0, with input label

in C2. Thus the path with label (c,a) stays eventually in state 0 or in state

1. Suppose it stays eventually in state 0, that is a stays eventually in CN
2 as

well, hence is a minimal word. By Proposition 35, x has another p

q
-expansion.

Conversely if the path labeled by (c,a) stays eventually in state 1, then a stays

eventually in CN
3 , hence is a maximal word, and for the same reason x has

another p

q
-expansion.
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6. On the fractional part of the powers of rational numbers

We are now in a position to explain how the characterization of the p
q
-expansions

of the reals applies to the study of the distribution of the powers of a rational

number as presented in the introduction, how it allows to prove Theorem 3 and

how close it is from the original description of the ‘conjectured’ Z-numbers. For

that purpose, we first give the description of the inverse of the function ψ — in

the case that really interest us, namely, when p > 2 q− 1 — and for easiness of

writing, of the function ψ(q x) indeed.

Lemma 46: Suppose p ≥ 2q − 1. For every c in C2 = {0, . . . , q − 1} let kc be

the unique integer in A = {0, . . . , p − 1} such that q kc = c (mod p). Then

ψ(q x) = c if, and only if, {x} belongs to the interval
[

1
p
kc,

1
p
(kc + 1)

[

.

Proof. The uniqueness of kc follows from the fact that p and q are coprime:

q (k − k′) = 0 (mod p) implies k = k′ (mod p) and thus k = k′ if k and k′ are

both in A. For the same reason

ψ(q x) = q bp xc − p bq xc = c

implies that there exists a unique pair (kc, jc) such that bpxc = kc and bqxc = jc

and with kc in A and jc in C2.

Hence ψ(q x) = c if, and only if, x ∈
[

1
q
jc,

1
q
(jc + 1)

[
⋂
[

1
p
kc,

1
p
(kc + 1)

[

. By

hypothesis on c, and on p and q, it holds

0 6 q kc − p jc 6 q − 1 6 p− q.

Dividing these inequalities by p q it comes 1
q
jc 6

1
p
kc and 1

p
(kc + 1) 6

1
q
(jc + 1)

and the lemma holds.

Notation 47: For a fixed rational p

q
we denote by Y p

q
the subset:

Y p

q
=

⋃

06c6q−1

[1

p
kc,

1

p
(kc + 1)

[

where the kc’s are defined as in Lemma 46.

The set Y p

q
is a subset of

[

0, 1
[

that consists of the union of q intervals of

length 1
p
. For instance:

Y 3

2

=
[

0,
1

3

[

∪
[2

3
, 1
[

.

Lemma 46 may be reworded as ψ(q x) ∈ C2 if and only if {x} ∈ Y p

q
.
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Remark 48: Loosely speaking, the set Y p

q
corresponds to the way of distributing

as evenly as possible q intervals of length 1
p

inside
[

0, 1
[

. Another way to

describe Y p

q
is, as we try to represent at Figure 9, to consider the Christoffel word

that connects the origin to the point (p, q): this word contains q occurrences of

b’s and q runs of a’s with p a’s in total. If the abscissa is scaled by 1
p
, the first a

in each of the q runs corresponds to one of the intervals that compose Y p

q
. (For

Christoffel words, see [14], for instance.)

1
0

1

2

−1

x

ψ(q x)

(a) p

q
= 3

2
k0 = 0, k1 = 2.

1
0

1

2

3

4

5

6

−1

−2

x

ψ(q x)

(b) p

q
= 7

3
k0 = 0, k1 = 5, k2 = 3.

Figure 9. The function ψ and the subset Y p

q
.

The generalized Mahler’s notation is then:

Z p

q

(

Y p

q

)

=
{

z ≥ 0
∣

∣ ∃N ∈ N ∀n > N

{

z

(

p

q

)n}

∈ Y p

q

}

.

These notations being given, Theorem 3 reads then:

Theorem 3: If p > 2q − 1, Z p

q

(

Y p

q

)

is countably infinite.

It is indeed a direct consequence of the following:

Theorem 49: Let p ≥ 2q− 1. A positive real z belongs to Z p

q

(

Y p

q

)

if and only

if q z has two p
q
-expansions.

Proof. From Proposition 45 follows that a real x has two p

q
-expansions if and

only if, there exists N > 0 such that for any n > N , cn = ψ
(

x
(

p
q

)n−1)
belongs
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to C2, and by Lemma 46, if, and only if,
{

(

p

q

)n−1
x

q

}

∈
⋃

06c6q−1

[
1

p
kc,

1

p
(kc + 1)[= Y p

q

and this concludes the proof.

As one can consider arbitrarily large rationals p

q
that meet the condition

p ≥ 2q − 1, it then comes:

Corollary 50: For any ε > 0, there exists a rational p
q

and a subset Y p

q
⊆

[

0, 1
[

of Lebesgue measure less than ε such that Z p

q

(

Y p

q

)

is countably infinite.

Let us now come back to the original paper of Mahler. A so-called Z-number

is a real number z such that for every n,
{

z
(

3
2

)n}

∈
[

0, 1
2

[

. With slight changes

in Mahler’s original notation, we write the decomposition into integer/fractional

parts as

z

(

3

2

)n

= hn + rn.

As rn+1 is in
[

0, 1
2

[

, it follows that if hn is even, then rn is in
[

0, 1
3

[

, and if

hn is odd, then rn is in
[

1
3 ,

1
2

[

. This implies that either

z

2

(

3

2

)n

=
hn

2
+
rn
2

with
rn
2

∈

[

0,
1

6

[

or
z

2

(

3

2

)n

=
hn − 1

2
+
rn + 1

2
with

rn + 1

2
∈

[

2

3
,
3

4

[

holds according to the parity of hn. In other words:

(17)

{

z

2

(

3

2

)n}

∈

[

0,
1

6

[

⋃

[

2

3
,
3

4

[

holds for all n and Theorem 49 implies that z has two 3
2 -expansions.

Furthermore, under the assumption that z is a Z-number, Mahler computes

an ‘expansion’ in base 3
2 of r0 = {z}, which is a sequence of 0’s and 1’s and shows

it is unique for a given h0 = bzc. In our setting, this sequence is w(h0), the

minimal word in T 3

2

which starts at a node labelled by h0. Mahler noticed that

his expansion of the fractional part of a Z-number must meet further constraints

— such as to contain no factor 11. The proof of the nonexistence of Z-numbers is

now transferred to the study of the minimal words, which exist, and to the proof

that no integer n exists such that w(n) meets the above mentioned constraints.
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